|
|
//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
//=============================================================================
#include "pch_materialsystem.h"
#define MATSYS_INTERNAL
#include <math.h>
#include "cmatrendercontext.h"
#include "tier2/renderutils.h"
#include "cmaterialsystem.h"
#include "occlusionquerymgr.h"
#include "texturemanager.h"
#include "IHardwareConfigInternal.h"
#include "ctype.h"
#include "tier1/fmtstr.h"
#include "togl/rendermechanism.h"
// NOTE: This must be the last file included!!!
#include "tier0/memdbgon.h"
//-----------------------------------------------------------------------------
// FIXME: right now, always keeping shader API in sync, because debug overlays don't seem to work 100% with the delayed matrix loading
#define FORCE_MATRIX_SYNC 1
#ifdef VALIDATE_MATRICES
#define ShouldValidateMatrices() true
#else
#define ShouldValidateMatrices() false
#endif
#ifdef VALIDATE_MATRICES
#define AllowLazyMatrixSync() false
#define ForceSync() ((void)(0))
#elif defined(FORCE_MATRIX_SYNC)
#define AllowLazyMatrixSync() false
#define ForceSync() ForceSyncMatrix( m_MatrixMode )
#else
#define AllowLazyMatrixSync() true
#define ForceSync() ((void)(0))
#endif
#ifdef _X360
static bool s_bDirtyDisk = false; #endif
void ValidateMatrices( const VMatrix &m1, const VMatrix &m2, float eps = .001 ) { if ( !ShouldValidateMatrices() ) return;
for ( int i = 0; i < 16; i++ ) { AssertFloatEquals( m1.Base()[i], m1.Base()[i], eps ); } }
//-----------------------------------------------------------------------------
// The dirty disk error report function (NOTE: Could be called from any thread!)
//-----------------------------------------------------------------------------
#ifdef _X360
unsigned ThreadedDirtyDiskErrorDisplay( void *pParam ) { XShowDirtyDiscErrorUI( XBX_GetPrimaryUserId() ); } #endif
void SpinPresent() { while ( true ) { g_pShaderAPI->ClearColor3ub( 0, 0, 0 ); g_pShaderAPI->ClearBuffers( true, true, true, -1, -1 ); g_pShaderDevice->Present(); } }
void ReportDirtyDisk() { #ifdef _X360
s_bDirtyDisk = true; ThreadHandle_t h = CreateSimpleThread( ThreadedDirtyDiskErrorDisplay, NULL ); ThreadSetPriority( h, THREAD_PRIORITY_HIGHEST );
// If this is being called from the render thread, immediately swap
if ( ( ThreadGetCurrentId() == MaterialSystem()->GetRenderThreadId() ) || ( ThreadInMainThread() && g_pMaterialSystem->GetThreadMode() != MATERIAL_QUEUED_THREADED ) ) { SpinPresent(); } #endif
}
//-----------------------------------------------------------------------------
// Install dirty disk error reporting function (call after SetMode)
//-----------------------------------------------------------------------------
void SetupDirtyDiskReportFunc() { g_pFullFileSystem->InstallDirtyDiskReportFunc( ReportDirtyDisk ); }
//-----------------------------------------------------------------------------
// Globals
//-----------------------------------------------------------------------------
CMemoryStack CMatRenderContextBase::sm_RenderData[2]; int CMatRenderContextBase::sm_nRenderLockCount = 0; int CMatRenderContextBase::sm_nRenderStack = 0; int CMatRenderContextBase::sm_nInitializeCount = 0;
//-----------------------------------------------------------------------------
// Constructor
//-----------------------------------------------------------------------------
CMatRenderContextBase::CMatRenderContextBase() : m_pMaterialSystem( NULL ), m_RenderTargetStack( 16, 32 ), m_MatrixMode( NUM_MATRIX_MODES ) { int i;
m_bDirtyViewState = true;
// Put a special element at the top of the RT stack (indicating back buffer is current top of stack)
// NULL indicates back buffer, -1 indicates full-size viewport
#if !defined( _X360 )
RenderTargetStackElement_t initialElement = { {NULL, NULL, NULL, NULL}, NULL, 0, 0, -1, -1 }; #else
RenderTargetStackElement_t initialElement = { {NULL}, NULL, 0, 0, -1, -1 }; #endif
m_RenderTargetStack.Push( initialElement );
for ( i = 0; i < MAX_FB_TEXTURES; i++ ) { m_pCurrentFrameBufferCopyTexture[i] = NULL; }
m_pCurrentMaterial = NULL; m_pCurrentProxyData = NULL; m_pUserDefinedLightmap = NULL; m_HeightClipMode = MATERIAL_HEIGHTCLIPMODE_DISABLE; m_HeightClipZ = 0.0f; m_bEnableClipping = true; m_bFlashlightEnable = false; m_bFullFrameDepthIsValid = false;
for ( i = 0; i < NUM_MATRIX_MODES; i++ ) { m_MatrixStacks[i].Push(); m_MatrixStacks[i].Top().matrix.Identity(); m_MatrixStacks[i].Top().flags |= ( MSF_DIRTY| MSF_IDENTITY ); } m_pCurMatrixItem = &m_MatrixStacks[0].Top();
m_Viewport.Init( 0, 0, 0, 0 );
m_LastSetToneMapScale=Vector(1,1,1); m_CurToneMapScale=1.0; m_GoalToneMapScale = 1.0f; }
//-----------------------------------------------------------------------------
// Init, shutdown
//-----------------------------------------------------------------------------
InitReturnVal_t CMatRenderContextBase::Init( ) { MEM_ALLOC_CREDIT(); if ( !sm_nInitializeCount ) { int nSize = 2200 * 1024; int nCommitSize = 32 * 1024;
#ifdef SWDS
nSize = nCommitSize = 1024; #endif
const char *gamedir = CommandLine()->ParmValue("-game", CommandLine()->ParmValue( "-defaultgamedir", "hl2" ) ); if ( gamedir && !Q_stricmp( "garrysmod", gamedir ) ) { nSize = 4400 * 1024; }
sm_RenderData[0].Init( nSize, nCommitSize, 0, 32 ); sm_RenderData[1].Init( nSize, nCommitSize, 0, 32 ); sm_nRenderStack = 0; sm_nRenderLockCount = 0; } ++sm_nInitializeCount; return INIT_OK; }
void CMatRenderContextBase::Shutdown( ) { Assert( sm_nInitializeCount >= 0 ); if ( --sm_nInitializeCount == 0 ) { sm_RenderData[0].Term(); sm_RenderData[1].Term(); } }
void CMatRenderContextBase::CompactMemory() { if ( sm_nRenderLockCount ) { DevWarning( "CMatRenderContext: Trying to compact with render data still locked!\n" ); sm_nRenderLockCount = 0; } sm_RenderData[0].FreeAll(); sm_RenderData[1].FreeAll(); }
void CMatRenderContextBase::MarkRenderDataUnused( bool bFrameBegin ) { if ( sm_nRenderLockCount ) { DevWarning( "CMatRenderContext: Trying to clear render data with render data still locked (%d)!\n", sm_nRenderLockCount ); sm_nRenderLockCount = 0; }
// JAY: DO NOT MERGE FROM TF2 - L4D HAS CHANGED THE UNDERLYING INTERFACE IN A WAY THAT DOESN'T REQUIRE THIS
#if 0
// Switch stacks
if ( bFrameBegin ) { sm_nRenderStack = 1 - sm_nRenderStack; }
// Clear the new stack
#ifdef _DEBUG
memset( sm_RenderData[sm_nRenderStack].GetBase(), 0xFF, RenderDataSizeUsed() ); #endif
sm_RenderData[ sm_nRenderStack ].FreeAll( false ); #else
// Just for TF2, don't free the stack until the end of frame. TF2 Allocates render data and holds it over the lock
// period because we haven't revised the studiorender interface yet to change patterns.
// Switch stacks
if ( bFrameBegin ) { sm_nRenderStack = 1 - sm_nRenderStack; // Clear the new stack
#ifdef _DEBUG
memset( sm_RenderData[sm_nRenderStack].GetBase(), 0xFF, RenderDataSizeUsed() ); #endif
sm_RenderData[ sm_nRenderStack ].FreeAll( false ); } #endif
}
int CMatRenderContextBase::RenderDataSizeUsed() const { return sm_RenderData[sm_nRenderStack].GetUsed(); }
bool CMatRenderContextBase::IsRenderData( const void *pData ) const { intp nData = (intp)pData; intp nBaseAddress = (intp)sm_RenderData[sm_nRenderStack].GetBase(); intp nLastAddress = nBaseAddress + RenderDataSizeUsed(); return ( nData == 0 ) || ( nData >= nBaseAddress && nData < nLastAddress ); }
//-----------------------------------------------------------------------------
// debug logging - empty in base class
//-----------------------------------------------------------------------------
void CMatRenderContextBase::PrintfVA( char *fmt, va_list vargs ) { }
void CMatRenderContextBase::Printf( const char *fmt, ... ) { }
float CMatRenderContextBase::Knob( char *knobname, float *setvalue ) { return 0.0f; }
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
#define g_pShaderAPI Cannot_use_ShaderAPI_in_CMatRenderContextBase
void CMatRenderContextBase::InitializeFrom( CMatRenderContextBase *pInitialState ) { int i;
m_pCurrentMaterial = pInitialState->m_pCurrentMaterial; m_pCurrentProxyData = pInitialState->m_pCurrentProxyData; m_lightmapPageID = pInitialState->m_lightmapPageID; m_pUserDefinedLightmap = pInitialState->m_pUserDefinedLightmap; m_pLocalCubemapTexture = pInitialState->m_pLocalCubemapTexture;
memcpy( m_pCurrentFrameBufferCopyTexture, pInitialState->m_pCurrentFrameBufferCopyTexture, MAX_FB_TEXTURES * sizeof(ITexture *) );
m_bEnableClipping = pInitialState->m_bEnableClipping;
m_HeightClipMode = pInitialState->m_HeightClipMode; m_HeightClipZ = pInitialState->m_HeightClipZ;
m_pBoundMorph = pInitialState->m_pBoundMorph; // not reference counted?
m_RenderTargetStack.Clear(); m_RenderTargetStack.EnsureCapacity( pInitialState->m_RenderTargetStack.Count() );
for ( i = 0; i < pInitialState->m_RenderTargetStack.Count(); i++ ) { m_RenderTargetStack.Push( pInitialState->m_RenderTargetStack[i] ); }
m_MatrixMode = pInitialState->m_MatrixMode; for ( i = 0; i < NUM_MATRIX_MODES; i++ ) { m_MatrixStacks[i].CopyFrom( pInitialState->m_MatrixStacks[i] ); }
m_bFlashlightEnable = pInitialState->m_bFlashlightEnable;
m_FrameTime = pInitialState->m_FrameTime; m_GoalToneMapScale = pInitialState->m_GoalToneMapScale; m_CurToneMapScale = pInitialState->m_CurToneMapScale; m_LastSetToneMapScale = pInitialState->m_LastSetToneMapScale; }
void CMatRenderContextBase::Bind( IMaterial *iMaterial, void *proxyData ) { IMaterialInternal *material = static_cast<IMaterialInternal *>( iMaterial );
if ( !material ) { Warning( "Programming error: CMatRenderContext::Bind: NULL material\n" ); material = static_cast<IMaterialInternal *>( g_pErrorMaterial ); } material = material->GetRealTimeVersion(); //always work with the real time versions of materials internally
if ( GetCurrentMaterialInternal() != material ) { if( !material->IsPrecached() ) { DevWarning( "Binding uncached material \"%s\", artificially incrementing refcount\n", material->GetName() ); material->ArtificialAddRef(); material->Precache(); } SetCurrentMaterialInternal(material); }
SetCurrentProxy( proxyData ); }
void CMatRenderContextBase::BindLightmapPage( int lightmapPageID ) { m_lightmapPageID = lightmapPageID;
}
void CMatRenderContextBase::SetRenderTargetEx( int nRenderTargetID, ITexture *pNewTarget ) { // Verify valid top of RT stack
Assert ( m_RenderTargetStack.Count() > 0 );
// Reset the top of stack to the new target with old viewport
RenderTargetStackElement_t newTOS = m_RenderTargetStack.Top(); newTOS.m_pRenderTargets[nRenderTargetID] = pNewTarget; m_RenderTargetStack.Pop( ); m_RenderTargetStack.Push( newTOS ); }
void CMatRenderContextBase::BindLocalCubemap( ITexture *pTexture ) { if( pTexture ) { m_pLocalCubemapTexture = pTexture; } else { m_pLocalCubemapTexture = TextureManager()->ErrorTexture(); } }
ITexture *CMatRenderContextBase::GetRenderTarget( void ) { if (m_RenderTargetStack.Count() > 0) { return m_RenderTargetStack.Top().m_pRenderTargets[0]; } else { return NULL; // should this be something else, since NULL indicates back buffer?
} }
ITexture *CMatRenderContextBase::GetRenderTargetEx( int nRenderTargetID ) { // Verify valid top of stack
Assert ( m_RenderTargetStack.Count() > 0 );
// Top of render target stack
ITexture *pTexture = m_RenderTargetStack.Top().m_pRenderTargets[ nRenderTargetID ]; return pTexture; }
void CMatRenderContextBase::SetFrameBufferCopyTexture( ITexture *pTexture, int textureIndex ) { if( textureIndex < 0 || textureIndex > MAX_FB_TEXTURES ) { Assert( 0 ); return; }
// FIXME: Do I need to increment/decrement ref counts here, or assume that the app is going to do it?
m_pCurrentFrameBufferCopyTexture[textureIndex] = pTexture; }
ITexture *CMatRenderContextBase::GetFrameBufferCopyTexture( int textureIndex ) { if( textureIndex < 0 || textureIndex > MAX_FB_TEXTURES ) { Assert( 0 ); return NULL; // FIXME! This should return the error texture.
} return m_pCurrentFrameBufferCopyTexture[textureIndex]; }
void CMatRenderContextBase::MatrixMode( MaterialMatrixMode_t mode ) { Assert( m_MatrixStacks[mode].Count() ); m_MatrixMode = mode; m_pCurMatrixItem = &m_MatrixStacks[mode].Top(); }
void CMatRenderContextBase::CurrentMatrixChanged() { if ( m_MatrixMode == MATERIAL_VIEW ) { m_bDirtyViewState = true; m_bDirtyViewProjState = true; } else if ( m_MatrixMode == MATERIAL_PROJECTION ) { m_bDirtyViewProjState = true; } }
void CMatRenderContextBase::PushMatrix() { CUtlStack<MatrixStackItem_t> &curStack = m_MatrixStacks[ m_MatrixMode ]; Assert( curStack.Count() ); int iNew = curStack.Push(); curStack[ iNew ] = curStack[ iNew - 1 ]; m_pCurMatrixItem = &curStack.Top(); CurrentMatrixChanged(); }
void CMatRenderContextBase::PopMatrix() { Assert( m_MatrixStacks[m_MatrixMode].Count() > 1 ); m_MatrixStacks[ m_MatrixMode ].Pop(); m_pCurMatrixItem = &m_MatrixStacks[m_MatrixMode].Top(); CurrentMatrixChanged(); }
void CMatRenderContextBase::LoadMatrix( const VMatrix& matrix ) { m_pCurMatrixItem->matrix = matrix; m_pCurMatrixItem->flags = MSF_DIRTY; // clearing identity implicitly
CurrentMatrixChanged(); }
void CMatRenderContextBase::LoadMatrix( const matrix3x4_t& matrix ) { m_pCurMatrixItem->matrix = matrix; m_pCurMatrixItem->flags = MSF_DIRTY; // clearing identity implicitly
CurrentMatrixChanged(); }
void CMatRenderContextBase::MultMatrix( const VMatrix& matrix ) { VMatrix result;
MatrixMultiply( matrix, m_pCurMatrixItem->matrix, result ); m_pCurMatrixItem->matrix = result; m_pCurMatrixItem->flags = MSF_DIRTY; // clearing identity implicitly
CurrentMatrixChanged(); }
void CMatRenderContextBase::MultMatrix( const matrix3x4_t& matrix ) { CMatRenderContextBase::MultMatrix( VMatrix( matrix ) ); }
void CMatRenderContextBase::MultMatrixLocal( const VMatrix& matrix ) { VMatrix result; MatrixMultiply( m_pCurMatrixItem->matrix, matrix, result ); m_pCurMatrixItem->matrix = result; m_pCurMatrixItem->flags = MSF_DIRTY; // clearing identity implicitly
CurrentMatrixChanged(); }
void CMatRenderContextBase::MultMatrixLocal( const matrix3x4_t& matrix ) { CMatRenderContextBase::MultMatrixLocal( VMatrix( matrix ) ); }
void CMatRenderContextBase::LoadIdentity() { // FIXME: possibly track is identity so can call shader API LoadIdentity() later instead of LoadMatrix()?
m_pCurMatrixItem->matrix.Identity(); m_pCurMatrixItem->flags = ( MSF_DIRTY | MSF_IDENTITY ); CurrentMatrixChanged(); }
void CMatRenderContextBase::Ortho( double left, double top, double right, double bottom, double zNear, double zFar ) { MatrixOrtho( m_pCurMatrixItem->matrix, left, top, right, bottom, zNear, zFar ); m_pCurMatrixItem->flags = MSF_DIRTY; }
void CMatRenderContextBase::PerspectiveX( double flFovX, double flAspect, double flZNear, double flZFar ) { MatrixPerspectiveX( m_pCurMatrixItem->matrix, flFovX, flAspect, flZNear, flZFar ); m_pCurMatrixItem->flags = MSF_DIRTY; }
void CMatRenderContextBase::PerspectiveOffCenterX( double flFovX, double flAspect, double flZNear, double flZFar, double bottom, double top, double left, double right ) { MatrixPerspectiveOffCenterX( m_pCurMatrixItem->matrix, flFovX, flAspect, flZNear, flZFar, bottom, top, left, right ); m_pCurMatrixItem->flags = MSF_DIRTY; }
void CMatRenderContextBase::PickMatrix( int x, int y, int nWidth, int nHeight ) { int vx, vy, vwidth, vheight; GetViewport( vx, vy, vwidth, vheight );
// Compute the location of the pick region in projection space...
float px = 2.0 * (float)(x - vx) / (float)vwidth - 1; float py = 2.0 * (float)(y - vy)/ (float)vheight - 1; float pw = 2.0 * (float)nWidth / (float)vwidth; float ph = 2.0 * (float)nHeight / (float)vheight;
// we need to translate (px, py) to the origin
// and scale so (pw,ph) -> (2, 2)
VMatrix mat; MatrixSetIdentity( mat ); mat.m[0][0] = 2.0 / pw; mat.m[1][1] = 2.0 / ph; mat.m[0][3] = -2.0 * px / pw; mat.m[1][3] = -2.0 * py / ph;
CMatRenderContextBase::MultMatrixLocal( mat ); }
void CMatRenderContextBase::Rotate( float flAngle, float x, float y, float z ) { MatrixRotate( m_pCurMatrixItem->matrix, Vector( x, y, z ), flAngle ); m_pCurMatrixItem->flags = MSF_DIRTY; }
void CMatRenderContextBase::Translate( float x, float y, float z ) { MatrixTranslate( m_pCurMatrixItem->matrix, Vector( x, y, z ) ); m_pCurMatrixItem->flags = MSF_DIRTY; }
void CMatRenderContextBase::Scale( float x, float y, float z ) { VMatrix mat; MatrixBuildScale( mat, x, y, z ); CMatRenderContextBase::MultMatrixLocal( mat ); }
void CMatRenderContextBase::GetMatrix( MaterialMatrixMode_t matrixMode, VMatrix *pMatrix ) { CUtlStack<MatrixStackItem_t> &stack = m_MatrixStacks[ matrixMode ];
if ( !stack.Count() ) { pMatrix->Identity(); return; }
*pMatrix = stack.Top().matrix; }
void CMatRenderContextBase::GetMatrix( MaterialMatrixMode_t matrixMode, matrix3x4_t *pMatrix ) { CUtlStack<MatrixStackItem_t> &stack = m_MatrixStacks[ matrixMode ];
if ( !stack.Count() ) { SetIdentityMatrix( *pMatrix ); return; }
*pMatrix = stack.Top().matrix.As3x4(); }
void CMatRenderContextBase::RecomputeViewState() { if ( !m_bDirtyViewState ) return; m_bDirtyViewState = false;
// FIXME: Cache this off to make it less expensive?
matrix3x4_t viewMatrix; GetMatrix( MATERIAL_VIEW, &viewMatrix ); m_vecViewOrigin.x = -( viewMatrix[0][3] * viewMatrix[0][0] + viewMatrix[1][3] * viewMatrix[1][0] + viewMatrix[2][3] * viewMatrix[2][0] ); m_vecViewOrigin.y = -( viewMatrix[0][3] * viewMatrix[0][1] + viewMatrix[1][3] * viewMatrix[1][1] + viewMatrix[2][3] * viewMatrix[2][1] ); m_vecViewOrigin.z = -( viewMatrix[0][3] * viewMatrix[0][2] + viewMatrix[1][3] * viewMatrix[1][2] + viewMatrix[2][3] * viewMatrix[2][2] );
// FIXME Implement computation of m_vecViewForward, etc
m_vecViewForward.Init(); m_vecViewRight.Init();
// FIXME: Is this correct?
m_vecViewUp.Init( viewMatrix[1][0], viewMatrix[1][1], viewMatrix[1][2] ); }
void CMatRenderContextBase::GetWorldSpaceCameraPosition( Vector *pCameraPos ) { RecomputeViewState(); VectorCopy( m_vecViewOrigin, *pCameraPos ); }
void CMatRenderContextBase::GetWorldSpaceCameraVectors( Vector *pVecForward, Vector *pVecRight, Vector *pVecUp ) { RecomputeViewState();
// FIXME Implement computation of m_vecViewForward
Assert( 0 );
if ( pVecForward ) { VectorCopy( m_vecViewForward, *pVecForward ); } if ( pVecRight ) { VectorCopy( m_vecViewRight, *pVecRight ); } if ( pVecUp ) { VectorCopy( m_vecViewUp, *pVecUp ); } }
void *CMatRenderContextBase::LockRenderData( int nSizeInBytes ) { MEM_ALLOC_CREDIT(); void *pDest = sm_RenderData[ sm_nRenderStack ].Alloc( nSizeInBytes, false ); if ( !pDest ) { ExecuteNTimes( 10, Warning("MaterialSystem: Out of memory in render data!\n") ); } AddRefRenderData(); return pDest; }
void CMatRenderContextBase::UnlockRenderData( void *pData ) { ReleaseRenderData(); }
void CMatRenderContextBase::AddRefRenderData() { ++sm_nRenderLockCount; }
void CMatRenderContextBase::ReleaseRenderData() { --sm_nRenderLockCount; Assert( sm_nRenderLockCount >= 0 ); if ( sm_nRenderLockCount == 0 ) { OnRenderDataUnreferenced(); } }
void CMatRenderContextBase::SyncMatrices() { }
void CMatRenderContextBase::SyncMatrix( MaterialMatrixMode_t mode ) { }
void CMatRenderContextBase::SetHeightClipMode( enum MaterialHeightClipMode_t heightClipMode ) { if( m_HeightClipMode != heightClipMode ) { m_HeightClipMode = heightClipMode; UpdateHeightClipUserClipPlane(); /*if ( HardwareConfig()->MaxUserClipPlanes() >= 1 && !HardwareConfig()->UseFastClipping())
{ UpdateHeightClipUserClipPlane(); } else { g_pShaderAPI->SetHeightClipMode( heightClipMode ); }*/ } }
void CMatRenderContextBase::SetHeightClipZ( float z ) { if( z != m_HeightClipZ ) { m_HeightClipZ = z; UpdateHeightClipUserClipPlane(); }
// FIXME! : Need to move user clip plane support back to pre-dx9 cards (all of the pixel shaders
// have texkill in them. . blich.)
/*if ( HardwareConfig()->MaxUserClipPlanes() >= 1 && !HardwareConfig()->UseFastClipping() )
{ UpdateHeightClipUserClipPlane(); } else { g_pShaderAPI->SetHeightClipZ( z ); }*/ }
bool CMatRenderContextBase::EnableClipping( bool bEnable ) { if( bEnable != m_bEnableClipping ) { m_bEnableClipping = bEnable; ApplyCustomClipPlanes();
return !bEnable; } return bEnable; }
void CMatRenderContextBase::Viewport( int x, int y, int width, int height ) { // Verify valid top of RT stack
Assert ( m_RenderTargetStack.Count() > 0 );
// Reset the top of stack to the new viewport
RenderTargetStackElement_t newTOS; memcpy(&newTOS,&(m_RenderTargetStack.Top()),sizeof(newTOS)); newTOS.m_nViewX = x; newTOS.m_nViewY = y; newTOS.m_nViewW = width; newTOS.m_nViewH = height;
m_RenderTargetStack.Pop( ); m_RenderTargetStack.Push( newTOS ); }
//-----------------------------------------------------------------------------
// This version will push the current rendertarget + current viewport onto the stack
//-----------------------------------------------------------------------------
void CMatRenderContextBase::PushRenderTargetAndViewport( ) { // Necessary to push the stack top onto itself; realloc could happen otherwise
m_RenderTargetStack.EnsureCapacity( m_RenderTargetStack.Count() + 1 ); m_RenderTargetStack.Push( m_RenderTargetStack.Top() ); CommitRenderTargetAndViewport(); }
//-----------------------------------------------------------------------------
// Pushes a render target on the render target stack. Without a specific
// viewport also being pushed, this function uses dummy values which indicate
// that the viewport should span the the full render target and pushes
// the RenderTargetStackElement_t onto the stack
//
// The push and pop methods also implicitly set the render target to the new top of stack
//
// NULL for pTexture indicates rendering to the back buffer
//-----------------------------------------------------------------------------
void CMatRenderContextBase::PushRenderTargetAndViewport( ITexture *pTexture ) { // Just blindly push the data on the stack with flags indicating full bounds
#if !defined( _X360 )
RenderTargetStackElement_t element = { {pTexture, NULL, NULL, NULL}, 0, 0, -1, -1 }; #else
RenderTargetStackElement_t element = { {pTexture}, 0, 0, -1, -1 }; #endif
m_RenderTargetStack.Push( element ); CommitRenderTargetAndViewport(); }
//-----------------------------------------------------------------------------
// Pushes a render target on the render target stack and sets the viewport
//
// NULL for pTexture indicates rendering to the back buffer
//
// The push and pop methods also implicitly set the render target to the new top of stack
//-----------------------------------------------------------------------------
void CMatRenderContextBase::PushRenderTargetAndViewport( ITexture *pTexture, int nViewX, int nViewY, int nViewW, int nViewH ) { CMatRenderContextBase::PushRenderTargetAndViewport( pTexture, NULL, nViewX, nViewY, nViewW, nViewH ); }
//-----------------------------------------------------------------------------
// Pushes a render target on the render target stack and sets the viewport
// The push and pop methods also implicitly set the render target to the new top of stack
//-----------------------------------------------------------------------------
void CMatRenderContextBase::PushRenderTargetAndViewport( ITexture *pTexture, ITexture *pDepthTexture, int nViewX, int nViewY, int nViewW, int nViewH ) { // Just blindly push the data on the stack
#if !defined( _X360 )
RenderTargetStackElement_t element = { {pTexture, NULL, NULL, NULL}, pDepthTexture, nViewX, nViewY, nViewW, nViewH }; #else
RenderTargetStackElement_t element = { {pTexture}, pDepthTexture, nViewX, nViewY, nViewW, nViewH }; #endif
m_RenderTargetStack.Push( element ); CommitRenderTargetAndViewport(); }
//-----------------------------------------------------------------------------
// Pops from the render target stack
// Also implicitly sets the render target to the new top of stack
//-----------------------------------------------------------------------------
void CMatRenderContextBase::PopRenderTargetAndViewport( void ) { // Check for underflow
if ( m_RenderTargetStack.Count() == 0 ) { Assert( !"CMatRenderContext::PopRenderTargetAndViewport: Stack is empty!!!" ); return; }
// Changelist #266217 added this to main/src/materialsystem.
Flush();
// Remove the top of stack
m_RenderTargetStack.Pop( ); CommitRenderTargetAndViewport(); }
void CMatRenderContextBase::RecomputeViewProjState() { if ( m_bDirtyViewProjState ) { VMatrix viewMatrix, projMatrix;
// FIXME: Should consider caching this upon change for projection or view matrix.
GetMatrix( MATERIAL_VIEW, &viewMatrix ); GetMatrix( MATERIAL_PROJECTION, &projMatrix ); m_viewProjMatrix = projMatrix * viewMatrix; m_bDirtyViewProjState = false; } }
//-----------------------------------------------------------------------------
// This returns the diameter of the sphere in pixels based on
// the current model, view, + projection matrices and viewport.
//-----------------------------------------------------------------------------
float CMatRenderContextBase::ComputePixelDiameterOfSphere( const Vector& vecAbsOrigin, float flRadius ) { RecomputeViewState(); RecomputeViewProjState(); // This is sort of faked, but it's faster that way
// FIXME: Also, there's a much faster way to do this with similar triangles
// but I want to make sure it exactly matches the current matrices, so
// for now, I do it this conservative way
Vector4D testPoint1, testPoint2; VectorMA( vecAbsOrigin, flRadius, m_vecViewUp, testPoint1.AsVector3D() ); VectorMA( vecAbsOrigin, -flRadius, m_vecViewUp, testPoint2.AsVector3D() ); testPoint1.w = testPoint2.w = 1.0f;
Vector4D clipPos1, clipPos2; Vector4DMultiply( m_viewProjMatrix, testPoint1, clipPos1 ); Vector4DMultiply( m_viewProjMatrix, testPoint2, clipPos2 ); if (clipPos1.w >= 0.001f) { clipPos1.y /= clipPos1.w; } else { clipPos1.y *= 1000; } if (clipPos2.w >= 0.001f) { clipPos2.y /= clipPos2.w; } else { clipPos2.y *= 1000; } int vx, vy, vwidth, vheight; GetViewport( vx, vy, vwidth, vheight );
// The divide-by-two here is because y goes from -1 to 1 in projection space
return vheight * fabs( clipPos2.y - clipPos1.y ) / 2.0f; }
ConVar mat_accelerate_adjust_exposure_down( "mat_accelerate_adjust_exposure_down", "3.0", FCVAR_CHEAT ); ConVar mat_hdr_manual_tonemap_rate( "mat_hdr_manual_tonemap_rate", "1.0" ); ConVar mat_hdr_tonemapscale( "mat_hdr_tonemapscale", "1.0", FCVAR_CHEAT ); ConVar mat_tonemap_algorithm( "mat_tonemap_algorithm", "1", FCVAR_CHEAT, "0 = Original Algorithm 1 = New Algorithm" );
void CMatRenderContextBase::TurnOnToneMapping(void) { if ( ( HardwareConfig()->GetHDRType() != HDR_TYPE_NONE ) && ( m_FrameTime > 0.0f ) ) { float elapsed_time = m_FrameTime; float goalScale = m_GoalToneMapScale; float rate = mat_hdr_manual_tonemap_rate.GetFloat(); if ( mat_tonemap_algorithm.GetInt() == 1 ) { rate *= 2.0f; // Default 2x for the new tone mapping algorithm so it feels the same as the original
}
if ( rate == 0.0f ) // Zero indicates instantaneous tonemap scaling
{ m_CurToneMapScale = goalScale; } else { if ( goalScale < m_CurToneMapScale ) { float acc_exposure_adjust = mat_accelerate_adjust_exposure_down.GetFloat();
// Adjust at up to 4x rate when over-exposed.
rate = min( ( acc_exposure_adjust * rate ), FLerp( rate, ( acc_exposure_adjust * rate ), 0.0f, 1.5f, ( m_CurToneMapScale - goalScale ) ) ); }
float flRateTimesTime = rate * elapsed_time; if ( mat_tonemap_algorithm.GetInt() == 1 ) { // For the new tone mapping algorithm, limit the rate based on the number of bins to
// help reduce the tone map scalar "riding the wave" of the histogram re-building
//Warning( "flRateTimesTime = %.4f", flRateTimesTime );
flRateTimesTime = min( flRateTimesTime, ( 1.0f / 16.0f ) * 0.25f ); // 16 is number of HDR sample bins defined in viewpostprocess.cpp
//Warning( " --> %.4f\n", flRateTimesTime );
}
float alpha = max( 0.0f, min( 1.0f, flRateTimesTime ) ); m_CurToneMapScale = ( goalScale * alpha ) + ( m_CurToneMapScale * ( 1.0f - alpha ) );
if ( !IsFinite( m_CurToneMapScale ) ) { Assert( 0 ); m_CurToneMapScale = goalScale; } }
SetToneMappingScaleLinear( Vector( m_CurToneMapScale, m_CurToneMapScale, m_CurToneMapScale ) ); m_LastSetToneMapScale = Vector( m_CurToneMapScale, m_CurToneMapScale, m_CurToneMapScale ); } }
void CMatRenderContextBase::ResetToneMappingScale(float sc) { m_CurToneMapScale = sc; SetToneMappingScaleLinear( Vector( m_CurToneMapScale, m_CurToneMapScale, m_CurToneMapScale ) ); m_LastSetToneMapScale = Vector( m_CurToneMapScale, m_CurToneMapScale, m_CurToneMapScale ); // mat_hdr_tonemapscale.SetValue(1.0f);
m_GoalToneMapScale = 1; }
void CMatRenderContextBase::SetGoalToneMappingScale( float monoscale) { Assert( IsFinite( monoscale ) ); if( IsFinite( monoscale ) ) { m_GoalToneMapScale = monoscale; } }
Vector CMatRenderContextBase::GetToneMappingScaleLinear( void ) { if ( HardwareConfig()->GetHDRType() == HDR_TYPE_NONE ) return Vector( 1.0f, 1.0f, 1.0f ); else return m_LastSetToneMapScale; }
void CMatRenderContextBase::OnAsyncCreateTextureFromRenderTarget( ITexture* pSrcRt, const char** ppDstName, IAsyncTextureOperationReceiver* pRecipient ) { Assert( pSrcRt != NULL ); Assert( pRecipient != NULL ); Assert( ppDstName != NULL && *ppDstName != NULL); // Bump the ref count on the recipient before handing it off. This ensures the receiver won't go away before we have completed our work.
pSrcRt->AddRef(); pRecipient->AddRef();
// Also, need to allocate a copy of the string and use that one s.t. the caller doesn't have to worry about it.
char* pDstNameCopy = new char[ V_strlen( *ppDstName ) + 1 ]; V_strcpy( pDstNameCopy, *ppDstName ); ( *ppDstName ) = pDstNameCopy; }
// Map and unmap a texture. The pRecipient->OnAsyncMapComplete is called when complete.
void CMatRenderContextBase::OnAsyncMap( ITextureInternal* pTexToMap, IAsyncTextureOperationReceiver* pRecipient, void* pExtraArgs ) { Assert( pTexToMap != NULL ); Assert( pRecipient != NULL );
pTexToMap->AddRef(); pRecipient->AddRef(); }
void CMatRenderContextBase::OnAsyncUnmap( ITextureInternal* pTexToUnmap ) { Assert( pTexToUnmap != NULL );
pTexToUnmap->AddRef(); }
void CMatRenderContextBase::OnAsyncCopyRenderTargetToStagingTexture( ITexture* pDst, ITexture* pSrc, IAsyncTextureOperationReceiver* pRecipient ) { Assert( pDst != NULL ); Assert( pSrc != NULL ); Assert( pRecipient != NULL );
pDst->AddRef(); pSrc->AddRef(); pRecipient->AddRef(); }
#undef g_pShaderAPI
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
CMatRenderContext::CMatRenderContext() { g_FrameNum = 0; m_pBatchIndices = NULL; m_pBatchMesh = NULL; m_pCurrentIndexBuffer = NULL; m_pMorphRenderContext = NULL; m_NonInteractiveMode = MATERIAL_NON_INTERACTIVE_MODE_NONE; }
InitReturnVal_t CMatRenderContext::Init( CMaterialSystem *pMaterialSystem ) { InitReturnVal_t nRetVal = BaseClass::Init(); if ( nRetVal != INIT_OK ) return nRetVal;
m_pMaterialSystem = pMaterialSystem;
m_pBoundMorph = NULL;
// Create some lovely textures
m_pLocalCubemapTexture = TextureManager()->ErrorTexture(); m_pMorphRenderContext = g_pMorphMgr->AllocateRenderContext();
return INIT_OK; }
void CMatRenderContext::Shutdown( ) { if ( m_pUserDefinedLightmap ) { m_pUserDefinedLightmap->DecrementReferenceCount(); m_pUserDefinedLightmap = NULL; }
if ( m_pMorphRenderContext ) { g_pMorphMgr->FreeRenderContext( m_pMorphRenderContext ); m_pMorphRenderContext = NULL; }
BaseClass::Shutdown(); }
void CMatRenderContext::OnReleaseShaderObjects() { // alt-tab unbinds the morph
m_pBoundMorph = NULL; }
#ifdef DX_TO_GL_ABSTRACTION
void CMatRenderContext::DoStartupShaderPreloading( void ) { g_pShaderDevice->DoStartupShaderPreloading(); } #endif
void CMatRenderContext::TextureManagerUpdate() { TextureManager()->Update(); }
inline IMaterialInternal *CMatRenderContext::GetMaterialInternal( MaterialHandle_t h ) const { return GetMaterialSystem()->GetMaterialInternal( h ); }
inline IMaterialInternal *CMatRenderContext::GetDrawFlatMaterial() { return GetMaterialSystem()->GetDrawFlatMaterial(); }
inline IMaterialInternal *CMatRenderContext::GetBufferClearObeyStencil( int i ) { return GetMaterialSystem()->GetBufferClearObeyStencil(i ); }
inline ShaderAPITextureHandle_t CMatRenderContext::GetFullbrightLightmapTextureHandle() const { return GetMaterialSystem()->GetFullbrightLightmapTextureHandle(); }
inline ShaderAPITextureHandle_t CMatRenderContext::GetFullbrightBumpedLightmapTextureHandle() const { return GetMaterialSystem()->GetFullbrightBumpedLightmapTextureHandle(); }
inline ShaderAPITextureHandle_t CMatRenderContext::GetBlackTextureHandle() const { return GetMaterialSystem()->GetBlackTextureHandle(); }
inline ShaderAPITextureHandle_t CMatRenderContext::GetFlatNormalTextureHandle() const { return GetMaterialSystem()->GetFlatNormalTextureHandle(); }
inline ShaderAPITextureHandle_t CMatRenderContext::GetGreyTextureHandle() const { return GetMaterialSystem()->GetGreyTextureHandle(); }
inline ShaderAPITextureHandle_t CMatRenderContext::GetGreyAlphaZeroTextureHandle() const { return GetMaterialSystem()->GetGreyAlphaZeroTextureHandle(); }
inline ShaderAPITextureHandle_t CMatRenderContext::GetWhiteTextureHandle() const { return GetMaterialSystem()->GetWhiteTextureHandle(); }
inline const CMatLightmaps *CMatRenderContext::GetLightmaps() const { return GetMaterialSystem()->GetLightmaps(); }
inline CMatLightmaps *CMatRenderContext::GetLightmaps() { return GetMaterialSystem()->GetLightmaps(); }
inline ShaderAPITextureHandle_t CMatRenderContext::GetMaxDepthTextureHandle() const { return GetMaterialSystem()->GetMaxDepthTextureHandle(); }
void CMatRenderContext::BeginRender() { #if 1 // Rick's optimization: not sure this is needed anymore
if ( GetMaterialSystem()->GetThreadMode() != MATERIAL_SINGLE_THREADED ) { VPROF_INCREMENT_GROUP_COUNTER( "render/CMatBeginRender", COUNTER_GROUP_TELEMETRY, 1 );
TelemetrySetLockName( TELEMETRY_LEVEL1, (char const *)&g_MatSysMutex, "MatSysMutex" );
tmTryLock( TELEMETRY_LEVEL1, (char const *)&g_MatSysMutex, "BeginRender" ); g_MatSysMutex.Lock(); tmEndTryLock( TELEMETRY_LEVEL1, (char const *)&g_MatSysMutex, TMLR_SUCCESS ); tmSetLockState( TELEMETRY_LEVEL1, (char const *)&g_MatSysMutex, TMLS_LOCKED, "BeginRender" ); } #endif
}
void CMatRenderContext::EndRender() { #if 1 // Rick's optimization: not sure this is needed anymore
if ( GetMaterialSystem()->GetThreadMode() != MATERIAL_SINGLE_THREADED ) { g_MatSysMutex.Unlock(); tmSetLockState( TELEMETRY_LEVEL1, (char const *)&g_MatSysMutex, TMLS_RELEASED, "EndRender" ); } #endif
}
void CMatRenderContext::Flush( bool flushHardware ) { VPROF( "CMatRenderContextBase::Flush" );
g_pShaderAPI->FlushBufferedPrimitives(); if ( IsPC() && flushHardware ) { g_pShaderAPI->FlushBufferedPrimitives(); } }
bool CMatRenderContext::TestMatrixSync( MaterialMatrixMode_t mode ) { if ( !ShouldValidateMatrices() ) { return true; }
VMatrix transposeMatrix, matrix; g_pShaderAPI->GetMatrix( mode, (float*)transposeMatrix.m ); MatrixTranspose( transposeMatrix, matrix );
ValidateMatrices( matrix, m_MatrixStacks[mode].Top().matrix );
return true; }
void CMatRenderContext::MatrixMode( MaterialMatrixMode_t mode ) { CMatRenderContextBase::MatrixMode( mode ); g_pShaderAPI->MatrixMode( mode ); if ( ShouldValidateMatrices() ) { TestMatrixSync( mode ); }
} void CMatRenderContext::PushMatrix() { if ( ShouldValidateMatrices() ) { TestMatrixSync( m_MatrixMode ); }
CMatRenderContextBase::PushMatrix(); g_pShaderAPI->PushMatrix(); if ( ShouldValidateMatrices() ) { TestMatrixSync( m_MatrixMode ); } }
void CMatRenderContext::PopMatrix() { if ( ShouldValidateMatrices() ) { TestMatrixSync( m_MatrixMode ); }
CMatRenderContextBase::PopMatrix(); g_pShaderAPI->PopMatrix();
if ( ShouldValidateMatrices() ) { TestMatrixSync( m_MatrixMode ); } }
void CMatRenderContext::LoadMatrix( const VMatrix& matrix ) { CMatRenderContextBase::LoadMatrix( matrix ); ForceSync(); if ( ShouldValidateMatrices() ) { VMatrix transposeMatrix; MatrixTranspose( matrix, transposeMatrix ); g_pShaderAPI->LoadMatrix( transposeMatrix.Base() ); TestMatrixSync( m_MatrixMode ); } }
void CMatRenderContext::LoadMatrix( const matrix3x4_t& matrix ) { CMatRenderContextBase::LoadMatrix( matrix ); ForceSync(); if ( ShouldValidateMatrices() ) { VMatrix transposeMatrix; MatrixTranspose( VMatrix(matrix), transposeMatrix ); g_pShaderAPI->LoadMatrix( transposeMatrix.Base() ); TestMatrixSync( m_MatrixMode ); } }
void CMatRenderContext::MultMatrix( const VMatrix& matrix ) { CMatRenderContextBase::MultMatrix( matrix ); ForceSync(); if ( ShouldValidateMatrices() ) { VMatrix transposeMatrix; MatrixTranspose( matrix, transposeMatrix ); g_pShaderAPI->MultMatrix( transposeMatrix.Base() ); TestMatrixSync( m_MatrixMode ); } }
void CMatRenderContext::MultMatrix( const matrix3x4_t& matrix ) { CMatRenderContextBase::MultMatrix( VMatrix( matrix ) ); ForceSync(); if ( ShouldValidateMatrices() ) { VMatrix transposeMatrix; MatrixTranspose( VMatrix(matrix), transposeMatrix ); g_pShaderAPI->MultMatrix( transposeMatrix.Base() ); TestMatrixSync( m_MatrixMode ); } }
void CMatRenderContext::MultMatrixLocal( const VMatrix& matrix ) { CMatRenderContextBase::MultMatrixLocal( matrix ); ForceSync(); if ( ShouldValidateMatrices() ) { VMatrix transposeMatrix; MatrixTranspose( matrix, transposeMatrix ); g_pShaderAPI->MultMatrixLocal( transposeMatrix.Base() ); TestMatrixSync( m_MatrixMode ); } }
void CMatRenderContext::MultMatrixLocal( const matrix3x4_t& matrix ) { CMatRenderContextBase::MultMatrixLocal( VMatrix( matrix ) ); ForceSync(); if ( ShouldValidateMatrices() ) { VMatrix transposeMatrix; MatrixTranspose( VMatrix(matrix), transposeMatrix ); g_pShaderAPI->MultMatrixLocal( transposeMatrix.Base() ); TestMatrixSync( m_MatrixMode ); } }
void CMatRenderContext::LoadIdentity() { CMatRenderContextBase::LoadIdentity(); ForceSync(); if ( ShouldValidateMatrices() ) { g_pShaderAPI->LoadIdentity(); TestMatrixSync( m_MatrixMode ); } }
void CMatRenderContext::Ortho( double left, double top, double right, double bottom, double zNear, double zFar ) { CMatRenderContextBase::Ortho( left, top, right, bottom, zNear, zFar ); ForceSync(); if ( ShouldValidateMatrices() ) { g_pShaderAPI->Ortho( left, top, right, bottom, zNear, zFar ); TestMatrixSync( m_MatrixMode ); } }
void CMatRenderContext::PerspectiveX( double flFovX, double flAspect, double flZNear, double flZFar ) { CMatRenderContextBase::PerspectiveX( flFovX, flAspect, flZNear, flZFar ); ForceSync(); if ( ShouldValidateMatrices() ) { g_pShaderAPI->PerspectiveX( flFovX, flAspect, flZNear, flZFar ); TestMatrixSync( m_MatrixMode ); } }
void CMatRenderContext::PerspectiveOffCenterX( double flFovX, double flAspect, double flZNear, double flZFar, double bottom, double top, double left, double right ) { CMatRenderContextBase::PerspectiveOffCenterX( flFovX, flAspect, flZNear, flZFar, bottom, top, left, right ); ForceSync(); if ( ShouldValidateMatrices() ) { g_pShaderAPI->PerspectiveOffCenterX( flFovX, flAspect, flZNear, flZFar, bottom, top, left, right ); TestMatrixSync( m_MatrixMode ); } }
void CMatRenderContext::PickMatrix( int x, int y, int nWidth, int nHeight ) { CMatRenderContextBase::PickMatrix( x, y, nWidth, nHeight ); ForceSync(); if ( ShouldValidateMatrices() ) { g_pShaderAPI->PickMatrix( x, y, nWidth, nHeight ); TestMatrixSync( m_MatrixMode ); } }
void CMatRenderContext::Rotate( float flAngle, float x, float y, float z ) { CMatRenderContextBase::Rotate( flAngle, x, y, z ); ForceSync(); if ( ShouldValidateMatrices() ) { g_pShaderAPI->Rotate( flAngle, x, y, z ); TestMatrixSync( m_MatrixMode ); } }
void CMatRenderContext::Translate( float x, float y, float z ) { CMatRenderContextBase::Translate( x, y, z ); ForceSync(); if ( ShouldValidateMatrices() ) { g_pShaderAPI->Translate( x, y, z ); TestMatrixSync( m_MatrixMode ); } }
void CMatRenderContext::Scale( float x, float y, float z ) { CMatRenderContextBase::Scale( x, y, z ); ForceSync(); if ( ShouldValidateMatrices() ) { g_pShaderAPI->Scale( x, y, z ); TestMatrixSync( m_MatrixMode ); } }
void CMatRenderContext::GetMatrix( MaterialMatrixMode_t matrixMode, VMatrix *pMatrix ) { CMatRenderContextBase::GetMatrix( matrixMode, pMatrix );
ForceSync(); if ( ShouldValidateMatrices() ) { VMatrix testMatrix; VMatrix transposeMatrix; g_pShaderAPI->GetMatrix( matrixMode, (float*)transposeMatrix.m ); MatrixTranspose( transposeMatrix, testMatrix );
ValidateMatrices( testMatrix, *pMatrix ); } }
void CMatRenderContext::GetMatrix( MaterialMatrixMode_t matrixMode, matrix3x4_t *pMatrix ) { if ( !ShouldValidateMatrices() ) { CMatRenderContextBase::GetMatrix( matrixMode, pMatrix ); } else { VMatrix matrix; CMatRenderContext::GetMatrix( matrixMode, &matrix ); *pMatrix = matrix.As3x4(); } }
void CMatRenderContext::SyncMatrices() { if ( !ShouldValidateMatrices() && AllowLazyMatrixSync() ) { for( int i = 0; i < NUM_MATRIX_MODES; i++ ) { MatrixStackItem_t &top = m_MatrixStacks[i].Top(); if ( top.flags & MSF_DIRTY ) { g_pShaderAPI->MatrixMode( (MaterialMatrixMode_t)i ); if ( !( top.flags & MSF_IDENTITY ) ) { VMatrix transposeTop; MatrixTranspose( top.matrix, transposeTop ); g_pShaderAPI->LoadMatrix( transposeTop.Base() ); } else { g_pShaderAPI->LoadIdentity(); }
top.flags &= ~MSF_DIRTY; } } } }
void CMatRenderContext::ForceSyncMatrix( MaterialMatrixMode_t mode ) { MatrixStackItem_t &top = m_MatrixStacks[mode].Top(); if ( top.flags & MSF_DIRTY ) { bool bSetMode = ( m_MatrixMode != mode ); if ( bSetMode ) { g_pShaderAPI->MatrixMode( (MaterialMatrixMode_t)mode ); }
if ( !( top.flags & MSF_IDENTITY ) ) { VMatrix transposeTop; MatrixTranspose( top.matrix, transposeTop ); g_pShaderAPI->LoadMatrix( transposeTop.Base() ); } else { g_pShaderAPI->LoadIdentity(); }
if ( bSetMode ) { g_pShaderAPI->MatrixMode( (MaterialMatrixMode_t)mode ); }
top.flags &= ~MSF_DIRTY; } }
void CMatRenderContext::SyncMatrix( MaterialMatrixMode_t mode ) { if ( !ShouldValidateMatrices() && AllowLazyMatrixSync() ) { ForceSyncMatrix( mode ); } }
//-----------------------------------------------------------------------------
// Swap buffers
//-----------------------------------------------------------------------------
void CMatRenderContext::SwapBuffers() { g_pMorphMgr->AdvanceFrame(); g_pOcclusionQueryMgr->AdvanceFrame(); g_pShaderDevice->Present();
#ifdef _X360
if ( s_bDirtyDisk ) { SpinPresent(); } #endif
}
//-----------------------------------------------------------------------------
// Clears the render data after we're done with it
//-----------------------------------------------------------------------------
void CMatRenderContext::OnRenderDataUnreferenced() { MarkRenderDataUnused( false ); }
//-----------------------------------------------------------------------------
// Custom clip planes
//-----------------------------------------------------------------------------
void CMatRenderContext::PushCustomClipPlane( const float *pPlane ) { PlaneStackElement psePlane; memcpy( psePlane.fValues, pPlane, sizeof( float ) * 4 ); psePlane.bHack_IsHeightClipPlane = false; m_CustomClipPlanes.AddToTail( psePlane ); //we're doing this as a UtlVector so height clip planes never change their cached index
ApplyCustomClipPlanes(); }
void CMatRenderContext::PopCustomClipPlane( void ) { Assert( m_CustomClipPlanes.Count() ); //remove the endmost non-height plane found
int i; for( i = m_CustomClipPlanes.Count(); --i >= 0; ) { if( m_CustomClipPlanes[i].bHack_IsHeightClipPlane == false ) { m_CustomClipPlanes.Remove(i); break; } } Assert( i != -1 ); //only the height clip plane was found, which means this pop had no associated push
ApplyCustomClipPlanes(); }
void CMatRenderContext::ApplyCustomClipPlanes( void ) { int iMaxClipPlanes = HardwareConfig()->MaxUserClipPlanes(); int iCustomPlanes;
if( m_bEnableClipping ) iCustomPlanes = m_CustomClipPlanes.Count(); else iCustomPlanes = 0;
float fFakePlane[4]; unsigned int iFakePlaneVal = 0xFFFFFFFF; fFakePlane[0] = fFakePlane[1] = fFakePlane[2] = fFakePlane[3] = *((float *)&iFakePlaneVal);
SyncMatrices();
if( iMaxClipPlanes >= 1 && !HardwareConfig()->UseFastClipping() ) { //yay, we get to be the cool clipping club
if( iMaxClipPlanes >= iCustomPlanes ) { int i; for( i = 0; i < iCustomPlanes; ++i ) { g_pShaderAPI->SetClipPlane( i, m_CustomClipPlanes[i].fValues ); g_pShaderAPI->EnableClipPlane( i, true ); } for( ; i < iMaxClipPlanes; ++i ) //disable unused planes
{ g_pShaderAPI->EnableClipPlane( i, false ); g_pShaderAPI->SetClipPlane( i, fFakePlane ); } } else { int iCustomPlaneOffset = iCustomPlanes - iMaxClipPlanes;
//can't enable them all
for( int i = iCustomPlaneOffset; i < iCustomPlanes; ++i ) { g_pShaderAPI->SetClipPlane( i % iMaxClipPlanes, m_CustomClipPlanes[i].fValues ); g_pShaderAPI->EnableClipPlane( i % iMaxClipPlanes, true ); } } } else { //hmm, at most we can make 1 clip plane work
if( iCustomPlanes == 0 ) { //no planes at all
g_pShaderAPI->EnableFastClip( false ); g_pShaderAPI->SetFastClipPlane( fFakePlane ); } else { //we have to wire the topmost plane into the fast clipping scheme
g_pShaderAPI->EnableFastClip( true ); g_pShaderAPI->SetFastClipPlane( m_CustomClipPlanes[iCustomPlanes - 1].fValues ); } } }
//-----------------------------------------------------------------------------
// Creates/destroys morph data associated w/ a particular material
//-----------------------------------------------------------------------------
IMorph *CMatRenderContext::CreateMorph( MorphFormat_t format, const char *pDebugName ) { Assert( format != 0 ); IMorphInternal *pMorph = g_pMorphMgr->CreateMorph( ); pMorph->Init( format, pDebugName ); return pMorph; }
void CMatRenderContext::DestroyMorph( IMorph *pMorph ) { g_pMorphMgr->DestroyMorph( static_cast<IMorphInternal*>(pMorph) ); }
void CMatRenderContext::BindMorph( IMorph *pMorph ) { IMorphInternal *pMorphInternal = static_cast<IMorphInternal*>(pMorph);
if ( m_pBoundMorph != pMorphInternal ) { g_pShaderAPI->FlushBufferedPrimitives();
m_pBoundMorph = pMorphInternal;
bool bEnableHWMorph = false; if ( pMorphInternal == MATERIAL_MORPH_DECAL ) { bEnableHWMorph = true; } else if ( pMorphInternal ) { bEnableHWMorph = true; pMorphInternal->Bind( m_pMorphRenderContext ); } g_pShaderAPI->EnableHWMorphing( bEnableHWMorph ); } }
IMesh* CMatRenderContext::GetDynamicMesh( bool buffered, IMesh* pVertexOverride, IMesh* pIndexOverride, IMaterial *pAutoBind ) { VPROF_ASSERT_ACCOUNTED( "CMatRenderContext::GetDynamicMesh" ); if( pAutoBind ) { Bind( pAutoBind, NULL ); }
if ( pVertexOverride ) { if ( CompressionType( pVertexOverride->GetVertexFormat() ) != VERTEX_COMPRESSION_NONE ) { // UNDONE: support compressed dynamic meshes if needed (pro: less VB memory, con: time spent compressing)
DebuggerBreak(); return NULL; } }
// For anything more than 1 bone, imply the last weight from the 1 - the sum of the others.
int nCurrentBoneCount = GetCurrentNumBones(); Assert( nCurrentBoneCount <= 4 ); if ( nCurrentBoneCount > 1 ) { --nCurrentBoneCount; }
return g_pShaderAPI->GetDynamicMesh( GetCurrentMaterialInternal(), nCurrentBoneCount, buffered, pVertexOverride, pIndexOverride); }
IMesh* CMatRenderContext::GetDynamicMeshEx( VertexFormat_t vertexFormat, bool bBuffered, IMesh* pVertexOverride, IMesh* pIndexOverride, IMaterial *pAutoBind ) { VPROF_ASSERT_ACCOUNTED( "CMatRenderContext::GetDynamicMesh" ); if( pAutoBind ) { Bind( pAutoBind, NULL ); }
if ( pVertexOverride ) { if ( CompressionType( pVertexOverride->GetVertexFormat() ) != VERTEX_COMPRESSION_NONE ) { // UNDONE: support compressed dynamic meshes if needed (pro: less VB memory, con: time spent compressing)
DebuggerBreak(); return NULL; } }
// For anything more than 1 bone, imply the last weight from the 1 - the sum of the others.
// FIXME: this seems wrong - in common_vs_fxc.h, we only infer the last weight if we have 3 (not 2)
int nCurrentBoneCount = GetCurrentNumBones(); Assert( nCurrentBoneCount <= 4 ); if ( nCurrentBoneCount > 1 ) { --nCurrentBoneCount; }
return g_pShaderAPI->GetDynamicMeshEx( GetCurrentMaterialInternal(), vertexFormat, nCurrentBoneCount, bBuffered, pVertexOverride, pIndexOverride ); }
//-----------------------------------------------------------------------------
// Deals with depth range
//-----------------------------------------------------------------------------
void CMatRenderContext::DepthRange( float zNear, float zFar ) { m_Viewport.m_flMinZ = zNear; m_Viewport.m_flMaxZ = zFar; g_pShaderAPI->SetViewports( 1, &m_Viewport ); }
//-----------------------------------------------------------------------------
// Private utility function to actually commit the top of the RT/Viewport stack
// to the device. Only called by the push and pop routines above.
//-----------------------------------------------------------------------------
void CMatRenderContext::CommitRenderTargetAndViewport( void ) { Assert( m_RenderTargetStack.Count() > 0 );
const RenderTargetStackElement_t &element = m_RenderTargetStack.Top( );
for( int rt=0; rt<NELEMS(element.m_pRenderTargets); rt++ ) { // If we're dealing with the back buffer
if ( element.m_pRenderTargets[rt] == NULL ) { g_pShaderAPI->SetRenderTargetEx(rt); // No texture parameter here indicates back buffer
if ( IsPC() ) { Assert( ImageLoader::SizeInBytes( g_pShaderDevice->GetBackBufferFormat() ) <= 4 ); g_pShaderAPI->EnableLinearColorSpaceFrameBuffer( false ); } if (rt == 0) // the first rt sets the viewport
{ // If either dimension is negative, set to full bounds of back buffer
if ( (element.m_nViewW < 0) || (element.m_nViewH < 0) ) { m_Viewport.m_nTopLeftX = 0; m_Viewport.m_nTopLeftY = 0; g_pShaderAPI->GetBackBufferDimensions( m_Viewport.m_nWidth, m_Viewport.m_nHeight ); g_pShaderAPI->SetViewports( 1, &m_Viewport ); } else // use the bounds in the element
{ m_Viewport.m_nTopLeftX = element.m_nViewX; m_Viewport.m_nTopLeftY = element.m_nViewY; m_Viewport.m_nWidth = element.m_nViewW; m_Viewport.m_nHeight = element.m_nViewH; g_pShaderAPI->SetViewports( 1, &m_Viewport ); } } } else // We're dealing with a texture
{ ITextureInternal *pTexInt = static_cast<ITextureInternal*>(element.m_pRenderTargets[rt]); pTexInt->SetRenderTarget( rt, element.m_pDepthTexture );
if (rt == 0) { if ( IsPC() ) { if( element.m_pRenderTargets[rt]->GetImageFormat() == IMAGE_FORMAT_RGBA16161616F ) { g_pShaderAPI->EnableLinearColorSpaceFrameBuffer( true ); } else { g_pShaderAPI->EnableLinearColorSpaceFrameBuffer( false ); } }
// If either dimension is negative, set to full bounds of target
if ( (element.m_nViewW < 0) || (element.m_nViewH < 0) ) { m_Viewport.m_nTopLeftX = 0; m_Viewport.m_nTopLeftY = 0; m_Viewport.m_nWidth = element.m_pRenderTargets[rt]->GetActualWidth(); m_Viewport.m_nHeight = element.m_pRenderTargets[rt]->GetActualHeight(); g_pShaderAPI->SetViewports( 1, &m_Viewport ); } else // use the bounds passed in
{ m_Viewport.m_nTopLeftX = element.m_nViewX; m_Viewport.m_nTopLeftY = element.m_nViewY; m_Viewport.m_nWidth = element.m_nViewW; m_Viewport.m_nHeight = element.m_nViewH; g_pShaderAPI->SetViewports( 1, &m_Viewport ); } } } } }
void CMatRenderContext::SetFrameBufferCopyTexture( ITexture *pTexture, int textureIndex ) { if( textureIndex < 0 || textureIndex > MAX_FB_TEXTURES ) { Assert( 0 ); return; } if( m_pCurrentFrameBufferCopyTexture[textureIndex] != pTexture ) { g_pShaderAPI->FlushBufferedPrimitives(); } // FIXME: Do I need to increment/decrement ref counts here, or assume that the app is going to do it?
m_pCurrentFrameBufferCopyTexture[textureIndex] = pTexture; }
void CMatRenderContext::BindLocalCubemap( ITexture *pTexture ) { ITexture *pPreviousTexture = m_pLocalCubemapTexture;
CMatRenderContextBase::BindLocalCubemap( pTexture );
if( m_pLocalCubemapTexture != pPreviousTexture ) { g_pShaderAPI->FlushBufferedPrimitives(); } }
void CMatRenderContext::SetNonInteractivePacifierTexture( ITexture *pTexture, float flNormalizedX, float flNormalizedY, float flNormalizedSize ) { m_pNonInteractivePacifier.Init( pTexture ); m_flNormalizedX = flNormalizedX; m_flNormalizedY = flNormalizedY; m_flNormalizedSize = flNormalizedSize; }
void CMatRenderContext::SetNonInteractiveTempFullscreenBuffer( ITexture *pTexture, MaterialNonInteractiveMode_t mode ) { if ( mode != MATERIAL_NON_INTERACTIVE_MODE_NONE ) { m_pNonInteractiveTempFullscreenBuffer[mode].Init( pTexture ); } }
void CMatRenderContext::RefreshFrontBufferNonInteractive() { g_pShaderDevice->RefreshFrontBufferNonInteractive(); #ifdef _X360
if ( s_bDirtyDisk ) { if ( m_NonInteractiveMode == MATERIAL_NON_INTERACTIVE_MODE_NONE ) { SpinPresent(); } else { while ( true ) { g_pShaderDevice->RefreshFrontBufferNonInteractive(); } } } #endif
}
void CMatRenderContext::EnableNonInteractiveMode( MaterialNonInteractiveMode_t mode ) { m_NonInteractiveMode = mode; if ( mode == MATERIAL_NON_INTERACTIVE_MODE_NONE ) { g_pShaderDevice->EnableNonInteractiveMode( mode ); } else { ShaderNonInteractiveInfo_t info; info.m_flNormalizedX = m_flNormalizedX; info.m_flNormalizedY = m_flNormalizedY; info.m_flNormalizedSize = m_flNormalizedSize;
ITextureInternal *pTexInternal = static_cast<ITextureInternal*>( (ITexture*)m_pNonInteractiveTempFullscreenBuffer[mode] ); info.m_hTempFullscreenTexture = pTexInternal ? pTexInternal->GetTextureHandle(0) : INVALID_SHADERAPI_TEXTURE_HANDLE; ITextureInternal *pTexPacifierInternal = static_cast<ITextureInternal*>( (ITexture*)m_pNonInteractivePacifier ); info.m_nPacifierCount = pTexPacifierInternal ? pTexPacifierInternal->GetNumAnimationFrames() : 0; for ( int i = 0; i < info.m_nPacifierCount; ++i ) { info.m_pPacifierTextures[i] = pTexPacifierInternal->GetTextureHandle( i ); } g_pShaderDevice->EnableNonInteractiveMode( mode, &info ); } }
void CMatRenderContext::SetRenderTargetEx( int nRenderTargetID, ITexture *pNewTarget ) { // Verify valid top of RT stack
Assert ( m_RenderTargetStack.Count() > 0 ); // Grab the old target
ITexture *pOldTarget = m_RenderTargetStack.Top().m_pRenderTargets[nRenderTargetID];
CMatRenderContextBase::SetRenderTargetEx( nRenderTargetID, pNewTarget );
// If we're actually changing render targets
if( pNewTarget != pOldTarget ) { // If we're going to render to the back buffer
if ( pNewTarget == NULL ) { if ( nRenderTargetID == 0) // reset viewport on set of rt 0
{ m_Viewport.m_nTopLeftX = 0; m_Viewport.m_nTopLeftY = 0; g_pShaderAPI->GetBackBufferDimensions( m_Viewport.m_nWidth, m_Viewport.m_nHeight ); g_pShaderAPI->SetViewports( 1, &m_Viewport ); } g_pShaderAPI->SetRenderTargetEx( nRenderTargetID ); // No parameter here indicates back buffer
} else { // If we're going to render to a texture
// Make sure the texture is a render target...
bool reset = true; if (nRenderTargetID==0) { // reset vp on change of rt#0
m_Viewport.m_nTopLeftX = 0; m_Viewport.m_nTopLeftY = 0; m_Viewport.m_nWidth = pNewTarget->GetActualWidth(); m_Viewport.m_nHeight = pNewTarget->GetActualHeight(); g_pShaderAPI->SetViewports( 1, &m_Viewport ); } ITextureInternal *pTexInt = static_cast<ITextureInternal*>(pNewTarget); if ( pTexInt ) { reset = !pTexInt->SetRenderTarget( nRenderTargetID ); if ( reset ) { g_pShaderAPI->SetRenderTargetEx( nRenderTargetID ); } }
if( pNewTarget && pNewTarget->GetImageFormat() == IMAGE_FORMAT_RGBA16161616F ) { g_pShaderAPI->EnableLinearColorSpaceFrameBuffer( true ); } else { g_pShaderAPI->EnableLinearColorSpaceFrameBuffer( false ); } } } CommitRenderTargetAndViewport(); }
void CMatRenderContext::GetRenderTargetDimensions( int &width, int &height ) const { // Target at top of stack
ITexture *pTOS = m_RenderTargetStack.Top().m_pRenderTargets[0];
// If top of stack isn't the back buffer, get dimensions from the texture
if ( pTOS != NULL ) { width = pTOS->GetActualWidth(); height = pTOS->GetActualHeight(); } else // otherwise, get them from the shader API
{ g_pShaderAPI->GetBackBufferDimensions( width, height ); } }
//-----------------------------------------------------------------------------
// What are the lightmap dimensions?
//-----------------------------------------------------------------------------
void CMatRenderContext::GetLightmapDimensions( int *w, int *h ) { *w = GetMaterialSystem()->GetLightmapWidth( GetLightmapPage() ); *h = GetMaterialSystem()->GetLightmapHeight( GetLightmapPage() ); }
void CMatRenderContext::DrawScreenSpaceQuad( IMaterial* pMaterial ) { // Despite saying we render a full screen quad, this actually renders a single triangle
// that covers the whole screen.
int w, h;
GetRenderTargetDimensions( w, h ); if ( ( w == 0 ) || ( h == 0 ) ) return;
// DX9 disagrees about (0, 0) in a render target and (0, 0) in the texture.
// Fix that here by doing a half-pixel offset for the pixel.
// Because we are working in clip space which is 2 units across, the adjustment factor is 1.
float flOffsetW = 1.0f / w; float flOffsetH = 1.0f / h;
Bind( pMaterial ); IMesh* pMesh = GetDynamicMesh( true );
CMeshBuilder meshBuilder;; meshBuilder.Begin( pMesh, MATERIAL_TRIANGLES, 1 );
enum { TL, BL, TR, COORDS_COUNT };
struct CoordSSQ_t { float x, y; float u, v; };
CoordSSQ_t coords[] = { { -1.0f - 1.0f * flOffsetW, 1.0f + 1.0f * flOffsetH, 0.0f, 0.0f }, // TL
{ -1.0f - 1.0f * flOffsetW, -3.0f + 1.0f * flOffsetH, 0.0f, 2.0f }, // BL
{ 3.0f - 1.0f * flOffsetW, 1.0f + 1.0f * flOffsetH, 2.0f, 0.0f }, // TR
};
static_assert( ARRAYSIZE( coords ) == COORDS_COUNT, "Unexpected number of coords in triangle, should match enum." );
MatrixMode( MATERIAL_VIEW ); PushMatrix(); LoadIdentity();
MatrixMode( MATERIAL_PROJECTION ); PushMatrix(); LoadIdentity();
for ( int i = 0; i < COORDS_COUNT; ++i ) { meshBuilder.Position3f( coords[ i ].x, coords[ i ].y, 0.0f ); meshBuilder.Normal3f( 0.0f, 0.0f, 1.0f ); meshBuilder.TangentS3f( 0.0f, 1.0f, 0.0f ); meshBuilder.TangentT3f( 1.0f, 0.0f, 0.0f ); meshBuilder.TexCoord2f( 0, coords[ i ].u, coords[ i ].v );
meshBuilder.AdvanceVertex(); } meshBuilder.End(); pMesh->Draw();
MatrixMode( MATERIAL_VIEW ); PopMatrix();
MatrixMode( MATERIAL_PROJECTION ); PopMatrix(); }
void CMatRenderContext::DrawScreenSpaceRectangle( IMaterial *pMaterial, int destx, int desty, int width, int height, float src_texture_x0, float src_texture_y0, // which texel you want to appear at
// destx/y
float src_texture_x1, float src_texture_y1, // which texel you want to appear at
// destx+width-1, desty+height-1
int src_texture_width, int src_texture_height, // needed for fixup
void *pClientRenderable, int nXDice, int nYDice ) // Amount to tessellate the quad
{ pMaterial = ((IMaterialInternal *)pMaterial)->GetRealTimeVersion();
::DrawScreenSpaceRectangle( pMaterial, destx, desty, width, height, src_texture_x0, src_texture_y0, src_texture_x1, src_texture_y1, src_texture_width, src_texture_height, pClientRenderable, nXDice, nYDice ); return; }
static int CompareVertexFormats( VertexFormat_t Fmt1, VertexFormat_t Fmt2 ) { if ( Fmt1 != Fmt2 ) { if ( Fmt1 > Fmt2 ) return 1; else return -1; } else return 0; }
int CMatRenderContext::CompareMaterialCombos( IMaterial *pMaterial1, IMaterial *pMaterial2, int lightMapID1, int lightMapID2 ) { pMaterial1 = ((IMaterialInternal *)pMaterial1)->GetRealTimeVersion(); //always work with the real time version of materials internally.
pMaterial2 = ((IMaterialInternal *)pMaterial2)->GetRealTimeVersion(); //always work with the real time version of materials internally.
IMaterialInternal *pMat1 = (IMaterialInternal *)pMaterial1; IMaterialInternal *pMat2 = (IMaterialInternal *)pMaterial2; ShaderRenderState_t *pState1 = pMat1->GetRenderState(); ShaderRenderState_t *pState2 = pMat2->GetRenderState(); int dPass = pState2->m_pSnapshots->m_nPassCount - pState1->m_pSnapshots->m_nPassCount; if ( dPass ) return dPass;
if ( pState1->m_pSnapshots->m_nPassCount > 1 ) { int dFormat = CompareVertexFormats( pMat1->GetVertexFormat(), pMat2->GetVertexFormat() ); if ( dFormat ) return dFormat; }
for ( int i = 0; i < pState1->m_pSnapshots->m_nPassCount; i++ ) { // UNDONE: Compare snapshots in the shaderapi?
int dSnapshot = pState1->m_pSnapshots->m_Snapshot[i] - pState2->m_pSnapshots->m_Snapshot[i]; if ( dSnapshot ) { dSnapshot = g_pShaderAPI->CompareSnapshots( pState1->m_pSnapshots->m_Snapshot[i], pState2->m_pSnapshots->m_Snapshot[i] ); if ( dSnapshot ) return dSnapshot; } }
int dFormat = CompareVertexFormats( pMat1->GetVertexFormat(), pMat2->GetVertexFormat() ); if ( dFormat ) return dFormat;
IMaterialVar **pParams1 = pMat1->GetShaderParams(); IMaterialVar **pParams2 = pMat2->GetShaderParams(); int nParams1 = pMat1->ShaderParamCount(); int nParams2 = pMat2->ShaderParamCount(); int nBaseTexParamType1 = pParams1 && nParams1 > BASETEXTURE ? pParams1[BASETEXTURE]->GetType() : -1; int nBaseTexParamType2 = pParams2 && nParams2 > BASETEXTURE ? pParams2[BASETEXTURE]->GetType() : -1; if( nBaseTexParamType1 == MATERIAL_VAR_TYPE_TEXTURE || nBaseTexParamType2 == MATERIAL_VAR_TYPE_TEXTURE ) { if( nBaseTexParamType1 != nBaseTexParamType2 ) { return nBaseTexParamType2 - nBaseTexParamType1; } int dBaseTexture = Q_stricmp( pParams1[BASETEXTURE]->GetTextureValue()->GetName(), pParams2[BASETEXTURE]->GetTextureValue()->GetName() ); if ( dBaseTexture ) return dBaseTexture; }
int dLightmap = lightMapID1 - lightMapID2; if ( dLightmap ) return dLightmap;
return (int)pMat1 - (int)pMat2; }
void CMatRenderContext::Bind( IMaterial *iMaterial, void *proxyData ) { if ( !iMaterial ) { if ( !g_pErrorMaterial ) return; Warning( "Programming error: CMatRenderContext::Bind: NULL material\n" ); iMaterial = g_pErrorMaterial; } else { iMaterial = iMaterial->CheckProxyReplacement( proxyData ); }
IMaterialInternal *material = static_cast<IMaterialInternal *>( iMaterial ); material = material->GetRealTimeVersion(); //always work with the real time versions of materials internally
if ( material->GetReferenceCount() <= 0 ) { static ConVarRef matTextureListConVar( "mat_texture_list" ); static ConVarRef matShowWaterTextureConVar( "mat_showwatertextures" );
if ( ( !matTextureListConVar.IsValid() || !matTextureListConVar.GetBool() ) && ( !matShowWaterTextureConVar.IsValid() || !matShowWaterTextureConVar.GetBool() )) { Warning( "Material %s has bad reference count %d when being bound\n", material->GetName(), material->GetReferenceCount() ); // The usual solution for this for global materials that really don't need refcounting is to do material->AddRef();
Assert( 0 ); iMaterial = g_pErrorMaterial; } }
if (g_config.bDrawFlat && !material->NoDebugOverride()) { material = static_cast<IMaterialInternal *>( GetDrawFlatMaterial() ); }
CMatRenderContextBase::Bind( iMaterial, proxyData );
// We've always gotta call the bind proxy
SyncMatrices(); if ( GetMaterialSystem()->GetThreadMode() == MATERIAL_SINGLE_THREADED ) { GetCurrentMaterialInternal()->CallBindProxy( proxyData ); } g_pShaderAPI->Bind( GetCurrentMaterialInternal() ); }
void CMatRenderContext::CopyRenderTargetToTextureEx( ITexture *pTexture, int nRenderTargetID, Rect_t *pSrcRect, Rect_t *pDstRect ) { if ( !pTexture ) { Assert( 0 ); return; }
GetMaterialSystem()->Flush( false ); ITextureInternal *pTextureInternal = (ITextureInternal *)pTexture;
if ( IsPC() || !IsX360() ) { pTextureInternal->CopyFrameBufferToMe( nRenderTargetID, pSrcRect, pDstRect ); } else { // X360 only does 1:1 resolves. So we can do full resolves to textures of size
// equal or greater than the viewport trivially. Downsizing is nasty.
Rect_t srcRect; if ( !pSrcRect ) { // build out source rect
pSrcRect = &srcRect; int x, y, w, h; GetViewport( x, y, w, h );
pSrcRect->x = 0; pSrcRect->y = 0; pSrcRect->width = w; pSrcRect->height = h; }
Rect_t dstRect; if ( !pDstRect ) { // build out target rect
pDstRect = &dstRect;
pDstRect->x = 0; pDstRect->y = 0; pDstRect->width = pTexture->GetActualWidth(); pDstRect->height = pTexture->GetActualHeight(); }
if ( pSrcRect->width == pDstRect->width && pSrcRect->height == pDstRect->height ) { // 1:1 mapping, no stretching needed, use direct path
pTextureInternal->CopyFrameBufferToMe( nRenderTargetID, pSrcRect, pDstRect ); return; }
if( (pDstRect->x == 0) && (pDstRect->y == 0) && (pDstRect->width == pTexture->GetActualWidth()) && (pDstRect->height == pTexture->GetActualHeight()) && (pDstRect->width >= pSrcRect->width) && (pDstRect->height >= pSrcRect->height) ) { // Resolve takes up the whole texture, and the texture is large enough to hold the resolve.
// This is turned into a 1:1 resolve within shaderapi by making D3D think the texture is smaller from now on. (Until it resolves from a bigger source)
pTextureInternal->CopyFrameBufferToMe( nRenderTargetID, pSrcRect, pDstRect ); return; }
// currently assuming disparate copies are only for FB blits
// ensure active render target is actually the back buffer
Assert( m_RenderTargetStack.Top().m_pRenderTargets[0] == NULL );
// nasty sequence:
// resolve FB surface to matching clone DDR texture
// gpu draw from clone DDR FB texture to disparate RT target surface
// resolve to its matching DDR clone texture
ITextureInternal *pFullFrameFB = (ITextureInternal*)GetMaterialSystem()->FindTexture( "_rt_FullFrameFB", TEXTURE_GROUP_RENDER_TARGET ); pFullFrameFB->CopyFrameBufferToMe( nRenderTargetID, NULL, NULL );
// target texture must be a render target
PushRenderTargetAndViewport( pTexture );
// blit FB source to render target
DrawScreenSpaceRectangle( GetMaterialSystem()->GetRenderTargetBlitMaterial(), pDstRect->x, pDstRect->y, pDstRect->width, pDstRect->height, pSrcRect->x, pSrcRect->y, pSrcRect->x+pSrcRect->width-1, pSrcRect->y+pSrcRect->height-1, pFullFrameFB->GetActualWidth(), pFullFrameFB->GetActualHeight() );
// resolve render target to texture
((ITextureInternal *)pTexture)->CopyFrameBufferToMe( 0, NULL, NULL );
// restore render target and viewport
PopRenderTargetAndViewport(); } }
void CMatRenderContext::CopyRenderTargetToTexture( ITexture *pTexture ) { CopyRenderTargetToTextureEx( pTexture, NULL, NULL ); }
void CMatRenderContext::CopyTextureToRenderTargetEx( int nRenderTargetID, ITexture *pTexture, Rect_t *pSrcRect, Rect_t *pDstRect ) { if ( !pTexture ) { Assert( 0 ); return; }
GetMaterialSystem()->Flush( false ); ITextureInternal *pTextureInternal = (ITextureInternal *)pTexture;
if ( IsPC() || !IsX360() ) { pTextureInternal->CopyMeToFrameBuffer( nRenderTargetID, pSrcRect, pDstRect ); } else { Assert( 0 ); } }
void CMatRenderContext::ClearBuffers( bool bClearColor, bool bClearDepth, bool bClearStencil ) { int width, height; GetRenderTargetDimensions( width, height ); g_pShaderAPI->ClearBuffers( bClearColor, bClearDepth, bClearStencil, width, height ); }
void CMatRenderContext::DrawClearBufferQuad( unsigned char r, unsigned char g, unsigned char b, unsigned char a, bool bClearColor, bool bClearAlpha, bool bClearDepth ) { IMaterialInternal *pClearMaterial = GetBufferClearObeyStencil( bClearColor + ( bClearAlpha << 1 ) + ( bClearDepth << 2 ) ); Bind( pClearMaterial );
IMesh* pMesh = GetDynamicMesh( true );
MatrixMode( MATERIAL_MODEL ); PushMatrix(); LoadIdentity();
MatrixMode( MATERIAL_VIEW ); PushMatrix(); LoadIdentity();
MatrixMode( MATERIAL_PROJECTION ); PushMatrix(); LoadIdentity();
float flDepth = GetMaterialSystem()->GetConfig().bReverseDepth ? 0.0f : 1.0f;
CMeshBuilder meshBuilder; meshBuilder.Begin( pMesh, MATERIAL_QUADS, 1 );
//1.1 instead of 1.0 to fix small borders around the edges in full screen with anti-aliasing enabled
meshBuilder.Position3f( -1.1f, -1.1f, flDepth ); meshBuilder.Color4ub( r, g, b, a ); meshBuilder.AdvanceVertex();
meshBuilder.Position3f( -1.1f, 1.1f, flDepth ); meshBuilder.Color4ub( r, g, b, a ); meshBuilder.AdvanceVertex();
meshBuilder.Position3f( 1.1f, 1.1f, flDepth ); meshBuilder.Color4ub( r, g, b, a ); meshBuilder.AdvanceVertex();
meshBuilder.Position3f( 1.1f, -1.1f, flDepth ); meshBuilder.Color4ub( r, g, b, a ); meshBuilder.AdvanceVertex();
meshBuilder.End(); pMesh->Draw();
MatrixMode( MATERIAL_MODEL ); PopMatrix();
MatrixMode( MATERIAL_VIEW ); PopMatrix();
MatrixMode( MATERIAL_PROJECTION ); PopMatrix(); }
//-----------------------------------------------------------------------------
// Should really be called SetViewport
//-----------------------------------------------------------------------------
void CMatRenderContext::Viewport( int x, int y, int width, int height ) { CMatRenderContextBase::Viewport( x, y, width, height );
// If either dimension is negative, set to full bounds of current target
if ( (width < 0) || (height < 0) ) { ITexture *pTarget = m_RenderTargetStack.Top().m_pRenderTargets[0];
// If target is the back buffer
if ( pTarget == NULL ) { m_Viewport.m_nTopLeftX = 0; m_Viewport.m_nTopLeftY = 0; g_pShaderAPI->GetBackBufferDimensions( m_Viewport.m_nWidth, m_Viewport.m_nHeight ); g_pShaderAPI->SetViewports( 1, &m_Viewport ); } else // target is a texture
{ m_Viewport.m_nTopLeftX = 0; m_Viewport.m_nTopLeftY = 0; m_Viewport.m_nWidth = pTarget->GetActualWidth(); m_Viewport.m_nHeight = pTarget->GetActualHeight(); g_pShaderAPI->SetViewports( 1, &m_Viewport ); } } else // use the bounds passed in
{ m_Viewport.m_nTopLeftX = x; m_Viewport.m_nTopLeftY = y; m_Viewport.m_nWidth = width; m_Viewport.m_nHeight = height; g_pShaderAPI->SetViewports( 1, &m_Viewport ); } }
void CMatRenderContext::GetViewport( int& x, int& y, int& width, int& height ) const { // Verify valid top of RT stack
Assert ( m_RenderTargetStack.Count() > 0 );
// Grab the top of stack
const RenderTargetStackElement_t& element = m_RenderTargetStack.Top();
// If either dimension is not positive, set to full bounds of current target
if ( (element.m_nViewW <= 0) || (element.m_nViewH <= 0) ) { // Viewport origin at target origin
x = y = 0;
// If target is back buffer
if ( element.m_pRenderTargets[0] == NULL ) { g_pShaderAPI->GetBackBufferDimensions( width, height ); } else // if target is texture
{ width = element.m_pRenderTargets[0]->GetActualWidth(); height = element.m_pRenderTargets[0]->GetActualHeight(); } } else // use the bounds from the stack directly
{ x = element.m_nViewX; y = element.m_nViewY; width = element.m_nViewW; height = element.m_nViewH; } }
//-----------------------------------------------------------------------------
// Methods related to user clip planes
//-----------------------------------------------------------------------------
void CMatRenderContext::UpdateHeightClipUserClipPlane( void ) { PlaneStackElement pse; pse.bHack_IsHeightClipPlane = true;
int iExistingHeightClipPlaneIndex; for( iExistingHeightClipPlaneIndex = m_CustomClipPlanes.Count(); --iExistingHeightClipPlaneIndex >= 0; ) { if( m_CustomClipPlanes[iExistingHeightClipPlaneIndex].bHack_IsHeightClipPlane ) break; } switch( m_HeightClipMode ) { case MATERIAL_HEIGHTCLIPMODE_DISABLE: if( iExistingHeightClipPlaneIndex != -1 ) m_CustomClipPlanes.Remove( iExistingHeightClipPlaneIndex ); break; case MATERIAL_HEIGHTCLIPMODE_RENDER_ABOVE_HEIGHT: pse.fValues[0] = 0.0f; pse.fValues[1] = 0.0f; pse.fValues[2] = 1.0f; pse.fValues[3] = m_HeightClipZ; if( iExistingHeightClipPlaneIndex != -1 ) { memcpy( m_CustomClipPlanes.Base() + iExistingHeightClipPlaneIndex, &pse, sizeof( PlaneStackElement ) ); } else { m_CustomClipPlanes.AddToTail( pse ); } break; case MATERIAL_HEIGHTCLIPMODE_RENDER_BELOW_HEIGHT: pse.fValues[0] = 0.0f; pse.fValues[1] = 0.0f; pse.fValues[2] = -1.0f; pse.fValues[3] = -m_HeightClipZ; if( iExistingHeightClipPlaneIndex != -1 ) { memcpy( m_CustomClipPlanes.Base() + iExistingHeightClipPlaneIndex, &pse, sizeof( PlaneStackElement ) ); } else { m_CustomClipPlanes.AddToTail( pse ); } break; };
ApplyCustomClipPlanes(); /*switch( m_HeightClipMode )
{ case MATERIAL_HEIGHTCLIPMODE_DISABLE: g_pShaderAPI->EnableClipPlane( 0, false ); break; case MATERIAL_HEIGHTCLIPMODE_RENDER_ABOVE_HEIGHT: plane[0] = 0.0f; plane[1] = 0.0f; plane[2] = 1.0f; plane[3] = m_HeightClipZ; g_pShaderAPI->SetClipPlane( 0, plane ); g_pShaderAPI->EnableClipPlane( 0, true ); break; case MATERIAL_HEIGHTCLIPMODE_RENDER_BELOW_HEIGHT: plane[0] = 0.0f; plane[1] = 0.0f; plane[2] = -1.0f; plane[3] = -m_HeightClipZ; g_pShaderAPI->SetClipPlane( 0, plane ); g_pShaderAPI->EnableClipPlane( 0, true ); break; }*/ }
//-----------------------------------------------------------------------------
// Lightmap stuff
//-----------------------------------------------------------------------------
void CMatRenderContext::BindLightmapPage( int lightmapPageID ) { if ( m_lightmapPageID == lightmapPageID ) return;
// We gotta make sure there's no buffered primitives 'cause this'll
// change the render state.
g_pShaderAPI->FlushBufferedPrimitives();
CMatRenderContextBase::BindLightmapPage( lightmapPageID ); }
void CMatRenderContext::BindLightmapTexture( ITexture *pLightmapTexture ) { if ( ( m_lightmapPageID == MATERIAL_SYSTEM_LIGHTMAP_PAGE_USER_DEFINED ) && ( m_pUserDefinedLightmap == pLightmapTexture ) ) return;
// We gotta make sure there's no buffered primitives 'cause this'll
// change the render state.
g_pShaderAPI->FlushBufferedPrimitives();
m_lightmapPageID = MATERIAL_SYSTEM_LIGHTMAP_PAGE_USER_DEFINED; if ( pLightmapTexture ) { pLightmapTexture->IncrementReferenceCount(); } if ( m_pUserDefinedLightmap ) { m_pUserDefinedLightmap->DecrementReferenceCount(); } m_pUserDefinedLightmap = static_cast<ITextureInternal*>( pLightmapTexture ); }
void CMatRenderContext::BindLightmap( Sampler_t sampler ) { switch ( m_lightmapPageID ) { default: Assert( ( m_lightmapPageID == 0 && GetLightmaps()->GetNumLightmapPages() == 0 ) || ( m_lightmapPageID >= 0 && m_lightmapPageID < GetLightmaps()->GetNumLightmapPages() ) ); if( m_lightmapPageID >= 0 && m_lightmapPageID < GetLightmaps()->GetNumLightmapPages() ) { g_pShaderAPI->BindTexture( sampler, GetLightmaps()->GetLightmapPageTextureHandle( m_lightmapPageID ) ); } break;
case MATERIAL_SYSTEM_LIGHTMAP_PAGE_USER_DEFINED: AssertOnce( m_pUserDefinedLightmap ); g_pShaderAPI->BindTexture( sampler, m_pUserDefinedLightmap->GetTextureHandle( 0 ) ); break;
case MATERIAL_SYSTEM_LIGHTMAP_PAGE_WHITE: BindFullbrightLightmap( sampler ); break;
case MATERIAL_SYSTEM_LIGHTMAP_PAGE_WHITE_BUMP: BindBumpedFullbrightLightmap( sampler ); break; } }
void CMatRenderContext::BindBumpLightmap( Sampler_t sampler ) { switch ( m_lightmapPageID ) { default: Assert( m_lightmapPageID >= 0 && m_lightmapPageID < GetLightmaps()->GetNumLightmapPages() ); if( m_lightmapPageID >= 0 && m_lightmapPageID < GetLightmaps()->GetNumLightmapPages() ) { g_pShaderAPI->BindTexture( sampler, GetLightmaps()->GetLightmapPageTextureHandle( m_lightmapPageID ) ); g_pShaderAPI->BindTexture( (Sampler_t)(sampler+1), GetLightmaps()->GetLightmapPageTextureHandle( m_lightmapPageID ) ); g_pShaderAPI->BindTexture( (Sampler_t)(sampler+2), GetLightmaps()->GetLightmapPageTextureHandle( m_lightmapPageID ) ); } break; case MATERIAL_SYSTEM_LIGHTMAP_PAGE_USER_DEFINED: AssertOnce( m_pUserDefinedLightmap ); g_pShaderAPI->BindTexture( sampler, m_pUserDefinedLightmap->GetTextureHandle( 0 ) ); g_pShaderAPI->BindTexture( (Sampler_t)(sampler+1), m_pUserDefinedLightmap->GetTextureHandle( 0 ) ); g_pShaderAPI->BindTexture( (Sampler_t)(sampler+2), m_pUserDefinedLightmap->GetTextureHandle( 0 ) ); break; case MATERIAL_SYSTEM_LIGHTMAP_PAGE_WHITE_BUMP: BindBumpedFullbrightLightmap( sampler ); BindBumpedFullbrightLightmap( (Sampler_t)(sampler+1) ); BindBumpedFullbrightLightmap( (Sampler_t)(sampler+2) ); break; case MATERIAL_SYSTEM_LIGHTMAP_PAGE_WHITE: BindBumpedFullbrightLightmap( sampler ); BindBumpedFullbrightLightmap( (Sampler_t)(sampler+1) ); BindBumpedFullbrightLightmap( (Sampler_t)(sampler+2) ); break; } }
void CMatRenderContext::BindFullbrightLightmap( Sampler_t sampler ) { g_pShaderAPI->BindTexture( sampler, GetFullbrightLightmapTextureHandle() ); }
void CMatRenderContext::BindBumpedFullbrightLightmap( Sampler_t sampler ) { g_pShaderAPI->BindTexture( sampler, GetFullbrightBumpedLightmapTextureHandle() ); }
//-----------------------------------------------------------------------------
// Bind standard textures
//-----------------------------------------------------------------------------
void CMatRenderContext::BindStandardTexture( Sampler_t sampler, StandardTextureId_t id ) { switch ( id ) { case TEXTURE_LIGHTMAP: BindLightmap( sampler ); return;
case TEXTURE_LIGHTMAP_BUMPED: BindBumpLightmap( sampler ); return;
case TEXTURE_LIGHTMAP_FULLBRIGHT: BindFullbrightLightmap( sampler ); return;
case TEXTURE_LIGHTMAP_BUMPED_FULLBRIGHT: BindBumpedFullbrightLightmap( sampler ); return;
case TEXTURE_WHITE: g_pShaderAPI->BindTexture( sampler, GetWhiteTextureHandle() ); return;
case TEXTURE_BLACK: g_pShaderAPI->BindTexture( sampler, GetBlackTextureHandle() ); return;
case TEXTURE_GREY: g_pShaderAPI->BindTexture( sampler, GetGreyTextureHandle() ); return;
case TEXTURE_GREY_ALPHA_ZERO: g_pShaderAPI->BindTexture( sampler, GetGreyAlphaZeroTextureHandle() ); return;
case TEXTURE_NORMALMAP_FLAT: g_pShaderAPI->BindTexture( sampler, GetFlatNormalTextureHandle() ); return;
case TEXTURE_NORMALIZATION_CUBEMAP: TextureManager()->NormalizationCubemap()->Bind( sampler ); return;
case TEXTURE_NORMALIZATION_CUBEMAP_SIGNED: TextureManager()->SignedNormalizationCubemap()->Bind( sampler ); return;
case TEXTURE_FRAME_BUFFER_FULL_TEXTURE_0: case TEXTURE_FRAME_BUFFER_FULL_TEXTURE_1: { int nTextureIndex = id - TEXTURE_FRAME_BUFFER_FULL_TEXTURE_0; if( m_pCurrentFrameBufferCopyTexture[ nTextureIndex ] ) { ( ( ITextureInternal * )m_pCurrentFrameBufferCopyTexture[ nTextureIndex ] )->Bind( sampler ); } } return;
case TEXTURE_COLOR_CORRECTION_VOLUME_0: case TEXTURE_COLOR_CORRECTION_VOLUME_1: case TEXTURE_COLOR_CORRECTION_VOLUME_2: case TEXTURE_COLOR_CORRECTION_VOLUME_3: { ITextureInternal *pTexture = TextureManager()->ColorCorrectionTexture( id - TEXTURE_COLOR_CORRECTION_VOLUME_0 ); if( pTexture ) { pTexture->Bind( sampler ); } } return;
case TEXTURE_SHADOW_NOISE_2D: TextureManager()->ShadowNoise2D()->Bind( sampler ); return;
case TEXTURE_IDENTITY_LIGHTWARP: TextureManager()->IdentityLightWarp()->Bind( sampler ); return;
case TEXTURE_MORPH_ACCUMULATOR: g_pMorphMgr->MorphAccumulator()->Bind( sampler ); return;
case TEXTURE_MORPH_WEIGHTS: g_pMorphMgr->MorphWeights()->Bind( sampler ); return;
case TEXTURE_FRAME_BUFFER_FULL_DEPTH: if( m_bFullFrameDepthIsValid ) TextureManager()->FullFrameDepthTexture()->Bind( sampler ); else g_pShaderAPI->BindTexture( sampler, GetMaxDepthTextureHandle() ); return;
case TEXTURE_DEBUG_LUXELS: TextureManager()->DebugLuxels2D()->Bind( sampler ); return;
default: Assert(0); } }
void CMatRenderContext::BindStandardVertexTexture( VertexTextureSampler_t sampler, StandardTextureId_t id ) { switch ( id ) { case TEXTURE_MORPH_ACCUMULATOR: g_pMorphMgr->MorphAccumulator()->BindVertexTexture( sampler ); return;
case TEXTURE_MORPH_WEIGHTS: g_pMorphMgr->MorphWeights()->BindVertexTexture( sampler ); return;
default: Assert(0); } }
void CMatRenderContext::GetStandardTextureDimensions( int *pWidth, int *pHeight, StandardTextureId_t id ) { ITexture *pTexture = NULL; switch ( id ) { case TEXTURE_LIGHTMAP: case TEXTURE_LIGHTMAP_BUMPED: case TEXTURE_LIGHTMAP_FULLBRIGHT: case TEXTURE_LIGHTMAP_BUMPED_FULLBRIGHT: // NOTE: Doesn't exactly work since we may be in fullbright mode
// GetLightmapDimensions( pWidth, pHeight );
// break;
case TEXTURE_WHITE: case TEXTURE_BLACK: case TEXTURE_GREY: case TEXTURE_GREY_ALPHA_ZERO: case TEXTURE_NORMALMAP_FLAT: default: Assert( 0 ); Warning( "GetStandardTextureDimensions: still unimplemented for this type!\n" ); *pWidth = *pHeight = -1; break;
case TEXTURE_NORMALIZATION_CUBEMAP: pTexture = TextureManager()->NormalizationCubemap(); break;
case TEXTURE_NORMALIZATION_CUBEMAP_SIGNED: pTexture = TextureManager()->SignedNormalizationCubemap(); break;
case TEXTURE_FRAME_BUFFER_FULL_TEXTURE_0: case TEXTURE_FRAME_BUFFER_FULL_TEXTURE_1: { int nTextureIndex = id - TEXTURE_FRAME_BUFFER_FULL_TEXTURE_0; pTexture = m_pCurrentFrameBufferCopyTexture[ nTextureIndex ]; } break;
case TEXTURE_COLOR_CORRECTION_VOLUME_0: case TEXTURE_COLOR_CORRECTION_VOLUME_1: case TEXTURE_COLOR_CORRECTION_VOLUME_2: case TEXTURE_COLOR_CORRECTION_VOLUME_3: pTexture = TextureManager()->ColorCorrectionTexture( id - TEXTURE_COLOR_CORRECTION_VOLUME_0 ); break;
case TEXTURE_SHADOW_NOISE_2D: pTexture = TextureManager()->ShadowNoise2D(); break;
case TEXTURE_IDENTITY_LIGHTWARP: pTexture = TextureManager()->IdentityLightWarp(); return;
case TEXTURE_MORPH_ACCUMULATOR: pTexture = g_pMorphMgr->MorphAccumulator(); break;
case TEXTURE_MORPH_WEIGHTS: pTexture = g_pMorphMgr->MorphWeights(); break;
case TEXTURE_DEBUG_LUXELS: pTexture = TextureManager()->DebugLuxels2D(); break; }
if ( pTexture ) { *pWidth = pTexture->GetActualWidth(); *pHeight = pTexture->GetActualHeight(); } else { Warning( "GetStandardTextureDimensions: Couldn't find the texture to get the dimensions!\n" ); *pWidth = *pHeight = -1; } }
void CMatRenderContext::FogColor3f( float r, float g, float b ) { unsigned char fogColor[3]; fogColor[0] = clamp( (int)(r * 255.0f), 0, 255 ); fogColor[1] = clamp( (int)(g * 255.0f), 0, 255 ); fogColor[2] = clamp( (int)(b * 255.0f), 0, 255 ); g_pShaderAPI->SceneFogColor3ub( fogColor[0], fogColor[1], fogColor[2] ); }
void CMatRenderContext::FogColor3fv( const float* rgb ) { unsigned char fogColor[3]; fogColor[0] = clamp( (int)(rgb[0] * 255.0f), 0, 255 ); fogColor[1] = clamp( (int)(rgb[1] * 255.0f), 0, 255 ); fogColor[2] = clamp( (int)(rgb[2] * 255.0f), 0, 255 ); g_pShaderAPI->SceneFogColor3ub( fogColor[0], fogColor[1], fogColor[2] ); }
void CMatRenderContext::SetFlashlightMode( bool bEnable ) { if( bEnable != m_bFlashlightEnable ) { g_pShaderAPI->FlushBufferedPrimitives(); m_bFlashlightEnable = bEnable; } }
bool CMatRenderContext::GetFlashlightMode( ) const { return m_bFlashlightEnable; }
void CMatRenderContext::SetFlashlightStateEx( const FlashlightState_t &state, const VMatrix &worldToTexture, ITexture *pFlashlightDepthTexture ) { g_pShaderAPI->SetFlashlightStateEx( state, worldToTexture, pFlashlightDepthTexture ); if ( IsPC() && g_config.dxSupportLevel <= 70 ) { // Going to go ahead and set a single hardware light here to do all lighting except for
// the spotlight falloff function, which is done with a texture.
SetAmbientLight( 0.0f, 0.0f, 0.0f ); static Vector4D blackCube[6]; int i; for( i = 0; i < 6; i++ ) { blackCube[i].Init( 0.0f, 0.0f, 0.0f, 0.0f ); } SetAmbientLightCube( blackCube );
// Disable all the lights except for the first one.
for( i = 1; i < HardwareConfig()->MaxNumLights(); ++i ) { LightDesc_t desc; desc.m_Type = MATERIAL_LIGHT_DISABLE; SetLight( i, desc ); }
LightDesc_t desc; desc.m_Type = MATERIAL_LIGHT_POINT; desc.m_Attenuation0 = state.m_fConstantAtten; desc.m_Attenuation1 = state.m_fLinearAtten; desc.m_Attenuation2 = state.m_fQuadraticAtten; // flashlightfixme: I don't know why this scale has to be here to get fixed function lighting to work.
desc.m_Color.x = state.m_Color[0] * 17000.0f; desc.m_Color.y = state.m_Color[1] * 17000.0f; desc.m_Color.z = state.m_Color[2] * 17000.0f; desc.m_Position = state.m_vecLightOrigin;
QAngle angles; QuaternionAngles( state.m_quatOrientation, angles ); AngleVectors( angles, &desc.m_Direction );
desc.m_Range = state.m_FarZ; desc.m_Falloff = 0.0f; SetLight( 0, desc ); } }
void CMatRenderContext::SetScissorRect( const int nLeft, const int nTop, const int nRight, const int nBottom, const bool bEnableScissor ) { g_pShaderAPI->SetScissorRect( nLeft, nTop, nRight, nBottom, bEnableScissor ); }
void CMatRenderContext::SetToneMappingScaleLinear( const Vector &scale ) { g_pShaderAPI->SetToneMappingScaleLinear( scale ); }
void CMatRenderContext::BeginBatch( IMesh* pIndices ) { Assert( !m_pBatchMesh && !m_pBatchIndices); m_pBatchIndices = pIndices; }
void CMatRenderContext::BindBatch( IMesh* pVertices, IMaterial *pAutoBind ) { m_pBatchMesh = GetDynamicMesh( false, pVertices, m_pBatchIndices, pAutoBind ); }
void CMatRenderContext::DrawBatch(int firstIndex, int numIndices ) { Assert( m_pBatchMesh ); m_pBatchMesh->Draw( firstIndex, numIndices ); }
void CMatRenderContext::EndBatch() { m_pBatchIndices = NULL; m_pBatchMesh = NULL; }
bool CMatRenderContext::OnDrawMesh( IMesh *pMesh, int firstIndex, int numIndices ) { SyncMatrices(); return true; }
bool CMatRenderContext::OnDrawMesh( IMesh *pMesh, CPrimList *pLists, int nLists ) { SyncMatrices(); return true; }
void CMatRenderContext::AsyncCreateTextureFromRenderTarget( ITexture* pSrcRt, const char* pDstName, ImageFormat dstFmt, bool bGenMips, int nAdditionalCreationFlags, IAsyncTextureOperationReceiver* pRecipient, void* pExtraArgs ) { if ( g_pMaterialSystem->GetThreadMode() == MATERIAL_SINGLE_THREADED ) { OnAsyncCreateTextureFromRenderTarget( pSrcRt, &pDstName, pRecipient ); }
TextureManager()->AsyncCreateTextureFromRenderTarget( pSrcRt, pDstName, dstFmt, bGenMips, nAdditionalCreationFlags, pRecipient, pExtraArgs ); }
void CMatRenderContext::AsyncMap( ITextureInternal* pTexToMap, IAsyncTextureOperationReceiver* pRecipient, void* pExtraArgs ) { if ( g_pMaterialSystem->GetThreadMode() == MATERIAL_SINGLE_THREADED ) { OnAsyncMap( pTexToMap, pRecipient, pExtraArgs ); }
void* pMemory = NULL; int nPitch = NULL;
pTexToMap->Map( &pMemory, &nPitch );
pRecipient->OnAsyncMapComplete( pTexToMap, pExtraArgs, pMemory, nPitch );
// Release references held earlier in OnAsyncMap
SafeRelease( &pRecipient ); SafeRelease( &pTexToMap ); }
void CMatRenderContext::AsyncUnmap( ITextureInternal* pTexToUnmap ) { if ( g_pMaterialSystem->GetThreadMode() == MATERIAL_SINGLE_THREADED ) { OnAsyncUnmap( pTexToUnmap ); }
pTexToUnmap->Unmap(); SafeRelease( &pTexToUnmap ); // Matches AddRef from OnAsyncUnmap
}
void CMatRenderContext::AsyncCopyRenderTargetToStagingTexture( ITexture* pDst, ITexture* pSrc, IAsyncTextureOperationReceiver* pRecipient, void* pExtraArgs ) { if ( g_pMaterialSystem->GetThreadMode() == MATERIAL_SINGLE_THREADED ) { OnAsyncCopyRenderTargetToStagingTexture( pDst, pSrc, pRecipient ); }
pSrc->CopyToStagingTexture( pDst ); pRecipient->OnAsyncReadbackBegin( pDst, pSrc, pExtraArgs );
SafeRelease( &pDst ); SafeRelease( &pSrc ); SafeRelease( &pRecipient ); }
//-----------------------------------------------------------------------------
// Methods related to morph accumulation
//-----------------------------------------------------------------------------
void CMatRenderContext::BeginMorphAccumulation() { g_pMorphMgr->BeginMorphAccumulation( m_pMorphRenderContext ); }
void CMatRenderContext::EndMorphAccumulation() { g_pMorphMgr->EndMorphAccumulation( m_pMorphRenderContext ); }
void CMatRenderContext::AccumulateMorph( IMorph* pMorph, int nMorphCount, const MorphWeight_t* pWeights ) { g_pMorphMgr->AccumulateMorph( m_pMorphRenderContext, pMorph, nMorphCount, pWeights ); }
bool CMatRenderContext::GetMorphAccumulatorTexCoord( Vector2D *pTexCoord, IMorph *pMorph, int nVertex ) { return g_pMorphMgr->GetMorphAccumulatorTexCoord( m_pMorphRenderContext, pTexCoord, pMorph, nVertex ); }
//-----------------------------------------------------------------------------
// Occlusion query support
//-----------------------------------------------------------------------------
OcclusionQueryObjectHandle_t CMatRenderContext::CreateOcclusionQueryObject() { OcclusionQueryObjectHandle_t h = g_pOcclusionQueryMgr->CreateOcclusionQueryObject(); g_pOcclusionQueryMgr->OnCreateOcclusionQueryObject( h ); return h; }
int CMatRenderContext::OcclusionQuery_GetNumPixelsRendered( OcclusionQueryObjectHandle_t h ) { return g_pOcclusionQueryMgr->OcclusionQuery_GetNumPixelsRendered( h, true ); }
void CMatRenderContext::SetFullScreenDepthTextureValidityFlag( bool bIsValid ) { m_bFullFrameDepthIsValid = bIsValid; }
//-----------------------------------------------------------------------------
// Debug logging
//-----------------------------------------------------------------------------
void CMatRenderContext::PrintfVA( char *fmt, va_list vargs ) { #if GLMDEBUG
g_pShaderAPI->PrintfVA( fmt, vargs ); #endif
}
void CMatRenderContext::Printf( const char *fmt, ... ) { #if GLMDEBUG
va_list vargs;
va_start(vargs, fmt);
g_pShaderAPI->PrintfVA( (char *)fmt, vargs );
va_end( vargs ); #endif
}
float CMatRenderContext::Knob( char *knobname, float *setvalue ) { #if GLMDEBUG
return g_pShaderAPI->Knob( knobname, setvalue ); #else
return 0.0f; #endif
}
|