Team Fortress 2 Source Code as on 22/4/2020
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1753 lines
52 KiB

//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
//=============================================================================
#include "pch_materialsystem.h"
#include "tier1/functors.h"
#include "itextureinternal.h"
#define MATSYS_INTERNAL
#include "cmatqueuedrendercontext.h"
#include "cmaterialsystem.h" // @HACKHACK
// NOTE: This has to be the last file included!
#include "tier0/memdbgon.h"
ConVar mat_report_queue_status( "mat_report_queue_status", "0", FCVAR_MATERIAL_SYSTEM_THREAD );
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
#if defined( _WIN32 )
void FastCopy( byte *pDest, const byte *pSrc, size_t nBytes )
{
if ( !nBytes )
{
return;
}
#if !defined( _X360 )
if ( (size_t)pDest % 16 == 0 && (size_t)pSrc % 16 == 0 )
{
const int BYTES_PER_FULL = 128;
int nBytesFull = nBytes - ( nBytes % BYTES_PER_FULL );
for ( byte *pLimit = pDest + nBytesFull; pDest < pLimit; pDest += BYTES_PER_FULL, pSrc += BYTES_PER_FULL )
{
// memcpy( pDest, pSrc, BYTES_PER_FULL);
__asm
{
mov esi, pSrc
mov edi, pDest
movaps xmm0, [esi + 0]
movaps xmm1, [esi + 16]
movaps xmm2, [esi + 32]
movaps xmm3, [esi + 48]
movaps xmm4, [esi + 64]
movaps xmm5, [esi + 80]
movaps xmm6, [esi + 96]
movaps xmm7, [esi + 112]
movntps [edi + 0], xmm0
movntps [edi + 16], xmm1
movntps [edi + 32], xmm2
movntps [edi + 48], xmm3
movntps [edi + 64], xmm4
movntps [edi + 80], xmm5
movntps [edi + 96], xmm6
movntps [edi + 112], xmm7
}
}
nBytes -= nBytesFull;
}
if ( nBytes )
{
memcpy( pDest, pSrc, nBytes );
}
#else
if ( (size_t)pDest % 4 == 0 && nBytes % 4 == 0 )
{
XMemCpyStreaming_WriteCombined( pDest, pSrc, nBytes );
}
else
{
// work around a bug in memcpy
if ((size_t)pDest % 2 == 0 && nBytes == 4)
{
*(reinterpret_cast<short *>(pDest)) = *(reinterpret_cast<const short *>(pSrc));
*(reinterpret_cast<short *>(pDest)+1) = *(reinterpret_cast<const short *>(pSrc)+1);
}
else
{
memcpy( pDest, pSrc, nBytes );
}
}
#endif
}
#else
#define FastCopy memcpy
#endif
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
enum MatQueuedMeshFlags_t
{
MQM_BUFFERED = ( 1 << 0 ),
MQM_FLEX = ( 1 << 1 ),
};
class CMatQueuedMesh : public IMesh
{
public:
CMatQueuedMesh( CMatQueuedRenderContext *pOwner, IMatRenderContextInternal *pHardwareContext )
: m_pLateBoundMesh( &m_pActualMesh ),
m_pOwner( pOwner ),
m_pCallQueue( pOwner->GetCallQueueInternal() ),
m_pHardwareContext( pHardwareContext ),
m_pVertexData( NULL ),
m_pIndexData( NULL ),
m_nVerts( 0 ),
m_nIndices( 0 ),
m_VertexSize( 0 ),
m_Type(MATERIAL_TRIANGLES),
m_pVertexOverride( NULL ),
m_pIndexOverride ( NULL ),
m_pActualMesh( NULL ),
m_nActualVertexOffsetInBytes( 0 ),
m_VertexFormat( 0 ),
m_MorphFormat( 0 )
{
}
CLateBoundPtr<IMesh> &AccessLateBoundMesh()
{
return m_pLateBoundMesh;
}
byte *GetVertexData() { return m_pVertexData; }
uint16 *GetIndexData() { return m_pIndexData; }
IMesh *DetachActualMesh() { IMesh *p = m_pActualMesh; m_pActualMesh = NULL; return p; }
IMesh *GetActualMesh() { return m_pActualMesh; }
int GetActualVertexOffsetInBytes() { return m_nActualVertexOffsetInBytes; }
void DeferredGetDynamicMesh( VertexFormat_t vertexFormat, unsigned flags, IMesh* pVertexOverride, IMesh* pIndexOverride, IMaterialInternal *pMaterial )
{
if ( !( flags & MQM_FLEX ))
{
if ( vertexFormat == 0 )
{
m_pActualMesh = m_pHardwareContext->GetDynamicMesh( ( ( flags & MQM_BUFFERED ) != 0 ), pVertexOverride, pIndexOverride, pMaterial );
}
else
{
m_pActualMesh = m_pHardwareContext->GetDynamicMeshEx( vertexFormat, ( ( flags & MQM_BUFFERED ) != 0 ), pVertexOverride, pIndexOverride, pMaterial );
}
}
else
{
m_pActualMesh = m_pHardwareContext->GetFlexMesh();
}
}
bool OnGetDynamicMesh( VertexFormat_t vertexFormat, unsigned flags, IMesh* pVertexOverride, IMesh* pIndexOverride, IMaterialInternal *pMaterial, int nHWSkinBoneCount )
{
if ( !m_pVertexOverride && ( m_pVertexData || m_pIndexData ) )
{
CannotSupport();
if ( IsDebug() )
{
Assert( !"Getting a dynamic mesh without resolving the previous one" );
}
else
{
Error( "Getting a dynamic mesh without resolving the previous one" );
}
}
FreeBuffers();
m_pVertexOverride = pVertexOverride;
m_pIndexOverride = pIndexOverride;
if ( !( flags & MQM_FLEX ) )
{
if ( pVertexOverride )
{
m_VertexFormat = pVertexOverride->GetVertexFormat();
}
else
{
// Remove VERTEX_FORMAT_COMPRESSED from the material's format (dynamic meshes don't
// support compression, and all materials should support uncompressed verts too)
m_VertexFormat = ( vertexFormat == 0 ) ? ( pMaterial->GetVertexFormat() & ~VERTEX_FORMAT_COMPRESSED ) : vertexFormat;
if ( vertexFormat != 0 )
{
int nVertexFormatBoneWeights = NumBoneWeights( vertexFormat );
if ( nHWSkinBoneCount < nVertexFormatBoneWeights )
{
nHWSkinBoneCount = nVertexFormatBoneWeights;
}
}
// Force the requested number of bone weights
m_VertexFormat &= ~VERTEX_BONE_WEIGHT_MASK;
m_VertexFormat |= VERTEX_BONEWEIGHT( nHWSkinBoneCount );
if ( nHWSkinBoneCount > 0 )
{
m_VertexFormat |= VERTEX_BONE_INDEX;
}
}
}
else
{
m_VertexFormat = VERTEX_POSITION | VERTEX_NORMAL | VERTEX_FORMAT_USE_EXACT_FORMAT;
if ( g_pMaterialSystemHardwareConfig->SupportsPixelShaders_2_b() )
{
m_VertexFormat |= VERTEX_WRINKLE;
}
}
MeshDesc_t temp;
g_pShaderAPI->ComputeVertexDescription( 0, m_VertexFormat, temp );
m_VertexSize = temp.m_ActualVertexSize;
// queue up get of real dynamic mesh, allocate space for verts & indices
m_pCallQueue->QueueCall( this, &CMatQueuedMesh::DeferredGetDynamicMesh, vertexFormat, flags, pVertexOverride, pIndexOverride, pMaterial );
return true;
}
void ModifyBegin( int firstVertex, int numVerts, int firstIndex, int numIndices, MeshDesc_t& desc )
{
CannotSupport();
}
void ModifyBeginEx( bool bReadOnly, int firstVertex, int numVerts, int firstIndex, int numIndices, MeshDesc_t& desc )
{
CannotSupport();
}
void ModifyEnd( MeshDesc_t& desc )
{
CannotSupport();
}
void GenerateSequentialIndexBuffer( unsigned short* pIndexMemory, int numIndices, int firstVertex )
{
Assert( pIndexMemory == m_pIndexData );
m_pCallQueue->QueueCall( &::GenerateSequentialIndexBuffer, pIndexMemory, numIndices, firstVertex );
}
void GenerateQuadIndexBuffer( unsigned short* pIndexMemory, int numIndices, int firstVertex )
{
Assert( pIndexMemory == m_pIndexData );
m_pCallQueue->QueueCall( &::GenerateQuadIndexBuffer, pIndexMemory, numIndices, firstVertex );
}
void GeneratePolygonIndexBuffer( unsigned short* pIndexMemory, int numIndices, int firstVertex )
{
Assert( pIndexMemory == m_pIndexData );
m_pCallQueue->QueueCall( &::GeneratePolygonIndexBuffer, pIndexMemory, numIndices, firstVertex );
}
void GenerateLineStripIndexBuffer( unsigned short* pIndexMemory, int numIndices, int firstVertex )
{
Assert( pIndexMemory == m_pIndexData );
m_pCallQueue->QueueCall( &::GenerateLineStripIndexBuffer, pIndexMemory, numIndices, firstVertex );
}
void GenerateLineLoopIndexBuffer( unsigned short* pIndexMemory, int numIndices, int firstVertex )
{
Assert( pIndexMemory == m_pIndexData );
m_pCallQueue->QueueCall( &::GenerateLineLoopIndexBuffer, pIndexMemory, numIndices, firstVertex );
}
int VertexCount() const
{
return m_VertexSize ? m_nVerts : 0;
}
int IndexCount() const
{
return m_nIndices;
}
int GetVertexSize()
{
return m_VertexSize;
}
void SetPrimitiveType( MaterialPrimitiveType_t type )
{
m_Type = type;
m_pCallQueue->QueueCall( m_pLateBoundMesh, &IMesh::SetPrimitiveType, type );
}
void SetColorMesh( IMesh *pColorMesh, int nVertexOffset )
{
m_pCallQueue->QueueCall( m_pLateBoundMesh, &IMesh::SetColorMesh, pColorMesh, nVertexOffset );
}
void Draw( CPrimList *pLists, int nLists )
{
CannotSupport();
}
void CopyToMeshBuilder( int iStartVert, int nVerts, int iStartIndex, int nIndices, int indexOffset, CMeshBuilder &builder )
{
CannotSupport();
}
void Spew( int numVerts, int numIndices, const MeshDesc_t & desc )
{
}
void ValidateData( int numVerts, int numIndices, const MeshDesc_t & desc )
{
}
void LockMesh( int numVerts, int numIndices, MeshDesc_t& desc )
{
if ( !m_pVertexOverride )
{
m_nVerts = numVerts;
}
else
{
m_nVerts = 0;
}
if ( !m_pIndexOverride )
{
m_nIndices = numIndices;
}
else
{
m_nIndices = 0;
}
if( numVerts > 0 )
{
Assert( m_VertexSize );
Assert( !m_pVertexData );
m_pVertexData = (byte *)m_pOwner->AllocVertices( numVerts, m_VertexSize );
Assert( (unsigned)m_pVertexData % 16 == 0 );
// Compute the vertex index..
desc.m_nFirstVertex = 0;
static_cast< VertexDesc_t* >( &desc )->m_nOffset = 0;
// Set up the mesh descriptor
g_pShaderAPI->ComputeVertexDescription( m_pVertexData, m_VertexFormat, desc );
}
else
{
desc.m_nFirstVertex = 0;
static_cast< VertexDesc_t* >( &desc )->m_nOffset = 0;
// Set up the mesh descriptor
g_pShaderAPI->ComputeVertexDescription( 0, 0, desc );
}
if ( m_Type != MATERIAL_POINTS && numIndices > 0 )
{
Assert( !m_pIndexData );
m_pIndexData = m_pOwner->AllocIndices( numIndices );
desc.m_pIndices = m_pIndexData;
desc.m_nIndexSize = 1;
desc.m_nFirstIndex = 0;
static_cast< IndexDesc_t* >( &desc )->m_nOffset = 0;
}
else
{
desc.m_pIndices = &gm_ScratchIndexBuffer[0];
desc.m_nIndexSize = 0;
desc.m_nFirstIndex = 0;
static_cast< IndexDesc_t* >( &desc )->m_nOffset = 0;
}
}
void UnlockMesh( int numVerts, int numIndices, MeshDesc_t& desc )
{
if ( m_pVertexData && numVerts < m_nVerts )
{
m_pVertexData = m_pOwner->ReallocVertices( m_pVertexData, m_nVerts, numVerts, m_VertexSize );
}
m_nVerts = numVerts;
if ( m_pIndexData && numIndices < m_nIndices )
{
m_pIndexData = m_pOwner->ReallocIndices( m_pIndexData, m_nIndices, numIndices );
}
m_nIndices = numIndices;
}
void SetFlexMesh( IMesh *pMesh, int nVertexOffset )
{
m_pCallQueue->QueueCall( m_pLateBoundMesh, &IMesh::SetFlexMesh, pMesh, nVertexOffset );
}
void DisableFlexMesh()
{
m_pCallQueue->QueueCall( m_pLateBoundMesh, &IMesh::DisableFlexMesh );
}
void ExecuteDefferredBuild( byte *pVertexData, int nVerts, int nBytesVerts, uint16 *pIndexData, int nIndices )
{
Assert( m_pActualMesh );
MeshDesc_t desc;
m_pActualMesh->LockMesh( nVerts, nIndices, desc );
m_nActualVertexOffsetInBytes = desc.m_nFirstVertex * desc.m_ActualVertexSize;
if ( pVertexData && desc.m_ActualVertexSize ) // if !desc.m_ActualVertexSize, device lost
{
void *pDest;
if ( desc.m_VertexSize_Position != 0 )
{
pDest = desc.m_pPosition;
}
else
{
#define FindMin( desc, pCurrent, tag ) ( ( desc.m_VertexSize_##tag != 0 ) ? min( pCurrent, (void *)desc.m_p##tag ) : pCurrent )
pDest = (void *)(((byte *)0) - 1);
pDest = FindMin( desc, pDest, BoneWeight );
pDest = FindMin( desc, pDest, BoneMatrixIndex );
pDest = FindMin( desc, pDest, Normal );
pDest = FindMin( desc, pDest, Color );
pDest = FindMin( desc, pDest, Specular );
pDest = FindMin( desc, pDest, TangentS );
pDest = FindMin( desc, pDest, TangentT );
pDest = FindMin( desc, pDest, Wrinkle );
for ( int i = 0; i < VERTEX_MAX_TEXTURE_COORDINATES; i++ )
{
if ( desc.m_VertexSize_TexCoord[i] && desc.m_pTexCoord < pDest )
{
pDest = desc.m_pTexCoord;
}
}
#undef FindMin
}
Assert( pDest );
if ( pDest )
{
FastCopy( (byte *)pDest, pVertexData, nBytesVerts );
}
}
if ( pIndexData && pIndexData != &gm_ScratchIndexBuffer[0] && desc.m_nIndexSize )
{
if ( !desc.m_nFirstVertex )
{
// AssertMsg(desc.m_pIndices & 0x03 == 0,"desc.m_pIndices is misaligned in CMatQueuedMesh::ExecuteDefferedBuild\n");
FastCopy( (byte *)desc.m_pIndices, (byte *)pIndexData, nIndices * sizeof(*pIndexData) );
}
else
{
ALIGN16 uint16 tempIndices[16];
int i = 0;
if ( (size_t)desc.m_pIndices % 4 == 2 )
{
desc.m_pIndices[i] = pIndexData[i] + desc.m_nFirstVertex;
i++;
}
while ( i < nIndices )
{
int nToCopy = min( (int)ARRAYSIZE(tempIndices), nIndices - i );
for ( int j = 0; j < nToCopy; j++ )
{
tempIndices[j] = pIndexData[i+j] + desc.m_nFirstVertex;
}
FastCopy( (byte *)(desc.m_pIndices + i), (byte *)tempIndices, nToCopy * sizeof(uint16) );
i += nToCopy;
}
}
}
m_pActualMesh->UnlockMesh( nVerts, nIndices, desc );
if ( pIndexData && pIndexData != &gm_ScratchIndexBuffer[0])
{
m_pOwner->FreeIndices( pIndexData, nIndices );
}
if ( pVertexData )
{
m_pOwner->FreeVertices( pVertexData, nVerts, desc.m_ActualVertexSize );
}
}
void QueueBuild( bool bDetachBuffers = true )
{
m_pCallQueue->QueueCall( this, &CMatQueuedMesh::ExecuteDefferredBuild, m_pVertexData, m_nVerts, m_nVerts * m_VertexSize, m_pIndexData, m_nIndices );
if ( bDetachBuffers )
{
DetachBuffers();
m_Type = MATERIAL_TRIANGLES;
}
}
void Draw( int firstIndex = -1, int numIndices = 0 )
{
if ( !m_nVerts && !m_nIndices )
{
MarkAsDrawn();
return;
}
void (IMesh::*pfnDraw)( int, int) = &IMesh::Draw; // need assignment to disambiguate overloaded function
bool bDetachBuffers;
if ( firstIndex == -1 || numIndices == 0 )
{
bDetachBuffers = true;
}
else if ( m_pIndexOverride )
{
bDetachBuffers = ( firstIndex + numIndices == m_pIndexOverride->IndexCount() );
}
else if ( !m_nIndices || firstIndex + numIndices == m_nIndices )
{
bDetachBuffers = true;
}
else
{
bDetachBuffers = false;
}
QueueBuild( bDetachBuffers );
m_pCallQueue->QueueCall( m_pLateBoundMesh, pfnDraw, firstIndex, numIndices );
}
void MarkAsDrawn()
{
FreeBuffers();
m_pCallQueue->QueueCall( m_pLateBoundMesh, &IMesh::MarkAsDrawn );
}
void FreeBuffers()
{
if ( m_pIndexData && m_pIndexData != &gm_ScratchIndexBuffer[0])
{
m_pOwner->FreeIndices( m_pIndexData, m_nIndices );
m_pIndexData = NULL;
}
if ( m_pVertexData )
{
m_pOwner->FreeVertices( m_pVertexData, m_nVerts, m_VertexSize );
m_pVertexData = NULL;
}
}
void DetachBuffers()
{
m_pVertexData = NULL;
m_pIndexData = NULL;
}
unsigned ComputeMemoryUsed()
{
return 0;
}
virtual VertexFormat_t GetVertexFormat() const
{
return m_VertexFormat;
}
virtual IMesh *GetMesh()
{
return this;
}
// FIXME: Implement!
virtual bool Lock( int nMaxIndexCount, bool bAppend, IndexDesc_t& desc )
{
Assert( 0 );
return false;
}
virtual void Unlock( int nWrittenIndexCount, IndexDesc_t& desc )
{
Assert( 0 );
}
virtual void ModifyBegin( bool bReadOnly, int nFirstIndex, int nIndexCount, IndexDesc_t& desc )
{
CannotSupport();
}
void ModifyEnd( IndexDesc_t& desc )
{
CannotSupport();
}
virtual void Spew( int nIndexCount, const IndexDesc_t & desc )
{
Assert( 0 );
}
virtual void ValidateData( int nIndexCount, const IndexDesc_t &desc )
{
Assert( 0 );
}
virtual bool Lock( int nVertexCount, bool bAppend, VertexDesc_t &desc )
{
Assert( 0 );
return false;
}
virtual void Unlock( int nVertexCount, VertexDesc_t &desc )
{
Assert( 0 );
}
virtual void Spew( int nVertexCount, const VertexDesc_t &desc )
{
Assert( 0 );
}
virtual void ValidateData( int nVertexCount, const VertexDesc_t & desc )
{
Assert( 0 );
}
virtual bool IsDynamic() const
{
Assert( 0 );
return false;
}
virtual MaterialIndexFormat_t IndexFormat() const
{
Assert( 0 );
return MATERIAL_INDEX_FORMAT_UNKNOWN;
}
virtual void BeginCastBuffer( VertexFormat_t format )
{
Assert( 0 );
}
virtual void BeginCastBuffer( MaterialIndexFormat_t format )
{
Assert( 0 );
}
virtual void EndCastBuffer( )
{
Assert( 0 );
}
// Returns the number of vertices that can still be written into the buffer
virtual int GetRoomRemaining() const
{
Assert( 0 );
return 0;
}
//----------------------------------------------------------------------------
static void DoDraw( int firstIndex = -1, int numIndices = 0 )
{
}
private:
IMesh *m_pActualMesh;
int m_nActualVertexOffsetInBytes;
CLateBoundPtr<IMesh> m_pLateBoundMesh;
CMatQueuedRenderContext *m_pOwner;
CMatCallQueue *m_pCallQueue;
IMatRenderContextInternal *m_pHardwareContext;
//-----------------------------------------------------
// The vertex format we're using...
VertexFormat_t m_VertexFormat;
// The morph format we're using
MorphFormat_t m_MorphFormat;
byte *m_pVertexData;
uint16 *m_pIndexData;
int m_nVerts;
int m_nIndices;
unsigned short m_VertexSize;
MaterialPrimitiveType_t m_Type;
// Used in rendering sub-parts of the mesh
//static unsigned int s_NumIndices;
//static unsigned int s_FirstIndex;
IMesh *m_pVertexOverride;
IMesh *m_pIndexOverride;
static unsigned short gm_ScratchIndexBuffer[6];
};
unsigned short CMatQueuedMesh::gm_ScratchIndexBuffer[6];
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
bool CMatQueuedRenderContext::Init( CMaterialSystem *pMaterialSystem, CMatRenderContextBase *pHardwareContext )
{
BaseClass::Init();
m_pMaterialSystem = pMaterialSystem;
m_pHardwareContext = pHardwareContext;
m_pQueuedMesh = new CMatQueuedMesh( this, pHardwareContext );
MEM_ALLOC_CREDIT();
int nSize = 16 * 1024 * 1024;
int nCommitSize = 128 * 1024;
#if defined(DEDICATED)
Assert( !"CMatQueuedRenderContext shouldn't be initialized on dedicated servers..." );
nSize = nCommitSize = 1024;
#endif
bool bVerticesInit = m_Vertices.Init( nSize, nCommitSize );
bool bIndicesInit = m_Indices.Init( nSize, nCommitSize );
if ( !bVerticesInit || !bIndicesInit )
{
return false;
}
return true;
}
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void CMatQueuedRenderContext::Shutdown()
{
if ( !m_pHardwareContext )
{
return;
}
Assert( !m_pCurrentMaterial );
delete m_pQueuedMesh;
m_pMaterialSystem = NULL;
m_pHardwareContext = NULL;
m_pQueuedMesh = NULL;
m_Vertices.Term();
m_Indices.Term();
BaseClass::Shutdown();
Assert(m_queue.Count() == 0);
}
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void CMatQueuedRenderContext::Free()
{
m_Vertices.FreeAll();
m_Indices.FreeAll();
}
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void CMatQueuedRenderContext::CompactMemory()
{
BaseClass::CompactMemory();
m_Vertices.FreeAll();
m_Indices.FreeAll();
}
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void CMatQueuedRenderContext::BeginQueue( CMatRenderContextBase *pInitialState )
{
if ( !pInitialState )
{
pInitialState = m_pHardwareContext;
}
CMatRenderContextBase::InitializeFrom( pInitialState );
g_pShaderAPI->GetBackBufferDimensions( m_WidthBackBuffer, m_HeightBackBuffer );
m_FogMode = pInitialState->GetFogMode();
m_nBoneCount = pInitialState->GetCurrentNumBones();
pInitialState->GetFogDistances( &m_flFogStart, &m_flFogEnd, &m_flFogZ );
}
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void CMatQueuedRenderContext::EndQueue( bool bCallQueued )
{
if ( bCallQueued )
{
CallQueued();
}
int i;
if ( m_pCurrentMaterial )
{
m_pCurrentMaterial = NULL;
}
if ( m_pUserDefinedLightmap )
{
m_pUserDefinedLightmap = NULL;
}
if ( m_pLocalCubemapTexture )
{
m_pLocalCubemapTexture = NULL;
}
for ( i = 0; i < MAX_FB_TEXTURES; i++ )
{
if ( m_pCurrentFrameBufferCopyTexture[i] )
{
m_pCurrentFrameBufferCopyTexture[i] = NULL;
}
}
for ( i = 0; i < m_RenderTargetStack.Count(); i++ )
{
for ( int j = 0; j < MAX_RENDER_TARGETS; j++ )
{
if ( m_RenderTargetStack[i].m_pRenderTargets[j] )
{
m_RenderTargetStack[i].m_pRenderTargets[j] = NULL;
}
}
}
m_RenderTargetStack.Clear();
}
void CMatQueuedRenderContext::Bind( IMaterial *iMaterial, void *proxyData )
{
if ( !iMaterial )
{
if( !g_pErrorMaterial )
return;
}
else
{
iMaterial = ((IMaterialInternal *)iMaterial)->GetRealTimeVersion(); //always work with the real time versions of materials internally
}
CMatRenderContextBase::Bind( iMaterial, proxyData );
// We've always gotta call the bind proxy (assuming there is one)
// so we can copy off the material vars at this point.
IMaterialInternal* pIMaterial = GetCurrentMaterialInternal();
pIMaterial->CallBindProxy( proxyData );
m_queue.QueueCall( m_pHardwareContext, &IMatRenderContext::Bind, iMaterial, proxyData );
}
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void CMatQueuedRenderContext::BeginRender()
{
if ( ++m_iRenderDepth == 1 )
{
VPROF_INCREMENT_GROUP_COUNTER( "render/CMatQBeginRender", COUNTER_GROUP_TELEMETRY, 1 );
m_queue.QueueCall( m_pHardwareContext, &IMatRenderContext::BeginRender );
}
}
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void CMatQueuedRenderContext::EndRender()
{
if ( --m_iRenderDepth == 0 )
{
m_queue.QueueCall( m_pHardwareContext, &IMatRenderContext::EndRender );
}
}
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void CMatQueuedRenderContext::CallQueued( bool bTermAfterCall )
{
if ( mat_report_queue_status.GetBool() )
{
Msg( "%d calls queued for %llu bytes in parameters and overhead, %d bytes verts, %d bytes indices, %d bytes other\n", m_queue.Count(), (uint64)(m_queue.GetMemoryUsed()), m_Vertices.GetUsed(), m_Indices.GetUsed(), RenderDataSizeUsed() );
}
m_queue.CallQueued();
m_Vertices.FreeAll( false );
m_Indices.FreeAll( false );
if ( bTermAfterCall )
{
Shutdown();
}
}
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void CMatQueuedRenderContext::FlushQueued()
{
m_queue.Flush();
}
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
ICallQueue *CMatQueuedRenderContext::GetCallQueue()
{
return &m_CallQueueExternal;
}
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void CMatQueuedRenderContext::SetRenderTargetEx( int nRenderTargetID, ITexture *pNewTarget )
{
CMatRenderContextBase::SetRenderTargetEx( nRenderTargetID, pNewTarget );
m_queue.QueueCall( m_pHardwareContext, &IMatRenderContext::SetRenderTargetEx, nRenderTargetID, pNewTarget );
}
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void CMatQueuedRenderContext::GetRenderTargetDimensions( int &width, int &height) const
{
// Target at top of stack
ITexture *pTOS = NULL;
if ( m_RenderTargetStack.Count() )
{
pTOS = m_RenderTargetStack.Top().m_pRenderTargets[ 0 ];
}
// If top of stack isn't the back buffer, get dimensions from the texture
if ( pTOS != NULL )
{
width = pTOS->GetActualWidth();
height = pTOS->GetActualHeight();
}
else // otherwise, get them from the shader API
{
width = m_WidthBackBuffer;
height = m_HeightBackBuffer;
}
}
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void CMatQueuedRenderContext::Viewport( int x, int y, int width, int height )
{
CMatRenderContextBase::Viewport( x, y, width, height );
m_queue.QueueCall( m_pHardwareContext, &IMatRenderContext::Viewport, x, y, width, height );
}
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void CMatQueuedRenderContext::SetLight( int i, const LightDesc_t &desc )
{
m_queue.QueueCall( m_pHardwareContext, &IMatRenderContext::SetLight, i, RefToVal( desc ) );
}
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void CMatQueuedRenderContext::SetLightingOrigin( Vector vLightingOrigin )
{
m_queue.QueueCall( m_pHardwareContext, &IMatRenderContext::SetLightingOrigin, vLightingOrigin );
}
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void CMatQueuedRenderContext::SetAmbientLightCube( LightCube_t cube )
{
// FIXME: does compiler do the right thing, is envelope needed?
m_queue.QueueCall( m_pHardwareContext, &IMatRenderContext::SetAmbientLightCube, CUtlEnvelope<Vector4D>( &cube[0], 6 ) );
}
//-----------------------------------------------------------------------------
// Bone count
//-----------------------------------------------------------------------------
void CMatQueuedRenderContext::SetNumBoneWeights( int nBoneCount )
{
m_nBoneCount = nBoneCount;
m_queue.QueueCall( m_pHardwareContext, &IMatRenderContext::SetNumBoneWeights, nBoneCount );
}
int CMatQueuedRenderContext::GetCurrentNumBones( ) const
{
return m_nBoneCount;
}
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void CMatQueuedRenderContext::FogMode( MaterialFogMode_t fogMode )
{
m_FogMode = fogMode;
m_queue.QueueCall( m_pHardwareContext, &IMatRenderContext::FogMode, fogMode );
}
void CMatQueuedRenderContext::FogStart( float fStart )
{
m_flFogStart = fStart;
m_queue.QueueCall( m_pHardwareContext, &IMatRenderContext::FogStart, fStart );
}
void CMatQueuedRenderContext::FogEnd( float fEnd )
{
m_flFogEnd = fEnd;
m_queue.QueueCall( m_pHardwareContext, &IMatRenderContext::FogEnd, fEnd );
}
void CMatQueuedRenderContext::FogMaxDensity( float flMaxDensity )
{
m_flFogMaxDensity = flMaxDensity;
m_queue.QueueCall( m_pHardwareContext, &IMatRenderContext::FogMaxDensity, flMaxDensity );
}
void CMatQueuedRenderContext::SetFogZ( float fogZ )
{
m_flFogZ = fogZ;
m_queue.QueueCall( m_pHardwareContext, &IMatRenderContext::SetFogZ, fogZ );
}
MaterialFogMode_t CMatQueuedRenderContext::GetFogMode( void )
{
return m_FogMode;
}
void CMatQueuedRenderContext::FogColor3f( float r, float g, float b )
{
FogColor3ub( clamp( (int)(r * 255.0f), 0, 255 ), clamp( (int)(g * 255.0f), 0, 255 ), clamp( (int)(b * 255.0f), 0, 255 ) );
}
void CMatQueuedRenderContext::FogColor3fv( float const* rgb )
{
FogColor3ub( clamp( (int)(rgb[0] * 255.0f), 0, 255 ), clamp( (int)(rgb[1] * 255.0f), 0, 255 ), clamp( (int)(rgb[2] * 255.0f), 0, 255 ) );
}
void CMatQueuedRenderContext::FogColor3ub( unsigned char r, unsigned char g, unsigned char b )
{
m_FogColor.r = r;
m_FogColor.g = g;
m_FogColor.b = b;
m_queue.QueueCall( m_pHardwareContext, &IMatRenderContext::FogColor3ub, r, g, b );
}
void CMatQueuedRenderContext::FogColor3ubv( unsigned char const* rgb )
{
FogColor3ub( rgb[0], rgb[1], rgb[2] );
}
void CMatQueuedRenderContext::GetFogColor( unsigned char *rgb )
{
rgb[0] = m_FogColor.r;
rgb[1] = m_FogColor.g;
rgb[2] = m_FogColor.b;
}
void CMatQueuedRenderContext::GetFogDistances( float *fStart, float *fEnd, float *fFogZ )
{
if( fStart )
*fStart = m_flFogStart;
if( fEnd )
*fEnd = m_flFogEnd;
if( fFogZ )
*fFogZ = m_flFogZ;
}
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void CMatQueuedRenderContext::GetViewport( int& x, int& y, int& width, int& height ) const
{
// Verify valid top of RT stack
Assert ( m_RenderTargetStack.Count() > 0 );
// Grab the top of stack
const RenderTargetStackElement_t& element = m_RenderTargetStack.Top();
// If either dimension is negative, set to full bounds of current target
if ( (element.m_nViewW < 0) || (element.m_nViewH < 0) )
{
// Viewport origin at target origin
x = y = 0;
// If target is back buffer
if ( element.m_pRenderTargets[0] == NULL )
{
width = m_WidthBackBuffer;
height = m_HeightBackBuffer;
}
else // if target is texture
{
width = element.m_pRenderTargets[0]->GetActualWidth();
height = element.m_pRenderTargets[0]->GetActualHeight();
}
}
else // use the bounds from the stack directly
{
x = element.m_nViewX;
y = element.m_nViewY;
width = element.m_nViewW;
height = element.m_nViewH;
}
}
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void CMatQueuedRenderContext::SyncToken( const char *p )
{
m_queue.QueueCall( m_pHardwareContext, &IMatRenderContext::SyncToken, CUtlEnvelope<const char *>( p ) );
}
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
IMesh* CMatQueuedRenderContext::GetDynamicMesh( bool buffered, IMesh* pVertexOverride, IMesh* pIndexOverride, IMaterial *pAutoBind )
{
if( pAutoBind )
Bind( pAutoBind, NULL );
if ( pVertexOverride && pIndexOverride )
{
// Use the new batch API
DebuggerBreak();
return NULL;
}
if ( pVertexOverride )
{
if ( CompressionType( pVertexOverride->GetVertexFormat() ) != VERTEX_COMPRESSION_NONE )
{
// UNDONE: support compressed dynamic meshes if needed (pro: less VB memory, con: time spent compressing)
DebuggerBreak();
return NULL;
}
}
// For anything more than 1 bone, imply the last weight from the 1 - the sum of the others.
int nCurrentBoneCount = GetCurrentNumBones();
Assert( nCurrentBoneCount <= 4 );
if ( nCurrentBoneCount > 1 )
{
--nCurrentBoneCount;
}
m_pQueuedMesh->OnGetDynamicMesh( 0, ( buffered ) ? MQM_BUFFERED : 0, pVertexOverride, pIndexOverride, GetCurrentMaterialInternal(), nCurrentBoneCount );
return m_pQueuedMesh;
}
IMesh* CMatQueuedRenderContext::GetDynamicMeshEx( VertexFormat_t vertexFormat, bool bBuffered, IMesh* pVertexOverride, IMesh* pIndexOverride, IMaterial *pAutoBind )
{
if( pAutoBind )
{
Bind( pAutoBind, NULL );
}
if ( pVertexOverride && pIndexOverride )
{
// Use the new batch API
DebuggerBreak();
return NULL;
}
if ( pVertexOverride )
{
if ( CompressionType( pVertexOverride->GetVertexFormat() ) != VERTEX_COMPRESSION_NONE )
{
// UNDONE: support compressed dynamic meshes if needed (pro: less VB memory, con: time spent compressing)
DebuggerBreak();
return NULL;
}
}
// For anything more than 1 bone, imply the last weight from the 1 - the sum of the others.
int nCurrentBoneCount = GetCurrentNumBones();
Assert( nCurrentBoneCount <= 4 );
if ( nCurrentBoneCount > 1 )
{
--nCurrentBoneCount;
}
m_pQueuedMesh->OnGetDynamicMesh( vertexFormat, ( bBuffered ) ? MQM_BUFFERED : 0, pVertexOverride, pIndexOverride, GetCurrentMaterialInternal(), nCurrentBoneCount );
return m_pQueuedMesh;
}
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
int CMatQueuedRenderContext::GetMaxVerticesToRender( IMaterial *pMaterial )
{
pMaterial = ((IMaterialInternal *)pMaterial)->GetRealTimeVersion(); //always work with the real time version of materials internally.
MeshDesc_t temp;
// Be conservative, assume no compression (in here, we don't know if the caller will used a compressed VB or not)
// FIXME: allow the caller to specify which compression type should be used to compute size from the vertex format
// (this can vary between multiple VBs/Meshes using the same material)
VertexFormat_t materialFormat = pMaterial->GetVertexFormat() & ~VERTEX_FORMAT_COMPRESSED;
g_pShaderAPI->ComputeVertexDescription( 0, materialFormat, temp );
int maxVerts = g_pShaderAPI->GetCurrentDynamicVBSize() / temp.m_ActualVertexSize;
if ( maxVerts > 65535 )
{
maxVerts = 65535;
}
return maxVerts;
}
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void CMatQueuedRenderContext::GetMaxToRender( IMesh *pMesh, bool bMaxUntilFlush, int *pMaxVerts, int *pMaxIndices )
{
Assert( !bMaxUntilFlush );
*pMaxVerts = g_pShaderAPI->GetCurrentDynamicVBSize() / m_pQueuedMesh->GetVertexSize();
if ( *pMaxVerts > 65535 )
{
*pMaxVerts = 65535;
}
*pMaxIndices = INDEX_BUFFER_SIZE;
}
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
IMesh *CMatQueuedRenderContext::GetFlexMesh()
{
m_pQueuedMesh->OnGetDynamicMesh( 0, MQM_FLEX, NULL, NULL, NULL, 0 );
return m_pQueuedMesh;
}
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
OcclusionQueryObjectHandle_t CMatQueuedRenderContext::CreateOcclusionQueryObject()
{
OcclusionQueryObjectHandle_t h = g_pOcclusionQueryMgr->CreateOcclusionQueryObject();
m_queue.QueueCall( g_pOcclusionQueryMgr, &COcclusionQueryMgr::OnCreateOcclusionQueryObject, h );
return h;
}
int CMatQueuedRenderContext::OcclusionQuery_GetNumPixelsRendered( OcclusionQueryObjectHandle_t h )
{
m_queue.QueueCall( g_pOcclusionQueryMgr, &COcclusionQueryMgr::OcclusionQuery_IssueNumPixelsRenderedQuery, h );
return g_pOcclusionQueryMgr->OcclusionQuery_GetNumPixelsRendered( h, false );
}
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void CMatQueuedRenderContext::SetFlashlightState( const FlashlightState_t &s, const VMatrix &m )
{
m_queue.QueueCall( m_pHardwareContext, &IMatRenderContext::SetFlashlightState, RefToVal( s ), RefToVal( m ) );
}
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
bool CMatQueuedRenderContext::EnableClipping( bool bEnable )
{
m_queue.QueueCall( m_pHardwareContext, &IMatRenderContext::EnableClipping, bEnable );
return BaseClass::EnableClipping( bEnable );
}
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void CMatQueuedRenderContext::UserClipTransform( const VMatrix &m )
{
m_queue.QueueCall( m_pHardwareContext, &IMatRenderContext::UserClipTransform, RefToVal( m ) );
}
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void CMatQueuedRenderContext::GetWindowSize( int &width, int &height ) const
{
width = m_WidthBackBuffer;
height = m_HeightBackBuffer;
}
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void CMatQueuedRenderContext::DrawScreenSpaceRectangle(
IMaterial *pMaterial,
int destx, int desty,
int width, int height,
float src_texture_x0, float src_texture_y0, // which texel you want to appear at
// destx/y
float src_texture_x1, float src_texture_y1, // which texel you want to appear at
// destx+width-1, desty+height-1
int src_texture_width, int src_texture_height, // needed for fixup
void *pClientRenderable,
int nXDice, int nYDice ) // Amount to tessellate the quad
{
IMaterial *pRealTimeVersionMaterial = ((IMaterialInternal *)pMaterial)->GetRealTimeVersion();
pRealTimeVersionMaterial->CallBindProxy( pClientRenderable );
m_queue.QueueCall( m_pHardwareContext, &IMatRenderContext::DrawScreenSpaceRectangle, pMaterial, destx, desty, width, height, src_texture_x0, src_texture_y0, src_texture_x1, src_texture_y1, src_texture_width, src_texture_height, pClientRenderable, nXDice, nYDice );
}
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void CMatQueuedRenderContext::LoadBoneMatrix( int i, const matrix3x4_t &m )
{
m_queue.QueueCall( m_pHardwareContext, &IMatRenderContext::LoadBoneMatrix, i, RefToVal( m ) );
}
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void CMatQueuedRenderContext::CopyRenderTargetToTextureEx( ITexture *pTexture, int i, Rect_t *pSrc, Rect_t *pDst )
{
m_queue.QueueCall( m_pHardwareContext, &IMatRenderContext::CopyRenderTargetToTextureEx, pTexture, i, CUtlEnvelope<Rect_t>(pSrc), CUtlEnvelope<Rect_t>(pDst) );
}
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void CMatQueuedRenderContext::CopyTextureToRenderTargetEx( int i, ITexture *pTexture, Rect_t *pSrc, Rect_t *pDst )
{
m_queue.QueueCall( m_pHardwareContext, &IMatRenderContext::CopyTextureToRenderTargetEx, i, pTexture, CUtlEnvelope<Rect_t>(pSrc), CUtlEnvelope<Rect_t>(pDst) );
}
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
bool CMatQueuedRenderContext::OnDrawMesh( IMesh *pMesh, int firstIndex, int numIndices )
{
void (IMesh::*pfnDraw)( int, int) = &IMesh::Draw; // need assignment to disambiguate overloaded function
m_queue.QueueCall( pMesh, pfnDraw, firstIndex, numIndices );
return false;
}
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
bool CMatQueuedRenderContext::OnDrawMesh( IMesh *pMesh, CPrimList *pLists, int nLists )
{
CMatRenderData< CPrimList > rdPrimList( this, nLists, pLists );
m_queue.QueueCall( this, &CMatQueuedRenderContext::DeferredDrawPrimList, pMesh, rdPrimList.Base(), nLists );
return false;
}
void CMatQueuedRenderContext::DeferredDrawPrimList( IMesh *pMesh, CPrimList *pLists, int nLists )
{
pMesh->Draw( pLists, nLists );
}
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void CMatQueuedRenderContext::DeferredSetFlexMesh( IMesh *pStaticMesh, int nVertexOffsetInBytes )
{
pStaticMesh->SetFlexMesh( m_pQueuedMesh->GetActualMesh(), m_pQueuedMesh->GetActualVertexOffsetInBytes() );
}
bool CMatQueuedRenderContext::OnSetFlexMesh( IMesh *pStaticMesh, IMesh *pMesh, int nVertexOffsetInBytes )
{
Assert( pMesh == m_pQueuedMesh || !pMesh );
if ( pMesh )
{
m_pQueuedMesh->QueueBuild();
m_queue.QueueCall( this, &CMatQueuedRenderContext::DeferredSetFlexMesh, pStaticMesh, nVertexOffsetInBytes );
}
else
{
m_queue.QueueCall( pStaticMesh, &IMesh::SetFlexMesh, (IMesh *)NULL, 0 );
}
return false;
}
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
bool CMatQueuedRenderContext::OnSetColorMesh( IMesh *pStaticMesh, IMesh *pMesh, int nVertexOffsetInBytes )
{
m_queue.QueueCall( pStaticMesh, &IMesh::SetColorMesh, pMesh, nVertexOffsetInBytes );
return false;
}
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
bool CMatQueuedRenderContext::OnSetPrimitiveType( IMesh *pMesh, MaterialPrimitiveType_t type )
{
m_queue.QueueCall( pMesh, &IMesh::SetPrimitiveType, type );
return false;
}
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
bool CMatQueuedRenderContext::OnFlushBufferedPrimitives()
{
m_queue.QueueCall( g_pShaderAPI, &IShaderAPI::FlushBufferedPrimitives );
return false;
}
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
inline void CMatQueuedRenderContext::QueueMatrixSync()
{
void (IMatRenderContext::*pfnLoadMatrix)( const VMatrix & ) = &IMatRenderContext::LoadMatrix; // need assignment to disambiguate overloaded function
m_queue.QueueCall( m_pHardwareContext, pfnLoadMatrix, RefToVal( AccessCurrentMatrix() ) );
}
void CMatQueuedRenderContext::MatrixMode( MaterialMatrixMode_t mode )
{
CMatRenderContextBase::MatrixMode( mode );
m_queue.QueueCall( m_pHardwareContext, &IMatRenderContext::MatrixMode, mode );
}
void CMatQueuedRenderContext::PushMatrix()
{
CMatRenderContextBase::PushMatrix();
m_queue.QueueCall( m_pHardwareContext, &IMatRenderContext::PushMatrix );
}
void CMatQueuedRenderContext::PopMatrix()
{
CMatRenderContextBase::PopMatrix();
m_queue.QueueCall( m_pHardwareContext, &IMatRenderContext::PopMatrix );
}
void CMatQueuedRenderContext::LoadMatrix( const VMatrix& matrix )
{
CMatRenderContextBase::LoadMatrix( matrix );
QueueMatrixSync();
}
void CMatQueuedRenderContext::LoadMatrix( const matrix3x4_t& matrix )
{
CMatRenderContextBase::LoadMatrix( matrix );
QueueMatrixSync();
}
void CMatQueuedRenderContext::MultMatrix( const VMatrix& matrix )
{
CMatRenderContextBase::MultMatrix( matrix );
QueueMatrixSync();
}
void CMatQueuedRenderContext::MultMatrix( const matrix3x4_t& matrix )
{
CMatRenderContextBase::MultMatrix( VMatrix( matrix ) );
QueueMatrixSync();
}
void CMatQueuedRenderContext::MultMatrixLocal( const VMatrix& matrix )
{
CMatRenderContextBase::MultMatrixLocal( matrix );
QueueMatrixSync();
}
void CMatQueuedRenderContext::MultMatrixLocal( const matrix3x4_t& matrix )
{
CMatRenderContextBase::MultMatrixLocal( VMatrix( matrix ) );
QueueMatrixSync();
}
void CMatQueuedRenderContext::LoadIdentity()
{
CMatRenderContextBase::LoadIdentity();
m_queue.QueueCall( m_pHardwareContext, &IMatRenderContext::LoadIdentity );
}
void CMatQueuedRenderContext::Ortho( double left, double top, double right, double bottom, double zNear, double zFar )
{
CMatRenderContextBase::Ortho( left, top, right, bottom, zNear, zFar );
QueueMatrixSync();
}
void CMatQueuedRenderContext::PerspectiveX( double flFovX, double flAspect, double flZNear, double flZFar )
{
CMatRenderContextBase::PerspectiveX( flFovX, flAspect, flZNear, flZFar );
QueueMatrixSync();
}
void CMatQueuedRenderContext::PerspectiveOffCenterX( double flFovX, double flAspect, double flZNear, double flZFar, double bottom, double top, double left, double right )
{
CMatRenderContextBase::PerspectiveOffCenterX( flFovX, flAspect, flZNear, flZFar, bottom, top, left, right );
QueueMatrixSync();
}
void CMatQueuedRenderContext::PickMatrix( int x, int y, int nWidth, int nHeight )
{
CMatRenderContextBase::PickMatrix( x, y, nWidth, nHeight );
QueueMatrixSync();
}
void CMatQueuedRenderContext::Rotate( float flAngle, float x, float y, float z )
{
CMatRenderContextBase::Rotate( flAngle, x, y, z );
QueueMatrixSync();
}
void CMatQueuedRenderContext::Translate( float x, float y, float z )
{
CMatRenderContextBase::Translate( x, y, z );
QueueMatrixSync();
}
void CMatQueuedRenderContext::Scale( float x, float y, float z )
{
CMatRenderContextBase::Scale( x, y, z );
QueueMatrixSync();
}
void CMatQueuedRenderContext::BeginBatch( IMesh* pIndices )
{
Assert( pIndices == (IMesh *)m_pQueuedMesh );
m_queue.QueueCall( this, &CMatQueuedRenderContext::DeferredBeginBatch, m_pQueuedMesh->GetIndexData(), m_pQueuedMesh->IndexCount() );
m_pQueuedMesh->DetachBuffers();
}
void CMatQueuedRenderContext::BindBatch( IMesh* pVertices, IMaterial *pAutoBind )
{
Assert( pVertices != (IMesh *)m_pQueuedMesh );
m_queue.QueueCall( m_pHardwareContext, &IMatRenderContext::BindBatch, pVertices, pAutoBind );
}
void CMatQueuedRenderContext::DrawBatch(int firstIndex, int numIndices )
{
m_queue.QueueCall( m_pHardwareContext, &IMatRenderContext::DrawBatch, firstIndex, numIndices );
}
void CMatQueuedRenderContext::EndBatch()
{
m_queue.QueueCall( m_pHardwareContext, &IMatRenderContext::EndBatch );
}
void CMatQueuedRenderContext::DeferredBeginBatch( uint16 *pIndexData, int nIndices )
{
m_pQueuedMesh->DeferredGetDynamicMesh( 0, false, NULL, NULL, NULL );
m_pQueuedMesh->ExecuteDefferredBuild( NULL, 0, 0, pIndexData, nIndices );
m_pHardwareContext->BeginBatch( m_pQueuedMesh->DetachActualMesh() );
}
//-----------------------------------------------------------------------------
// Memory allocation calls for queued mesh, et. al.
//-----------------------------------------------------------------------------
byte *CMatQueuedRenderContext::AllocVertices( int nVerts, int nVertexSize )
{
MEM_ALLOC_CREDIT();
#if defined(_WIN32) && !defined(_X360)
const byte *pNextAlloc = (const byte *)(m_Vertices.GetBase()) + m_Vertices.GetUsed() + AlignValue( nVerts * nVertexSize, 16 );
const byte *pCommitLimit = (const byte *)(m_Vertices.GetBase()) + m_Vertices.GetSize();
#endif
void *pResult = m_Vertices.Alloc( nVerts * nVertexSize, false );
#if defined(_WIN32) && !defined(_X360)
if ( !pResult )
{
// Force a crash with useful minidump info in the registers.
uint64 status = 0x31415926;
// Print some information to the console so that it's picked up in the minidump comment.
Msg( "AllocVertices( %d, %d ) on %p failed. m_Vertices is based at %p with a size of 0x%x.\n", nVerts, nVertexSize, this, m_Vertices.GetBase(), m_Vertices.GetSize() );
Msg( "%d vertices used.\n", m_Vertices.GetUsed() );
if ( pNextAlloc > pCommitLimit )
{
Msg( "VirtualAlloc would have been called. %p > %p.\n", pNextAlloc, pCommitLimit );
const byte *pNewCommitLimit = AlignValue( pNextAlloc, 128 * 1024 );
const uint32 commitSize = pNewCommitLimit - pCommitLimit;
const void *pRet = VirtualAlloc( (void *)pCommitLimit, commitSize, MEM_COMMIT, PAGE_READWRITE );
if ( !pRet )
status = GetLastError();
Msg( "VirtualAlloc( %p, %d ) returned %p on repeat. VirtualAlloc %s with code %x.\n", pCommitLimit, commitSize, pRet, (pRet != NULL) ? "succeeded" : "failed", (uint32) status );
}
else
{
Msg( "VirtualAlloc would not have been called. %p <= %p.\n", pNextAlloc, pCommitLimit );
}
// Now crash.
*(volatile uint64 *)0 = status << 32 | m_Vertices.GetUsed();
}
#endif
return (byte *) pResult;
}
uint16 *CMatQueuedRenderContext::AllocIndices( int nIndices )
{
MEM_ALLOC_CREDIT();
#if defined(_WIN32) && !defined(_X360)
const byte *pNextAlloc = (const byte *)(m_Indices.GetBase()) + m_Indices.GetUsed() + AlignValue( nIndices * sizeof(uint16), 16 );
const byte *pCommitLimit = (const byte *)(m_Indices.GetBase()) + m_Indices.GetSize();
#endif
void *pResult = m_Indices.Alloc( nIndices * sizeof(uint16), false );
#if defined(_WIN32) && !defined(_X360)
if ( !pResult )
{
// Force a crash with useful minidump info in the registers.
uint64 status = 0x31415926;
// Print some information to the console so that it's picked up in the minidump comment.
Msg( "AllocIndices( %d ) on %p failed. m_Indices is based at %p with a size of 0x%x.\n", nIndices, this, m_Indices.GetBase(), m_Indices.GetSize() );
Msg( "%d indices used.\n", m_Indices.GetUsed() );
if ( pNextAlloc > pCommitLimit )
{
Msg( "VirtualAlloc would have been called. %p > %p.\n", pNextAlloc, pCommitLimit );
const byte *pNewCommitLimit = AlignValue( pNextAlloc, 128 * 1024 );
const uint32 commitSize = pNewCommitLimit - pCommitLimit;
const void *pRet = VirtualAlloc( (void *)pCommitLimit, commitSize, MEM_COMMIT, PAGE_READWRITE );
if ( !pRet )
status = GetLastError();
Msg( "VirtualAlloc( %p, %d ) returned %p on repeat. VirtualAlloc %s with code %x.\n", pCommitLimit, commitSize, pRet, (pRet != NULL) ? "succeeded" : "failed", (uint32) status );
}
else
{
Msg( "VirtualAlloc would not have been called. %p <= %p.\n", pNextAlloc, pCommitLimit );
}
// Now crash.
*(volatile uint64 *)0 = status << 32 | m_Indices.GetUsed();
}
#endif
return (uint16 *) pResult;
}
byte *CMatQueuedRenderContext::ReallocVertices( byte *pVerts, int nVertsOld, int nVertsNew, int nVertexSize )
{
Assert( nVertsNew <= nVertsOld );
if ( nVertsNew < nVertsOld )
{
unsigned nBytes = ( ( nVertsOld - nVertsNew ) * nVertexSize );
m_Vertices.FreeToAllocPoint( AlignValue( m_Vertices.GetCurrentAllocPoint() - nBytes, 16), false ); // memstacks 128 bit aligned
}
return pVerts;
}
uint16 *CMatQueuedRenderContext::ReallocIndices( uint16 *pIndices, int nIndicesOld, int nIndicesNew )
{
Assert( nIndicesNew <= nIndicesOld );
if ( nIndicesNew < nIndicesOld )
{
unsigned nBytes = ( ( nIndicesOld - nIndicesNew ) * sizeof(uint16) );
m_Indices.FreeToAllocPoint( AlignValue( m_Indices.GetCurrentAllocPoint() - nBytes, 16 ), false ); // memstacks 128 bit aligned
}
return pIndices;
}
void CMatQueuedRenderContext::FreeVertices( byte *pVerts, int nVerts, int nVertexSize )
{
// free at end of call dispatch
}
void CMatQueuedRenderContext::FreeIndices( uint16 *pIndices, int nIndices )
{
// free at end of call dispatch
}
//------------------------------------------------------------------------------
// Color correction related methods
//------------------------------------------------------------------------------
ColorCorrectionHandle_t CMatQueuedRenderContext::AddLookup( const char *pName )
{
MaterialLock_t hLock = m_pMaterialSystem->Lock();
ColorCorrectionHandle_t hCC = ColorCorrectionSystem()->AddLookup( pName );
m_pMaterialSystem->Unlock( hLock );
return hCC;
}
bool CMatQueuedRenderContext::RemoveLookup( ColorCorrectionHandle_t handle )
{
MaterialLock_t hLock = m_pMaterialSystem->Lock();
bool bRemoved = ColorCorrectionSystem()->RemoveLookup( handle );
m_pMaterialSystem->Unlock( hLock );
return bRemoved;
}
void CMatQueuedRenderContext::LockLookup( ColorCorrectionHandle_t handle )
{
MaterialLock_t hLock = m_pMaterialSystem->Lock();
ColorCorrectionSystem()->LockLookup( handle );
m_pMaterialSystem->Unlock( hLock );
}
void CMatQueuedRenderContext::LoadLookup( ColorCorrectionHandle_t handle, const char *pLookupName )
{
MaterialLock_t hLock = m_pMaterialSystem->Lock();
ColorCorrectionSystem()->LoadLookup( handle, pLookupName );
m_pMaterialSystem->Unlock( hLock );
}
void CMatQueuedRenderContext::UnlockLookup( ColorCorrectionHandle_t handle )
{
MaterialLock_t hLock = m_pMaterialSystem->Lock();
ColorCorrectionSystem()->UnlockLookup( handle );
m_pMaterialSystem->Unlock( hLock );
}
// NOTE: These are synchronous calls! The rendering thread is stopped, the current queue is drained and the pixels are read
// NOTE: We should also have a queued read pixels in the API for doing mid frame reads (as opposed to screenshots)
void CMatQueuedRenderContext::ReadPixels( int x, int y, int width, int height, unsigned char *data, ImageFormat dstFormat )
{
EndRender();
MaterialLock_t hLock = m_pMaterialSystem->Lock();
this->CallQueued(false);
g_pShaderAPI->ReadPixels( x, y, width, height, data, dstFormat );
m_pMaterialSystem->Unlock( hLock );
BeginRender();
}
void CMatQueuedRenderContext::ReadPixelsAndStretch( Rect_t *pSrcRect, Rect_t *pDstRect, unsigned char *pBuffer, ImageFormat dstFormat, int nDstStride )
{
EndRender();
MaterialLock_t hLock = m_pMaterialSystem->Lock();
this->CallQueued(false);
g_pShaderAPI->ReadPixels( pSrcRect, pDstRect, pBuffer, dstFormat, nDstStride );
m_pMaterialSystem->Unlock( hLock );
BeginRender();
}