|
|
//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
//=============================================================================
#include "pch_materialsystem.h"
#include "tier1/functors.h"
#include "itextureinternal.h"
#define MATSYS_INTERNAL
#include "cmatqueuedrendercontext.h"
#include "cmaterialsystem.h" // @HACKHACK
// NOTE: This has to be the last file included!
#include "tier0/memdbgon.h"
ConVar mat_report_queue_status( "mat_report_queue_status", "0", FCVAR_MATERIAL_SYSTEM_THREAD );
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
#if defined( _WIN32 )
void FastCopy( byte *pDest, const byte *pSrc, size_t nBytes ) { if ( !nBytes ) { return; }
#if !defined( _X360 )
if ( (size_t)pDest % 16 == 0 && (size_t)pSrc % 16 == 0 ) { const int BYTES_PER_FULL = 128; int nBytesFull = nBytes - ( nBytes % BYTES_PER_FULL ); for ( byte *pLimit = pDest + nBytesFull; pDest < pLimit; pDest += BYTES_PER_FULL, pSrc += BYTES_PER_FULL ) { // memcpy( pDest, pSrc, BYTES_PER_FULL);
__asm { mov esi, pSrc mov edi, pDest
movaps xmm0, [esi + 0] movaps xmm1, [esi + 16] movaps xmm2, [esi + 32] movaps xmm3, [esi + 48] movaps xmm4, [esi + 64] movaps xmm5, [esi + 80] movaps xmm6, [esi + 96] movaps xmm7, [esi + 112]
movntps [edi + 0], xmm0 movntps [edi + 16], xmm1 movntps [edi + 32], xmm2 movntps [edi + 48], xmm3 movntps [edi + 64], xmm4 movntps [edi + 80], xmm5 movntps [edi + 96], xmm6 movntps [edi + 112], xmm7 } } nBytes -= nBytesFull; }
if ( nBytes ) { memcpy( pDest, pSrc, nBytes ); } #else
if ( (size_t)pDest % 4 == 0 && nBytes % 4 == 0 ) { XMemCpyStreaming_WriteCombined( pDest, pSrc, nBytes ); } else { // work around a bug in memcpy
if ((size_t)pDest % 2 == 0 && nBytes == 4) { *(reinterpret_cast<short *>(pDest)) = *(reinterpret_cast<const short *>(pSrc)); *(reinterpret_cast<short *>(pDest)+1) = *(reinterpret_cast<const short *>(pSrc)+1); } else { memcpy( pDest, pSrc, nBytes ); } } #endif
} #else
#define FastCopy memcpy
#endif
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
enum MatQueuedMeshFlags_t { MQM_BUFFERED = ( 1 << 0 ), MQM_FLEX = ( 1 << 1 ), };
class CMatQueuedMesh : public IMesh { public: CMatQueuedMesh( CMatQueuedRenderContext *pOwner, IMatRenderContextInternal *pHardwareContext ) : m_pLateBoundMesh( &m_pActualMesh ), m_pOwner( pOwner ), m_pCallQueue( pOwner->GetCallQueueInternal() ), m_pHardwareContext( pHardwareContext ), m_pVertexData( NULL ), m_pIndexData( NULL ), m_nVerts( 0 ), m_nIndices( 0 ), m_VertexSize( 0 ), m_Type(MATERIAL_TRIANGLES), m_pVertexOverride( NULL ), m_pIndexOverride ( NULL ), m_pActualMesh( NULL ), m_nActualVertexOffsetInBytes( 0 ), m_VertexFormat( 0 ), m_MorphFormat( 0 ) { }
CLateBoundPtr<IMesh> &AccessLateBoundMesh() { return m_pLateBoundMesh; }
byte *GetVertexData() { return m_pVertexData; } uint16 *GetIndexData() { return m_pIndexData; } IMesh *DetachActualMesh() { IMesh *p = m_pActualMesh; m_pActualMesh = NULL; return p; } IMesh *GetActualMesh() { return m_pActualMesh; } int GetActualVertexOffsetInBytes() { return m_nActualVertexOffsetInBytes; }
void DeferredGetDynamicMesh( VertexFormat_t vertexFormat, unsigned flags, IMesh* pVertexOverride, IMesh* pIndexOverride, IMaterialInternal *pMaterial ) { if ( !( flags & MQM_FLEX )) { if ( vertexFormat == 0 ) { m_pActualMesh = m_pHardwareContext->GetDynamicMesh( ( ( flags & MQM_BUFFERED ) != 0 ), pVertexOverride, pIndexOverride, pMaterial ); } else { m_pActualMesh = m_pHardwareContext->GetDynamicMeshEx( vertexFormat, ( ( flags & MQM_BUFFERED ) != 0 ), pVertexOverride, pIndexOverride, pMaterial ); } } else { m_pActualMesh = m_pHardwareContext->GetFlexMesh(); } }
bool OnGetDynamicMesh( VertexFormat_t vertexFormat, unsigned flags, IMesh* pVertexOverride, IMesh* pIndexOverride, IMaterialInternal *pMaterial, int nHWSkinBoneCount ) { if ( !m_pVertexOverride && ( m_pVertexData || m_pIndexData ) ) { CannotSupport(); if ( IsDebug() ) { Assert( !"Getting a dynamic mesh without resolving the previous one" ); } else { Error( "Getting a dynamic mesh without resolving the previous one" ); } } FreeBuffers();
m_pVertexOverride = pVertexOverride; m_pIndexOverride = pIndexOverride;
if ( !( flags & MQM_FLEX ) ) { if ( pVertexOverride ) { m_VertexFormat = pVertexOverride->GetVertexFormat(); } else { // Remove VERTEX_FORMAT_COMPRESSED from the material's format (dynamic meshes don't
// support compression, and all materials should support uncompressed verts too)
m_VertexFormat = ( vertexFormat == 0 ) ? ( pMaterial->GetVertexFormat() & ~VERTEX_FORMAT_COMPRESSED ) : vertexFormat;
if ( vertexFormat != 0 ) { int nVertexFormatBoneWeights = NumBoneWeights( vertexFormat ); if ( nHWSkinBoneCount < nVertexFormatBoneWeights ) { nHWSkinBoneCount = nVertexFormatBoneWeights; } } // Force the requested number of bone weights
m_VertexFormat &= ~VERTEX_BONE_WEIGHT_MASK; m_VertexFormat |= VERTEX_BONEWEIGHT( nHWSkinBoneCount ); if ( nHWSkinBoneCount > 0 ) { m_VertexFormat |= VERTEX_BONE_INDEX; } } } else { m_VertexFormat = VERTEX_POSITION | VERTEX_NORMAL | VERTEX_FORMAT_USE_EXACT_FORMAT; if ( g_pMaterialSystemHardwareConfig->SupportsPixelShaders_2_b() ) { m_VertexFormat |= VERTEX_WRINKLE; } }
MeshDesc_t temp; g_pShaderAPI->ComputeVertexDescription( 0, m_VertexFormat, temp ); m_VertexSize = temp.m_ActualVertexSize;
// queue up get of real dynamic mesh, allocate space for verts & indices
m_pCallQueue->QueueCall( this, &CMatQueuedMesh::DeferredGetDynamicMesh, vertexFormat, flags, pVertexOverride, pIndexOverride, pMaterial ); return true; }
void ModifyBegin( int firstVertex, int numVerts, int firstIndex, int numIndices, MeshDesc_t& desc ) { CannotSupport(); }
void ModifyBeginEx( bool bReadOnly, int firstVertex, int numVerts, int firstIndex, int numIndices, MeshDesc_t& desc ) { CannotSupport(); }
void ModifyEnd( MeshDesc_t& desc ) { CannotSupport(); }
void GenerateSequentialIndexBuffer( unsigned short* pIndexMemory, int numIndices, int firstVertex ) { Assert( pIndexMemory == m_pIndexData ); m_pCallQueue->QueueCall( &::GenerateSequentialIndexBuffer, pIndexMemory, numIndices, firstVertex ); }
void GenerateQuadIndexBuffer( unsigned short* pIndexMemory, int numIndices, int firstVertex ) { Assert( pIndexMemory == m_pIndexData ); m_pCallQueue->QueueCall( &::GenerateQuadIndexBuffer, pIndexMemory, numIndices, firstVertex ); }
void GeneratePolygonIndexBuffer( unsigned short* pIndexMemory, int numIndices, int firstVertex ) { Assert( pIndexMemory == m_pIndexData ); m_pCallQueue->QueueCall( &::GeneratePolygonIndexBuffer, pIndexMemory, numIndices, firstVertex ); }
void GenerateLineStripIndexBuffer( unsigned short* pIndexMemory, int numIndices, int firstVertex ) { Assert( pIndexMemory == m_pIndexData ); m_pCallQueue->QueueCall( &::GenerateLineStripIndexBuffer, pIndexMemory, numIndices, firstVertex ); }
void GenerateLineLoopIndexBuffer( unsigned short* pIndexMemory, int numIndices, int firstVertex ) { Assert( pIndexMemory == m_pIndexData ); m_pCallQueue->QueueCall( &::GenerateLineLoopIndexBuffer, pIndexMemory, numIndices, firstVertex ); }
int VertexCount() const { return m_VertexSize ? m_nVerts : 0; }
int IndexCount() const { return m_nIndices; }
int GetVertexSize() { return m_VertexSize; }
void SetPrimitiveType( MaterialPrimitiveType_t type ) { m_Type = type; m_pCallQueue->QueueCall( m_pLateBoundMesh, &IMesh::SetPrimitiveType, type ); }
void SetColorMesh( IMesh *pColorMesh, int nVertexOffset ) { m_pCallQueue->QueueCall( m_pLateBoundMesh, &IMesh::SetColorMesh, pColorMesh, nVertexOffset ); }
void Draw( CPrimList *pLists, int nLists ) { CannotSupport(); }
void CopyToMeshBuilder( int iStartVert, int nVerts, int iStartIndex, int nIndices, int indexOffset, CMeshBuilder &builder ) { CannotSupport(); }
void Spew( int numVerts, int numIndices, const MeshDesc_t & desc ) { }
void ValidateData( int numVerts, int numIndices, const MeshDesc_t & desc ) { }
void LockMesh( int numVerts, int numIndices, MeshDesc_t& desc ) { if ( !m_pVertexOverride ) { m_nVerts = numVerts; } else { m_nVerts = 0; }
if ( !m_pIndexOverride ) { m_nIndices = numIndices; } else { m_nIndices = 0; }
if( numVerts > 0 ) { Assert( m_VertexSize ); Assert( !m_pVertexData ); m_pVertexData = (byte *)m_pOwner->AllocVertices( numVerts, m_VertexSize ); Assert( (unsigned)m_pVertexData % 16 == 0 );
// Compute the vertex index..
desc.m_nFirstVertex = 0; static_cast< VertexDesc_t* >( &desc )->m_nOffset = 0; // Set up the mesh descriptor
g_pShaderAPI->ComputeVertexDescription( m_pVertexData, m_VertexFormat, desc ); } else { desc.m_nFirstVertex = 0; static_cast< VertexDesc_t* >( &desc )->m_nOffset = 0; // Set up the mesh descriptor
g_pShaderAPI->ComputeVertexDescription( 0, 0, desc ); }
if ( m_Type != MATERIAL_POINTS && numIndices > 0 ) { Assert( !m_pIndexData ); m_pIndexData = m_pOwner->AllocIndices( numIndices ); desc.m_pIndices = m_pIndexData; desc.m_nIndexSize = 1; desc.m_nFirstIndex = 0; static_cast< IndexDesc_t* >( &desc )->m_nOffset = 0; } else { desc.m_pIndices = &gm_ScratchIndexBuffer[0]; desc.m_nIndexSize = 0; desc.m_nFirstIndex = 0; static_cast< IndexDesc_t* >( &desc )->m_nOffset = 0; } }
void UnlockMesh( int numVerts, int numIndices, MeshDesc_t& desc ) { if ( m_pVertexData && numVerts < m_nVerts ) { m_pVertexData = m_pOwner->ReallocVertices( m_pVertexData, m_nVerts, numVerts, m_VertexSize ); } m_nVerts = numVerts;
if ( m_pIndexData && numIndices < m_nIndices ) { m_pIndexData = m_pOwner->ReallocIndices( m_pIndexData, m_nIndices, numIndices ); } m_nIndices = numIndices; }
void SetFlexMesh( IMesh *pMesh, int nVertexOffset ) { m_pCallQueue->QueueCall( m_pLateBoundMesh, &IMesh::SetFlexMesh, pMesh, nVertexOffset ); }
void DisableFlexMesh() { m_pCallQueue->QueueCall( m_pLateBoundMesh, &IMesh::DisableFlexMesh ); }
void ExecuteDefferredBuild( byte *pVertexData, int nVerts, int nBytesVerts, uint16 *pIndexData, int nIndices ) { Assert( m_pActualMesh ); MeshDesc_t desc; m_pActualMesh->LockMesh( nVerts, nIndices, desc ); m_nActualVertexOffsetInBytes = desc.m_nFirstVertex * desc.m_ActualVertexSize; if ( pVertexData && desc.m_ActualVertexSize ) // if !desc.m_ActualVertexSize, device lost
{ void *pDest; if ( desc.m_VertexSize_Position != 0 ) { pDest = desc.m_pPosition; } else { #define FindMin( desc, pCurrent, tag ) ( ( desc.m_VertexSize_##tag != 0 ) ? min( pCurrent, (void *)desc.m_p##tag ) : pCurrent )
pDest = (void *)(((byte *)0) - 1);
pDest = FindMin( desc, pDest, BoneWeight ); pDest = FindMin( desc, pDest, BoneMatrixIndex ); pDest = FindMin( desc, pDest, Normal ); pDest = FindMin( desc, pDest, Color ); pDest = FindMin( desc, pDest, Specular ); pDest = FindMin( desc, pDest, TangentS ); pDest = FindMin( desc, pDest, TangentT ); pDest = FindMin( desc, pDest, Wrinkle );
for ( int i = 0; i < VERTEX_MAX_TEXTURE_COORDINATES; i++ ) { if ( desc.m_VertexSize_TexCoord[i] && desc.m_pTexCoord < pDest ) { pDest = desc.m_pTexCoord; } }
#undef FindMin
}
Assert( pDest ); if ( pDest ) { FastCopy( (byte *)pDest, pVertexData, nBytesVerts ); } }
if ( pIndexData && pIndexData != &gm_ScratchIndexBuffer[0] && desc.m_nIndexSize ) { if ( !desc.m_nFirstVertex ) { // AssertMsg(desc.m_pIndices & 0x03 == 0,"desc.m_pIndices is misaligned in CMatQueuedMesh::ExecuteDefferedBuild\n");
FastCopy( (byte *)desc.m_pIndices, (byte *)pIndexData, nIndices * sizeof(*pIndexData) ); } else { ALIGN16 uint16 tempIndices[16];
int i = 0; if ( (size_t)desc.m_pIndices % 4 == 2 ) { desc.m_pIndices[i] = pIndexData[i] + desc.m_nFirstVertex; i++; } while ( i < nIndices ) { int nToCopy = min( (int)ARRAYSIZE(tempIndices), nIndices - i ); for ( int j = 0; j < nToCopy; j++ ) { tempIndices[j] = pIndexData[i+j] + desc.m_nFirstVertex; } FastCopy( (byte *)(desc.m_pIndices + i), (byte *)tempIndices, nToCopy * sizeof(uint16) ); i += nToCopy; } } }
m_pActualMesh->UnlockMesh( nVerts, nIndices, desc );
if ( pIndexData && pIndexData != &gm_ScratchIndexBuffer[0]) { m_pOwner->FreeIndices( pIndexData, nIndices ); } if ( pVertexData ) { m_pOwner->FreeVertices( pVertexData, nVerts, desc.m_ActualVertexSize ); } }
void QueueBuild( bool bDetachBuffers = true ) { m_pCallQueue->QueueCall( this, &CMatQueuedMesh::ExecuteDefferredBuild, m_pVertexData, m_nVerts, m_nVerts * m_VertexSize, m_pIndexData, m_nIndices ); if ( bDetachBuffers ) { DetachBuffers(); m_Type = MATERIAL_TRIANGLES; } }
void Draw( int firstIndex = -1, int numIndices = 0 ) { if ( !m_nVerts && !m_nIndices ) { MarkAsDrawn(); return; }
void (IMesh::*pfnDraw)( int, int) = &IMesh::Draw; // need assignment to disambiguate overloaded function
bool bDetachBuffers; if ( firstIndex == -1 || numIndices == 0 ) { bDetachBuffers = true; } else if ( m_pIndexOverride ) { bDetachBuffers = ( firstIndex + numIndices == m_pIndexOverride->IndexCount() ); } else if ( !m_nIndices || firstIndex + numIndices == m_nIndices ) { bDetachBuffers = true; } else { bDetachBuffers = false; }
QueueBuild( bDetachBuffers ); m_pCallQueue->QueueCall( m_pLateBoundMesh, pfnDraw, firstIndex, numIndices ); }
void MarkAsDrawn() { FreeBuffers(); m_pCallQueue->QueueCall( m_pLateBoundMesh, &IMesh::MarkAsDrawn ); }
void FreeBuffers() { if ( m_pIndexData && m_pIndexData != &gm_ScratchIndexBuffer[0]) { m_pOwner->FreeIndices( m_pIndexData, m_nIndices ); m_pIndexData = NULL; } if ( m_pVertexData ) { m_pOwner->FreeVertices( m_pVertexData, m_nVerts, m_VertexSize ); m_pVertexData = NULL; } }
void DetachBuffers() { m_pVertexData = NULL; m_pIndexData = NULL; }
unsigned ComputeMemoryUsed() { return 0; }
virtual VertexFormat_t GetVertexFormat() const { return m_VertexFormat; }
virtual IMesh *GetMesh() { return this; }
// FIXME: Implement!
virtual bool Lock( int nMaxIndexCount, bool bAppend, IndexDesc_t& desc ) { Assert( 0 ); return false; } virtual void Unlock( int nWrittenIndexCount, IndexDesc_t& desc ) { Assert( 0 ); } virtual void ModifyBegin( bool bReadOnly, int nFirstIndex, int nIndexCount, IndexDesc_t& desc ) { CannotSupport(); } void ModifyEnd( IndexDesc_t& desc ) { CannotSupport(); } virtual void Spew( int nIndexCount, const IndexDesc_t & desc ) { Assert( 0 ); } virtual void ValidateData( int nIndexCount, const IndexDesc_t &desc ) { Assert( 0 ); } virtual bool Lock( int nVertexCount, bool bAppend, VertexDesc_t &desc ) { Assert( 0 ); return false; } virtual void Unlock( int nVertexCount, VertexDesc_t &desc ) { Assert( 0 ); } virtual void Spew( int nVertexCount, const VertexDesc_t &desc ) { Assert( 0 ); } virtual void ValidateData( int nVertexCount, const VertexDesc_t & desc ) { Assert( 0 ); } virtual bool IsDynamic() const { Assert( 0 ); return false; }
virtual MaterialIndexFormat_t IndexFormat() const { Assert( 0 ); return MATERIAL_INDEX_FORMAT_UNKNOWN; }
virtual void BeginCastBuffer( VertexFormat_t format ) { Assert( 0 ); }
virtual void BeginCastBuffer( MaterialIndexFormat_t format ) { Assert( 0 ); }
virtual void EndCastBuffer( ) { Assert( 0 ); }
// Returns the number of vertices that can still be written into the buffer
virtual int GetRoomRemaining() const { Assert( 0 ); return 0; }
//----------------------------------------------------------------------------
static void DoDraw( int firstIndex = -1, int numIndices = 0 ) {
} private:
IMesh *m_pActualMesh; int m_nActualVertexOffsetInBytes;
CLateBoundPtr<IMesh> m_pLateBoundMesh;
CMatQueuedRenderContext *m_pOwner; CMatCallQueue *m_pCallQueue; IMatRenderContextInternal *m_pHardwareContext;
//-----------------------------------------------------
// The vertex format we're using...
VertexFormat_t m_VertexFormat;
// The morph format we're using
MorphFormat_t m_MorphFormat;
byte *m_pVertexData; uint16 *m_pIndexData;
int m_nVerts; int m_nIndices;
unsigned short m_VertexSize; MaterialPrimitiveType_t m_Type;
// Used in rendering sub-parts of the mesh
//static unsigned int s_NumIndices;
//static unsigned int s_FirstIndex;
IMesh *m_pVertexOverride; IMesh *m_pIndexOverride;
static unsigned short gm_ScratchIndexBuffer[6]; };
unsigned short CMatQueuedMesh::gm_ScratchIndexBuffer[6];
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
bool CMatQueuedRenderContext::Init( CMaterialSystem *pMaterialSystem, CMatRenderContextBase *pHardwareContext ) { BaseClass::Init();
m_pMaterialSystem = pMaterialSystem; m_pHardwareContext = pHardwareContext;
m_pQueuedMesh = new CMatQueuedMesh( this, pHardwareContext );
MEM_ALLOC_CREDIT();
int nSize = 16 * 1024 * 1024; int nCommitSize = 128 * 1024; #if defined(DEDICATED)
Assert( !"CMatQueuedRenderContext shouldn't be initialized on dedicated servers..." ); nSize = nCommitSize = 1024; #endif
bool bVerticesInit = m_Vertices.Init( nSize, nCommitSize ); bool bIndicesInit = m_Indices.Init( nSize, nCommitSize );
if ( !bVerticesInit || !bIndicesInit ) { return false; }
return true; }
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void CMatQueuedRenderContext::Shutdown() { if ( !m_pHardwareContext ) { return; }
Assert( !m_pCurrentMaterial );
delete m_pQueuedMesh; m_pMaterialSystem = NULL; m_pHardwareContext = NULL; m_pQueuedMesh = NULL;
m_Vertices.Term(); m_Indices.Term();
BaseClass::Shutdown(); Assert(m_queue.Count() == 0); }
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void CMatQueuedRenderContext::Free() { m_Vertices.FreeAll(); m_Indices.FreeAll(); }
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void CMatQueuedRenderContext::CompactMemory() { BaseClass::CompactMemory(); m_Vertices.FreeAll(); m_Indices.FreeAll(); }
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void CMatQueuedRenderContext::BeginQueue( CMatRenderContextBase *pInitialState ) { if ( !pInitialState ) { pInitialState = m_pHardwareContext; } CMatRenderContextBase::InitializeFrom( pInitialState ); g_pShaderAPI->GetBackBufferDimensions( m_WidthBackBuffer, m_HeightBackBuffer ); m_FogMode = pInitialState->GetFogMode(); m_nBoneCount = pInitialState->GetCurrentNumBones(); pInitialState->GetFogDistances( &m_flFogStart, &m_flFogEnd, &m_flFogZ );
}
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void CMatQueuedRenderContext::EndQueue( bool bCallQueued ) { if ( bCallQueued ) { CallQueued(); } int i;
if ( m_pCurrentMaterial ) { m_pCurrentMaterial = NULL; }
if ( m_pUserDefinedLightmap ) { m_pUserDefinedLightmap = NULL; }
if ( m_pLocalCubemapTexture ) { m_pLocalCubemapTexture = NULL; }
for ( i = 0; i < MAX_FB_TEXTURES; i++ ) { if ( m_pCurrentFrameBufferCopyTexture[i] ) { m_pCurrentFrameBufferCopyTexture[i] = NULL; } }
for ( i = 0; i < m_RenderTargetStack.Count(); i++ ) { for ( int j = 0; j < MAX_RENDER_TARGETS; j++ ) { if ( m_RenderTargetStack[i].m_pRenderTargets[j] ) { m_RenderTargetStack[i].m_pRenderTargets[j] = NULL; } } }
m_RenderTargetStack.Clear(); }
void CMatQueuedRenderContext::Bind( IMaterial *iMaterial, void *proxyData ) { if ( !iMaterial ) { if( !g_pErrorMaterial ) return; } else { iMaterial = ((IMaterialInternal *)iMaterial)->GetRealTimeVersion(); //always work with the real time versions of materials internally
}
CMatRenderContextBase::Bind( iMaterial, proxyData );
// We've always gotta call the bind proxy (assuming there is one)
// so we can copy off the material vars at this point.
IMaterialInternal* pIMaterial = GetCurrentMaterialInternal(); pIMaterial->CallBindProxy( proxyData );
m_queue.QueueCall( m_pHardwareContext, &IMatRenderContext::Bind, iMaterial, proxyData ); }
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void CMatQueuedRenderContext::BeginRender() { if ( ++m_iRenderDepth == 1 ) { VPROF_INCREMENT_GROUP_COUNTER( "render/CMatQBeginRender", COUNTER_GROUP_TELEMETRY, 1 );
m_queue.QueueCall( m_pHardwareContext, &IMatRenderContext::BeginRender ); } }
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void CMatQueuedRenderContext::EndRender() { if ( --m_iRenderDepth == 0 ) { m_queue.QueueCall( m_pHardwareContext, &IMatRenderContext::EndRender ); } }
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void CMatQueuedRenderContext::CallQueued( bool bTermAfterCall ) { if ( mat_report_queue_status.GetBool() ) { Msg( "%d calls queued for %llu bytes in parameters and overhead, %d bytes verts, %d bytes indices, %d bytes other\n", m_queue.Count(), (uint64)(m_queue.GetMemoryUsed()), m_Vertices.GetUsed(), m_Indices.GetUsed(), RenderDataSizeUsed() ); }
m_queue.CallQueued();
m_Vertices.FreeAll( false ); m_Indices.FreeAll( false );
if ( bTermAfterCall ) { Shutdown(); } }
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void CMatQueuedRenderContext::FlushQueued() { m_queue.Flush(); }
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
ICallQueue *CMatQueuedRenderContext::GetCallQueue() { return &m_CallQueueExternal; }
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void CMatQueuedRenderContext::SetRenderTargetEx( int nRenderTargetID, ITexture *pNewTarget ) { CMatRenderContextBase::SetRenderTargetEx( nRenderTargetID, pNewTarget );
m_queue.QueueCall( m_pHardwareContext, &IMatRenderContext::SetRenderTargetEx, nRenderTargetID, pNewTarget ); }
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void CMatQueuedRenderContext::GetRenderTargetDimensions( int &width, int &height) const { // Target at top of stack
ITexture *pTOS = NULL;
if ( m_RenderTargetStack.Count() ) { pTOS = m_RenderTargetStack.Top().m_pRenderTargets[ 0 ]; }
// If top of stack isn't the back buffer, get dimensions from the texture
if ( pTOS != NULL ) { width = pTOS->GetActualWidth(); height = pTOS->GetActualHeight(); } else // otherwise, get them from the shader API
{ width = m_WidthBackBuffer; height = m_HeightBackBuffer; } }
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void CMatQueuedRenderContext::Viewport( int x, int y, int width, int height ) { CMatRenderContextBase::Viewport( x, y, width, height ); m_queue.QueueCall( m_pHardwareContext, &IMatRenderContext::Viewport, x, y, width, height ); }
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void CMatQueuedRenderContext::SetLight( int i, const LightDesc_t &desc ) { m_queue.QueueCall( m_pHardwareContext, &IMatRenderContext::SetLight, i, RefToVal( desc ) ); }
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void CMatQueuedRenderContext::SetLightingOrigin( Vector vLightingOrigin ) { m_queue.QueueCall( m_pHardwareContext, &IMatRenderContext::SetLightingOrigin, vLightingOrigin ); }
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void CMatQueuedRenderContext::SetAmbientLightCube( LightCube_t cube ) { // FIXME: does compiler do the right thing, is envelope needed?
m_queue.QueueCall( m_pHardwareContext, &IMatRenderContext::SetAmbientLightCube, CUtlEnvelope<Vector4D>( &cube[0], 6 ) ); }
//-----------------------------------------------------------------------------
// Bone count
//-----------------------------------------------------------------------------
void CMatQueuedRenderContext::SetNumBoneWeights( int nBoneCount ) { m_nBoneCount = nBoneCount; m_queue.QueueCall( m_pHardwareContext, &IMatRenderContext::SetNumBoneWeights, nBoneCount ); }
int CMatQueuedRenderContext::GetCurrentNumBones( ) const { return m_nBoneCount; }
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void CMatQueuedRenderContext::FogMode( MaterialFogMode_t fogMode ) { m_FogMode = fogMode; m_queue.QueueCall( m_pHardwareContext, &IMatRenderContext::FogMode, fogMode ); }
void CMatQueuedRenderContext::FogStart( float fStart ) { m_flFogStart = fStart; m_queue.QueueCall( m_pHardwareContext, &IMatRenderContext::FogStart, fStart ); }
void CMatQueuedRenderContext::FogEnd( float fEnd ) { m_flFogEnd = fEnd; m_queue.QueueCall( m_pHardwareContext, &IMatRenderContext::FogEnd, fEnd ); }
void CMatQueuedRenderContext::FogMaxDensity( float flMaxDensity ) { m_flFogMaxDensity = flMaxDensity; m_queue.QueueCall( m_pHardwareContext, &IMatRenderContext::FogMaxDensity, flMaxDensity ); }
void CMatQueuedRenderContext::SetFogZ( float fogZ ) { m_flFogZ = fogZ; m_queue.QueueCall( m_pHardwareContext, &IMatRenderContext::SetFogZ, fogZ ); }
MaterialFogMode_t CMatQueuedRenderContext::GetFogMode( void ) { return m_FogMode; }
void CMatQueuedRenderContext::FogColor3f( float r, float g, float b ) { FogColor3ub( clamp( (int)(r * 255.0f), 0, 255 ), clamp( (int)(g * 255.0f), 0, 255 ), clamp( (int)(b * 255.0f), 0, 255 ) ); }
void CMatQueuedRenderContext::FogColor3fv( float const* rgb ) { FogColor3ub( clamp( (int)(rgb[0] * 255.0f), 0, 255 ), clamp( (int)(rgb[1] * 255.0f), 0, 255 ), clamp( (int)(rgb[2] * 255.0f), 0, 255 ) ); }
void CMatQueuedRenderContext::FogColor3ub( unsigned char r, unsigned char g, unsigned char b ) { m_FogColor.r = r; m_FogColor.g = g; m_FogColor.b = b; m_queue.QueueCall( m_pHardwareContext, &IMatRenderContext::FogColor3ub, r, g, b ); }
void CMatQueuedRenderContext::FogColor3ubv( unsigned char const* rgb ) { FogColor3ub( rgb[0], rgb[1], rgb[2] ); }
void CMatQueuedRenderContext::GetFogColor( unsigned char *rgb ) { rgb[0] = m_FogColor.r; rgb[1] = m_FogColor.g; rgb[2] = m_FogColor.b; }
void CMatQueuedRenderContext::GetFogDistances( float *fStart, float *fEnd, float *fFogZ ) { if( fStart ) *fStart = m_flFogStart;
if( fEnd ) *fEnd = m_flFogEnd;
if( fFogZ ) *fFogZ = m_flFogZ; }
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void CMatQueuedRenderContext::GetViewport( int& x, int& y, int& width, int& height ) const { // Verify valid top of RT stack
Assert ( m_RenderTargetStack.Count() > 0 );
// Grab the top of stack
const RenderTargetStackElement_t& element = m_RenderTargetStack.Top();
// If either dimension is negative, set to full bounds of current target
if ( (element.m_nViewW < 0) || (element.m_nViewH < 0) ) { // Viewport origin at target origin
x = y = 0;
// If target is back buffer
if ( element.m_pRenderTargets[0] == NULL ) { width = m_WidthBackBuffer; height = m_HeightBackBuffer; } else // if target is texture
{ width = element.m_pRenderTargets[0]->GetActualWidth(); height = element.m_pRenderTargets[0]->GetActualHeight(); } } else // use the bounds from the stack directly
{ x = element.m_nViewX; y = element.m_nViewY; width = element.m_nViewW; height = element.m_nViewH; } }
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void CMatQueuedRenderContext::SyncToken( const char *p ) { m_queue.QueueCall( m_pHardwareContext, &IMatRenderContext::SyncToken, CUtlEnvelope<const char *>( p ) ); }
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
IMesh* CMatQueuedRenderContext::GetDynamicMesh( bool buffered, IMesh* pVertexOverride, IMesh* pIndexOverride, IMaterial *pAutoBind ) { if( pAutoBind ) Bind( pAutoBind, NULL );
if ( pVertexOverride && pIndexOverride ) { // Use the new batch API
DebuggerBreak(); return NULL; }
if ( pVertexOverride ) { if ( CompressionType( pVertexOverride->GetVertexFormat() ) != VERTEX_COMPRESSION_NONE ) { // UNDONE: support compressed dynamic meshes if needed (pro: less VB memory, con: time spent compressing)
DebuggerBreak(); return NULL; } }
// For anything more than 1 bone, imply the last weight from the 1 - the sum of the others.
int nCurrentBoneCount = GetCurrentNumBones(); Assert( nCurrentBoneCount <= 4 ); if ( nCurrentBoneCount > 1 ) { --nCurrentBoneCount; }
m_pQueuedMesh->OnGetDynamicMesh( 0, ( buffered ) ? MQM_BUFFERED : 0, pVertexOverride, pIndexOverride, GetCurrentMaterialInternal(), nCurrentBoneCount ); return m_pQueuedMesh; }
IMesh* CMatQueuedRenderContext::GetDynamicMeshEx( VertexFormat_t vertexFormat, bool bBuffered, IMesh* pVertexOverride, IMesh* pIndexOverride, IMaterial *pAutoBind ) { if( pAutoBind ) { Bind( pAutoBind, NULL ); }
if ( pVertexOverride && pIndexOverride ) { // Use the new batch API
DebuggerBreak(); return NULL; }
if ( pVertexOverride ) { if ( CompressionType( pVertexOverride->GetVertexFormat() ) != VERTEX_COMPRESSION_NONE ) { // UNDONE: support compressed dynamic meshes if needed (pro: less VB memory, con: time spent compressing)
DebuggerBreak(); return NULL; } }
// For anything more than 1 bone, imply the last weight from the 1 - the sum of the others.
int nCurrentBoneCount = GetCurrentNumBones(); Assert( nCurrentBoneCount <= 4 ); if ( nCurrentBoneCount > 1 ) { --nCurrentBoneCount; }
m_pQueuedMesh->OnGetDynamicMesh( vertexFormat, ( bBuffered ) ? MQM_BUFFERED : 0, pVertexOverride, pIndexOverride, GetCurrentMaterialInternal(), nCurrentBoneCount ); return m_pQueuedMesh; }
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
int CMatQueuedRenderContext::GetMaxVerticesToRender( IMaterial *pMaterial ) { pMaterial = ((IMaterialInternal *)pMaterial)->GetRealTimeVersion(); //always work with the real time version of materials internally.
MeshDesc_t temp;
// Be conservative, assume no compression (in here, we don't know if the caller will used a compressed VB or not)
// FIXME: allow the caller to specify which compression type should be used to compute size from the vertex format
// (this can vary between multiple VBs/Meshes using the same material)
VertexFormat_t materialFormat = pMaterial->GetVertexFormat() & ~VERTEX_FORMAT_COMPRESSED; g_pShaderAPI->ComputeVertexDescription( 0, materialFormat, temp );
int maxVerts = g_pShaderAPI->GetCurrentDynamicVBSize() / temp.m_ActualVertexSize; if ( maxVerts > 65535 ) { maxVerts = 65535; } return maxVerts; }
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void CMatQueuedRenderContext::GetMaxToRender( IMesh *pMesh, bool bMaxUntilFlush, int *pMaxVerts, int *pMaxIndices ) { Assert( !bMaxUntilFlush ); *pMaxVerts = g_pShaderAPI->GetCurrentDynamicVBSize() / m_pQueuedMesh->GetVertexSize(); if ( *pMaxVerts > 65535 ) { *pMaxVerts = 65535; } *pMaxIndices = INDEX_BUFFER_SIZE; }
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
IMesh *CMatQueuedRenderContext::GetFlexMesh() { m_pQueuedMesh->OnGetDynamicMesh( 0, MQM_FLEX, NULL, NULL, NULL, 0 ); return m_pQueuedMesh; }
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
OcclusionQueryObjectHandle_t CMatQueuedRenderContext::CreateOcclusionQueryObject() { OcclusionQueryObjectHandle_t h = g_pOcclusionQueryMgr->CreateOcclusionQueryObject(); m_queue.QueueCall( g_pOcclusionQueryMgr, &COcclusionQueryMgr::OnCreateOcclusionQueryObject, h ); return h; }
int CMatQueuedRenderContext::OcclusionQuery_GetNumPixelsRendered( OcclusionQueryObjectHandle_t h ) { m_queue.QueueCall( g_pOcclusionQueryMgr, &COcclusionQueryMgr::OcclusionQuery_IssueNumPixelsRenderedQuery, h ); return g_pOcclusionQueryMgr->OcclusionQuery_GetNumPixelsRendered( h, false ); }
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void CMatQueuedRenderContext::SetFlashlightState( const FlashlightState_t &s, const VMatrix &m ) { m_queue.QueueCall( m_pHardwareContext, &IMatRenderContext::SetFlashlightState, RefToVal( s ), RefToVal( m ) ); }
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
bool CMatQueuedRenderContext::EnableClipping( bool bEnable ) { m_queue.QueueCall( m_pHardwareContext, &IMatRenderContext::EnableClipping, bEnable ); return BaseClass::EnableClipping( bEnable ); }
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void CMatQueuedRenderContext::UserClipTransform( const VMatrix &m ) { m_queue.QueueCall( m_pHardwareContext, &IMatRenderContext::UserClipTransform, RefToVal( m ) ); }
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void CMatQueuedRenderContext::GetWindowSize( int &width, int &height ) const { width = m_WidthBackBuffer; height = m_HeightBackBuffer; }
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void CMatQueuedRenderContext::DrawScreenSpaceRectangle( IMaterial *pMaterial, int destx, int desty, int width, int height, float src_texture_x0, float src_texture_y0, // which texel you want to appear at
// destx/y
float src_texture_x1, float src_texture_y1, // which texel you want to appear at
// destx+width-1, desty+height-1
int src_texture_width, int src_texture_height, // needed for fixup
void *pClientRenderable, int nXDice, int nYDice ) // Amount to tessellate the quad
{ IMaterial *pRealTimeVersionMaterial = ((IMaterialInternal *)pMaterial)->GetRealTimeVersion(); pRealTimeVersionMaterial->CallBindProxy( pClientRenderable ); m_queue.QueueCall( m_pHardwareContext, &IMatRenderContext::DrawScreenSpaceRectangle, pMaterial, destx, desty, width, height, src_texture_x0, src_texture_y0, src_texture_x1, src_texture_y1, src_texture_width, src_texture_height, pClientRenderable, nXDice, nYDice ); }
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void CMatQueuedRenderContext::LoadBoneMatrix( int i, const matrix3x4_t &m ) { m_queue.QueueCall( m_pHardwareContext, &IMatRenderContext::LoadBoneMatrix, i, RefToVal( m ) ); }
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void CMatQueuedRenderContext::CopyRenderTargetToTextureEx( ITexture *pTexture, int i, Rect_t *pSrc, Rect_t *pDst ) { m_queue.QueueCall( m_pHardwareContext, &IMatRenderContext::CopyRenderTargetToTextureEx, pTexture, i, CUtlEnvelope<Rect_t>(pSrc), CUtlEnvelope<Rect_t>(pDst) ); }
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void CMatQueuedRenderContext::CopyTextureToRenderTargetEx( int i, ITexture *pTexture, Rect_t *pSrc, Rect_t *pDst ) { m_queue.QueueCall( m_pHardwareContext, &IMatRenderContext::CopyTextureToRenderTargetEx, i, pTexture, CUtlEnvelope<Rect_t>(pSrc), CUtlEnvelope<Rect_t>(pDst) ); }
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
bool CMatQueuedRenderContext::OnDrawMesh( IMesh *pMesh, int firstIndex, int numIndices ) { void (IMesh::*pfnDraw)( int, int) = &IMesh::Draw; // need assignment to disambiguate overloaded function
m_queue.QueueCall( pMesh, pfnDraw, firstIndex, numIndices ); return false; }
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
bool CMatQueuedRenderContext::OnDrawMesh( IMesh *pMesh, CPrimList *pLists, int nLists ) { CMatRenderData< CPrimList > rdPrimList( this, nLists, pLists ); m_queue.QueueCall( this, &CMatQueuedRenderContext::DeferredDrawPrimList, pMesh, rdPrimList.Base(), nLists ); return false; }
void CMatQueuedRenderContext::DeferredDrawPrimList( IMesh *pMesh, CPrimList *pLists, int nLists ) { pMesh->Draw( pLists, nLists ); }
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void CMatQueuedRenderContext::DeferredSetFlexMesh( IMesh *pStaticMesh, int nVertexOffsetInBytes ) { pStaticMesh->SetFlexMesh( m_pQueuedMesh->GetActualMesh(), m_pQueuedMesh->GetActualVertexOffsetInBytes() ); }
bool CMatQueuedRenderContext::OnSetFlexMesh( IMesh *pStaticMesh, IMesh *pMesh, int nVertexOffsetInBytes ) { Assert( pMesh == m_pQueuedMesh || !pMesh ); if ( pMesh ) { m_pQueuedMesh->QueueBuild(); m_queue.QueueCall( this, &CMatQueuedRenderContext::DeferredSetFlexMesh, pStaticMesh, nVertexOffsetInBytes ); } else { m_queue.QueueCall( pStaticMesh, &IMesh::SetFlexMesh, (IMesh *)NULL, 0 ); } return false; }
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
bool CMatQueuedRenderContext::OnSetColorMesh( IMesh *pStaticMesh, IMesh *pMesh, int nVertexOffsetInBytes ) { m_queue.QueueCall( pStaticMesh, &IMesh::SetColorMesh, pMesh, nVertexOffsetInBytes ); return false; }
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
bool CMatQueuedRenderContext::OnSetPrimitiveType( IMesh *pMesh, MaterialPrimitiveType_t type ) { m_queue.QueueCall( pMesh, &IMesh::SetPrimitiveType, type ); return false; }
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
bool CMatQueuedRenderContext::OnFlushBufferedPrimitives() { m_queue.QueueCall( g_pShaderAPI, &IShaderAPI::FlushBufferedPrimitives ); return false; }
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
inline void CMatQueuedRenderContext::QueueMatrixSync() { void (IMatRenderContext::*pfnLoadMatrix)( const VMatrix & ) = &IMatRenderContext::LoadMatrix; // need assignment to disambiguate overloaded function
m_queue.QueueCall( m_pHardwareContext, pfnLoadMatrix, RefToVal( AccessCurrentMatrix() ) ); }
void CMatQueuedRenderContext::MatrixMode( MaterialMatrixMode_t mode ) { CMatRenderContextBase::MatrixMode( mode ); m_queue.QueueCall( m_pHardwareContext, &IMatRenderContext::MatrixMode, mode ); }
void CMatQueuedRenderContext::PushMatrix() { CMatRenderContextBase::PushMatrix(); m_queue.QueueCall( m_pHardwareContext, &IMatRenderContext::PushMatrix ); }
void CMatQueuedRenderContext::PopMatrix() { CMatRenderContextBase::PopMatrix(); m_queue.QueueCall( m_pHardwareContext, &IMatRenderContext::PopMatrix ); }
void CMatQueuedRenderContext::LoadMatrix( const VMatrix& matrix ) { CMatRenderContextBase::LoadMatrix( matrix ); QueueMatrixSync(); }
void CMatQueuedRenderContext::LoadMatrix( const matrix3x4_t& matrix ) { CMatRenderContextBase::LoadMatrix( matrix ); QueueMatrixSync(); }
void CMatQueuedRenderContext::MultMatrix( const VMatrix& matrix ) { CMatRenderContextBase::MultMatrix( matrix ); QueueMatrixSync(); }
void CMatQueuedRenderContext::MultMatrix( const matrix3x4_t& matrix ) { CMatRenderContextBase::MultMatrix( VMatrix( matrix ) ); QueueMatrixSync(); }
void CMatQueuedRenderContext::MultMatrixLocal( const VMatrix& matrix ) { CMatRenderContextBase::MultMatrixLocal( matrix ); QueueMatrixSync(); }
void CMatQueuedRenderContext::MultMatrixLocal( const matrix3x4_t& matrix ) { CMatRenderContextBase::MultMatrixLocal( VMatrix( matrix ) ); QueueMatrixSync(); }
void CMatQueuedRenderContext::LoadIdentity() { CMatRenderContextBase::LoadIdentity(); m_queue.QueueCall( m_pHardwareContext, &IMatRenderContext::LoadIdentity ); }
void CMatQueuedRenderContext::Ortho( double left, double top, double right, double bottom, double zNear, double zFar ) { CMatRenderContextBase::Ortho( left, top, right, bottom, zNear, zFar ); QueueMatrixSync(); }
void CMatQueuedRenderContext::PerspectiveX( double flFovX, double flAspect, double flZNear, double flZFar ) { CMatRenderContextBase::PerspectiveX( flFovX, flAspect, flZNear, flZFar ); QueueMatrixSync(); }
void CMatQueuedRenderContext::PerspectiveOffCenterX( double flFovX, double flAspect, double flZNear, double flZFar, double bottom, double top, double left, double right ) { CMatRenderContextBase::PerspectiveOffCenterX( flFovX, flAspect, flZNear, flZFar, bottom, top, left, right ); QueueMatrixSync(); }
void CMatQueuedRenderContext::PickMatrix( int x, int y, int nWidth, int nHeight ) { CMatRenderContextBase::PickMatrix( x, y, nWidth, nHeight ); QueueMatrixSync(); }
void CMatQueuedRenderContext::Rotate( float flAngle, float x, float y, float z ) { CMatRenderContextBase::Rotate( flAngle, x, y, z ); QueueMatrixSync(); }
void CMatQueuedRenderContext::Translate( float x, float y, float z ) { CMatRenderContextBase::Translate( x, y, z ); QueueMatrixSync(); }
void CMatQueuedRenderContext::Scale( float x, float y, float z ) { CMatRenderContextBase::Scale( x, y, z ); QueueMatrixSync(); }
void CMatQueuedRenderContext::BeginBatch( IMesh* pIndices ) { Assert( pIndices == (IMesh *)m_pQueuedMesh ); m_queue.QueueCall( this, &CMatQueuedRenderContext::DeferredBeginBatch, m_pQueuedMesh->GetIndexData(), m_pQueuedMesh->IndexCount() ); m_pQueuedMesh->DetachBuffers(); }
void CMatQueuedRenderContext::BindBatch( IMesh* pVertices, IMaterial *pAutoBind ) { Assert( pVertices != (IMesh *)m_pQueuedMesh ); m_queue.QueueCall( m_pHardwareContext, &IMatRenderContext::BindBatch, pVertices, pAutoBind ); }
void CMatQueuedRenderContext::DrawBatch(int firstIndex, int numIndices ) { m_queue.QueueCall( m_pHardwareContext, &IMatRenderContext::DrawBatch, firstIndex, numIndices ); }
void CMatQueuedRenderContext::EndBatch() { m_queue.QueueCall( m_pHardwareContext, &IMatRenderContext::EndBatch ); }
void CMatQueuedRenderContext::DeferredBeginBatch( uint16 *pIndexData, int nIndices ) { m_pQueuedMesh->DeferredGetDynamicMesh( 0, false, NULL, NULL, NULL ); m_pQueuedMesh->ExecuteDefferredBuild( NULL, 0, 0, pIndexData, nIndices ); m_pHardwareContext->BeginBatch( m_pQueuedMesh->DetachActualMesh() ); }
//-----------------------------------------------------------------------------
// Memory allocation calls for queued mesh, et. al.
//-----------------------------------------------------------------------------
byte *CMatQueuedRenderContext::AllocVertices( int nVerts, int nVertexSize ) { MEM_ALLOC_CREDIT();
#if defined(_WIN32) && !defined(_X360)
const byte *pNextAlloc = (const byte *)(m_Vertices.GetBase()) + m_Vertices.GetUsed() + AlignValue( nVerts * nVertexSize, 16 ); const byte *pCommitLimit = (const byte *)(m_Vertices.GetBase()) + m_Vertices.GetSize(); #endif
void *pResult = m_Vertices.Alloc( nVerts * nVertexSize, false ); #if defined(_WIN32) && !defined(_X360)
if ( !pResult ) { // Force a crash with useful minidump info in the registers.
uint64 status = 0x31415926;
// Print some information to the console so that it's picked up in the minidump comment.
Msg( "AllocVertices( %d, %d ) on %p failed. m_Vertices is based at %p with a size of 0x%x.\n", nVerts, nVertexSize, this, m_Vertices.GetBase(), m_Vertices.GetSize() ); Msg( "%d vertices used.\n", m_Vertices.GetUsed() ); if ( pNextAlloc > pCommitLimit ) { Msg( "VirtualAlloc would have been called. %p > %p.\n", pNextAlloc, pCommitLimit );
const byte *pNewCommitLimit = AlignValue( pNextAlloc, 128 * 1024 ); const uint32 commitSize = pNewCommitLimit - pCommitLimit; const void *pRet = VirtualAlloc( (void *)pCommitLimit, commitSize, MEM_COMMIT, PAGE_READWRITE ); if ( !pRet ) status = GetLastError();
Msg( "VirtualAlloc( %p, %d ) returned %p on repeat. VirtualAlloc %s with code %x.\n", pCommitLimit, commitSize, pRet, (pRet != NULL) ? "succeeded" : "failed", (uint32) status ); } else { Msg( "VirtualAlloc would not have been called. %p <= %p.\n", pNextAlloc, pCommitLimit ); }
// Now crash.
*(volatile uint64 *)0 = status << 32 | m_Vertices.GetUsed(); } #endif
return (byte *) pResult; }
uint16 *CMatQueuedRenderContext::AllocIndices( int nIndices ) { MEM_ALLOC_CREDIT();
#if defined(_WIN32) && !defined(_X360)
const byte *pNextAlloc = (const byte *)(m_Indices.GetBase()) + m_Indices.GetUsed() + AlignValue( nIndices * sizeof(uint16), 16 ); const byte *pCommitLimit = (const byte *)(m_Indices.GetBase()) + m_Indices.GetSize(); #endif
void *pResult = m_Indices.Alloc( nIndices * sizeof(uint16), false ); #if defined(_WIN32) && !defined(_X360)
if ( !pResult ) { // Force a crash with useful minidump info in the registers.
uint64 status = 0x31415926;
// Print some information to the console so that it's picked up in the minidump comment.
Msg( "AllocIndices( %d ) on %p failed. m_Indices is based at %p with a size of 0x%x.\n", nIndices, this, m_Indices.GetBase(), m_Indices.GetSize() ); Msg( "%d indices used.\n", m_Indices.GetUsed() ); if ( pNextAlloc > pCommitLimit ) { Msg( "VirtualAlloc would have been called. %p > %p.\n", pNextAlloc, pCommitLimit );
const byte *pNewCommitLimit = AlignValue( pNextAlloc, 128 * 1024 ); const uint32 commitSize = pNewCommitLimit - pCommitLimit; const void *pRet = VirtualAlloc( (void *)pCommitLimit, commitSize, MEM_COMMIT, PAGE_READWRITE ); if ( !pRet ) status = GetLastError();
Msg( "VirtualAlloc( %p, %d ) returned %p on repeat. VirtualAlloc %s with code %x.\n", pCommitLimit, commitSize, pRet, (pRet != NULL) ? "succeeded" : "failed", (uint32) status ); } else { Msg( "VirtualAlloc would not have been called. %p <= %p.\n", pNextAlloc, pCommitLimit ); }
// Now crash.
*(volatile uint64 *)0 = status << 32 | m_Indices.GetUsed(); } #endif
return (uint16 *) pResult; }
byte *CMatQueuedRenderContext::ReallocVertices( byte *pVerts, int nVertsOld, int nVertsNew, int nVertexSize ) { Assert( nVertsNew <= nVertsOld );
if ( nVertsNew < nVertsOld ) { unsigned nBytes = ( ( nVertsOld - nVertsNew ) * nVertexSize ); m_Vertices.FreeToAllocPoint( AlignValue( m_Vertices.GetCurrentAllocPoint() - nBytes, 16), false ); // memstacks 128 bit aligned
} return pVerts; }
uint16 *CMatQueuedRenderContext::ReallocIndices( uint16 *pIndices, int nIndicesOld, int nIndicesNew ) { Assert( nIndicesNew <= nIndicesOld ); if ( nIndicesNew < nIndicesOld ) { unsigned nBytes = ( ( nIndicesOld - nIndicesNew ) * sizeof(uint16) ); m_Indices.FreeToAllocPoint( AlignValue( m_Indices.GetCurrentAllocPoint() - nBytes, 16 ), false ); // memstacks 128 bit aligned
} return pIndices; }
void CMatQueuedRenderContext::FreeVertices( byte *pVerts, int nVerts, int nVertexSize ) { // free at end of call dispatch
}
void CMatQueuedRenderContext::FreeIndices( uint16 *pIndices, int nIndices ) { // free at end of call dispatch
}
//------------------------------------------------------------------------------
// Color correction related methods
//------------------------------------------------------------------------------
ColorCorrectionHandle_t CMatQueuedRenderContext::AddLookup( const char *pName ) { MaterialLock_t hLock = m_pMaterialSystem->Lock(); ColorCorrectionHandle_t hCC = ColorCorrectionSystem()->AddLookup( pName ); m_pMaterialSystem->Unlock( hLock ); return hCC; }
bool CMatQueuedRenderContext::RemoveLookup( ColorCorrectionHandle_t handle ) { MaterialLock_t hLock = m_pMaterialSystem->Lock(); bool bRemoved = ColorCorrectionSystem()->RemoveLookup( handle ); m_pMaterialSystem->Unlock( hLock ); return bRemoved; }
void CMatQueuedRenderContext::LockLookup( ColorCorrectionHandle_t handle ) { MaterialLock_t hLock = m_pMaterialSystem->Lock(); ColorCorrectionSystem()->LockLookup( handle ); m_pMaterialSystem->Unlock( hLock ); }
void CMatQueuedRenderContext::LoadLookup( ColorCorrectionHandle_t handle, const char *pLookupName ) { MaterialLock_t hLock = m_pMaterialSystem->Lock(); ColorCorrectionSystem()->LoadLookup( handle, pLookupName ); m_pMaterialSystem->Unlock( hLock ); }
void CMatQueuedRenderContext::UnlockLookup( ColorCorrectionHandle_t handle ) { MaterialLock_t hLock = m_pMaterialSystem->Lock(); ColorCorrectionSystem()->UnlockLookup( handle ); m_pMaterialSystem->Unlock( hLock ); }
// NOTE: These are synchronous calls! The rendering thread is stopped, the current queue is drained and the pixels are read
// NOTE: We should also have a queued read pixels in the API for doing mid frame reads (as opposed to screenshots)
void CMatQueuedRenderContext::ReadPixels( int x, int y, int width, int height, unsigned char *data, ImageFormat dstFormat ) { EndRender(); MaterialLock_t hLock = m_pMaterialSystem->Lock(); this->CallQueued(false); g_pShaderAPI->ReadPixels( x, y, width, height, data, dstFormat ); m_pMaterialSystem->Unlock( hLock ); BeginRender(); }
void CMatQueuedRenderContext::ReadPixelsAndStretch( Rect_t *pSrcRect, Rect_t *pDstRect, unsigned char *pBuffer, ImageFormat dstFormat, int nDstStride ) { EndRender(); MaterialLock_t hLock = m_pMaterialSystem->Lock(); this->CallQueued(false); g_pShaderAPI->ReadPixels( pSrcRect, pDstRect, pBuffer, dstFormat, nDstStride ); m_pMaterialSystem->Unlock( hLock ); BeginRender(); }
|