Team Fortress 2 Source Code as on 22/4/2020
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

3157 lines
90 KiB

//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
//=============================================================================
#include "pch_materialsystem.h"
#define MATSYS_INTERNAL
#include <math.h>
#include "cmatrendercontext.h"
#include "tier2/renderutils.h"
#include "cmaterialsystem.h"
#include "occlusionquerymgr.h"
#include "texturemanager.h"
#include "IHardwareConfigInternal.h"
#include "ctype.h"
#include "tier1/fmtstr.h"
#include "togl/rendermechanism.h"
// NOTE: This must be the last file included!!!
#include "tier0/memdbgon.h"
//-----------------------------------------------------------------------------
// FIXME: right now, always keeping shader API in sync, because debug overlays don't seem to work 100% with the delayed matrix loading
#define FORCE_MATRIX_SYNC 1
#ifdef VALIDATE_MATRICES
#define ShouldValidateMatrices() true
#else
#define ShouldValidateMatrices() false
#endif
#ifdef VALIDATE_MATRICES
#define AllowLazyMatrixSync() false
#define ForceSync() ((void)(0))
#elif defined(FORCE_MATRIX_SYNC)
#define AllowLazyMatrixSync() false
#define ForceSync() ForceSyncMatrix( m_MatrixMode )
#else
#define AllowLazyMatrixSync() true
#define ForceSync() ((void)(0))
#endif
#ifdef _X360
static bool s_bDirtyDisk = false;
#endif
void ValidateMatrices( const VMatrix &m1, const VMatrix &m2, float eps = .001 )
{
if ( !ShouldValidateMatrices() )
return;
for ( int i = 0; i < 16; i++ )
{
AssertFloatEquals( m1.Base()[i], m1.Base()[i], eps );
}
}
//-----------------------------------------------------------------------------
// The dirty disk error report function (NOTE: Could be called from any thread!)
//-----------------------------------------------------------------------------
#ifdef _X360
unsigned ThreadedDirtyDiskErrorDisplay( void *pParam )
{
XShowDirtyDiscErrorUI( XBX_GetPrimaryUserId() );
}
#endif
void SpinPresent()
{
while ( true )
{
g_pShaderAPI->ClearColor3ub( 0, 0, 0 );
g_pShaderAPI->ClearBuffers( true, true, true, -1, -1 );
g_pShaderDevice->Present();
}
}
void ReportDirtyDisk()
{
#ifdef _X360
s_bDirtyDisk = true;
ThreadHandle_t h = CreateSimpleThread( ThreadedDirtyDiskErrorDisplay, NULL );
ThreadSetPriority( h, THREAD_PRIORITY_HIGHEST );
// If this is being called from the render thread, immediately swap
if ( ( ThreadGetCurrentId() == MaterialSystem()->GetRenderThreadId() ) ||
( ThreadInMainThread() && g_pMaterialSystem->GetThreadMode() != MATERIAL_QUEUED_THREADED ) )
{
SpinPresent();
}
#endif
}
//-----------------------------------------------------------------------------
// Install dirty disk error reporting function (call after SetMode)
//-----------------------------------------------------------------------------
void SetupDirtyDiskReportFunc()
{
g_pFullFileSystem->InstallDirtyDiskReportFunc( ReportDirtyDisk );
}
//-----------------------------------------------------------------------------
// Globals
//-----------------------------------------------------------------------------
CMemoryStack CMatRenderContextBase::sm_RenderData[2];
int CMatRenderContextBase::sm_nRenderLockCount = 0;
int CMatRenderContextBase::sm_nRenderStack = 0;
int CMatRenderContextBase::sm_nInitializeCount = 0;
//-----------------------------------------------------------------------------
// Constructor
//-----------------------------------------------------------------------------
CMatRenderContextBase::CMatRenderContextBase() :
m_pMaterialSystem( NULL ), m_RenderTargetStack( 16, 32 ), m_MatrixMode( NUM_MATRIX_MODES )
{
int i;
m_bDirtyViewState = true;
// Put a special element at the top of the RT stack (indicating back buffer is current top of stack)
// NULL indicates back buffer, -1 indicates full-size viewport
#if !defined( _X360 )
RenderTargetStackElement_t initialElement = { {NULL, NULL, NULL, NULL}, NULL, 0, 0, -1, -1 };
#else
RenderTargetStackElement_t initialElement = { {NULL}, NULL, 0, 0, -1, -1 };
#endif
m_RenderTargetStack.Push( initialElement );
for ( i = 0; i < MAX_FB_TEXTURES; i++ )
{
m_pCurrentFrameBufferCopyTexture[i] = NULL;
}
m_pCurrentMaterial = NULL;
m_pCurrentProxyData = NULL;
m_pUserDefinedLightmap = NULL;
m_HeightClipMode = MATERIAL_HEIGHTCLIPMODE_DISABLE;
m_HeightClipZ = 0.0f;
m_bEnableClipping = true;
m_bFlashlightEnable = false;
m_bFullFrameDepthIsValid = false;
for ( i = 0; i < NUM_MATRIX_MODES; i++ )
{
m_MatrixStacks[i].Push();
m_MatrixStacks[i].Top().matrix.Identity();
m_MatrixStacks[i].Top().flags |= ( MSF_DIRTY| MSF_IDENTITY );
}
m_pCurMatrixItem = &m_MatrixStacks[0].Top();
m_Viewport.Init( 0, 0, 0, 0 );
m_LastSetToneMapScale=Vector(1,1,1);
m_CurToneMapScale=1.0;
m_GoalToneMapScale = 1.0f;
}
//-----------------------------------------------------------------------------
// Init, shutdown
//-----------------------------------------------------------------------------
InitReturnVal_t CMatRenderContextBase::Init( )
{
MEM_ALLOC_CREDIT();
if ( !sm_nInitializeCount )
{
int nSize = 2200 * 1024;
int nCommitSize = 32 * 1024;
#ifdef SWDS
nSize = nCommitSize = 1024;
#endif
const char *gamedir = CommandLine()->ParmValue("-game", CommandLine()->ParmValue( "-defaultgamedir", "hl2" ) );
if ( gamedir && !Q_stricmp( "garrysmod", gamedir ) )
{
nSize = 4400 * 1024;
}
sm_RenderData[0].Init( nSize, nCommitSize, 0, 32 );
sm_RenderData[1].Init( nSize, nCommitSize, 0, 32 );
sm_nRenderStack = 0;
sm_nRenderLockCount = 0;
}
++sm_nInitializeCount;
return INIT_OK;
}
void CMatRenderContextBase::Shutdown( )
{
Assert( sm_nInitializeCount >= 0 );
if ( --sm_nInitializeCount == 0 )
{
sm_RenderData[0].Term();
sm_RenderData[1].Term();
}
}
void CMatRenderContextBase::CompactMemory()
{
if ( sm_nRenderLockCount )
{
DevWarning( "CMatRenderContext: Trying to compact with render data still locked!\n" );
sm_nRenderLockCount = 0;
}
sm_RenderData[0].FreeAll();
sm_RenderData[1].FreeAll();
}
void CMatRenderContextBase::MarkRenderDataUnused( bool bFrameBegin )
{
if ( sm_nRenderLockCount )
{
DevWarning( "CMatRenderContext: Trying to clear render data with render data still locked (%d)!\n", sm_nRenderLockCount );
sm_nRenderLockCount = 0;
}
// JAY: DO NOT MERGE FROM TF2 - L4D HAS CHANGED THE UNDERLYING INTERFACE IN A WAY THAT DOESN'T REQUIRE THIS
#if 0
// Switch stacks
if ( bFrameBegin )
{
sm_nRenderStack = 1 - sm_nRenderStack;
}
// Clear the new stack
#ifdef _DEBUG
memset( sm_RenderData[sm_nRenderStack].GetBase(), 0xFF, RenderDataSizeUsed() );
#endif
sm_RenderData[ sm_nRenderStack ].FreeAll( false );
#else
// Just for TF2, don't free the stack until the end of frame. TF2 Allocates render data and holds it over the lock
// period because we haven't revised the studiorender interface yet to change patterns.
// Switch stacks
if ( bFrameBegin )
{
sm_nRenderStack = 1 - sm_nRenderStack;
// Clear the new stack
#ifdef _DEBUG
memset( sm_RenderData[sm_nRenderStack].GetBase(), 0xFF, RenderDataSizeUsed() );
#endif
sm_RenderData[ sm_nRenderStack ].FreeAll( false );
}
#endif
}
int CMatRenderContextBase::RenderDataSizeUsed() const
{
return sm_RenderData[sm_nRenderStack].GetUsed();
}
bool CMatRenderContextBase::IsRenderData( const void *pData ) const
{
intp nData = (intp)pData;
intp nBaseAddress = (intp)sm_RenderData[sm_nRenderStack].GetBase();
intp nLastAddress = nBaseAddress + RenderDataSizeUsed();
return ( nData == 0 ) || ( nData >= nBaseAddress && nData < nLastAddress );
}
//-----------------------------------------------------------------------------
// debug logging - empty in base class
//-----------------------------------------------------------------------------
void CMatRenderContextBase::PrintfVA( char *fmt, va_list vargs )
{
}
void CMatRenderContextBase::Printf( const char *fmt, ... )
{
}
float CMatRenderContextBase::Knob( char *knobname, float *setvalue )
{
return 0.0f;
}
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
#define g_pShaderAPI Cannot_use_ShaderAPI_in_CMatRenderContextBase
void CMatRenderContextBase::InitializeFrom( CMatRenderContextBase *pInitialState )
{
int i;
m_pCurrentMaterial = pInitialState->m_pCurrentMaterial;
m_pCurrentProxyData = pInitialState->m_pCurrentProxyData;
m_lightmapPageID = pInitialState->m_lightmapPageID;
m_pUserDefinedLightmap = pInitialState->m_pUserDefinedLightmap;
m_pLocalCubemapTexture = pInitialState->m_pLocalCubemapTexture;
memcpy( m_pCurrentFrameBufferCopyTexture, pInitialState->m_pCurrentFrameBufferCopyTexture, MAX_FB_TEXTURES * sizeof(ITexture *) );
m_bEnableClipping = pInitialState->m_bEnableClipping;
m_HeightClipMode = pInitialState->m_HeightClipMode;
m_HeightClipZ = pInitialState->m_HeightClipZ;
m_pBoundMorph = pInitialState->m_pBoundMorph; // not reference counted?
m_RenderTargetStack.Clear();
m_RenderTargetStack.EnsureCapacity( pInitialState->m_RenderTargetStack.Count() );
for ( i = 0; i < pInitialState->m_RenderTargetStack.Count(); i++ )
{
m_RenderTargetStack.Push( pInitialState->m_RenderTargetStack[i] );
}
m_MatrixMode = pInitialState->m_MatrixMode;
for ( i = 0; i < NUM_MATRIX_MODES; i++ )
{
m_MatrixStacks[i].CopyFrom( pInitialState->m_MatrixStacks[i] );
}
m_bFlashlightEnable = pInitialState->m_bFlashlightEnable;
m_FrameTime = pInitialState->m_FrameTime;
m_GoalToneMapScale = pInitialState->m_GoalToneMapScale;
m_CurToneMapScale = pInitialState->m_CurToneMapScale;
m_LastSetToneMapScale = pInitialState->m_LastSetToneMapScale;
}
void CMatRenderContextBase::Bind( IMaterial *iMaterial, void *proxyData )
{
IMaterialInternal *material = static_cast<IMaterialInternal *>( iMaterial );
if ( !material )
{
Warning( "Programming error: CMatRenderContext::Bind: NULL material\n" );
material = static_cast<IMaterialInternal *>( g_pErrorMaterial );
}
material = material->GetRealTimeVersion(); //always work with the real time versions of materials internally
if ( GetCurrentMaterialInternal() != material )
{
if( !material->IsPrecached() )
{
DevWarning( "Binding uncached material \"%s\", artificially incrementing refcount\n", material->GetName() );
material->ArtificialAddRef();
material->Precache();
}
SetCurrentMaterialInternal(material);
}
SetCurrentProxy( proxyData );
}
void CMatRenderContextBase::BindLightmapPage( int lightmapPageID )
{
m_lightmapPageID = lightmapPageID;
}
void CMatRenderContextBase::SetRenderTargetEx( int nRenderTargetID, ITexture *pNewTarget )
{
// Verify valid top of RT stack
Assert ( m_RenderTargetStack.Count() > 0 );
// Reset the top of stack to the new target with old viewport
RenderTargetStackElement_t newTOS = m_RenderTargetStack.Top();
newTOS.m_pRenderTargets[nRenderTargetID] = pNewTarget;
m_RenderTargetStack.Pop( );
m_RenderTargetStack.Push( newTOS );
}
void CMatRenderContextBase::BindLocalCubemap( ITexture *pTexture )
{
if( pTexture )
{
m_pLocalCubemapTexture = pTexture;
}
else
{
m_pLocalCubemapTexture = TextureManager()->ErrorTexture();
}
}
ITexture *CMatRenderContextBase::GetRenderTarget( void )
{
if (m_RenderTargetStack.Count() > 0)
{
return m_RenderTargetStack.Top().m_pRenderTargets[0];
}
else
{
return NULL; // should this be something else, since NULL indicates back buffer?
}
}
ITexture *CMatRenderContextBase::GetRenderTargetEx( int nRenderTargetID )
{
// Verify valid top of stack
Assert ( m_RenderTargetStack.Count() > 0 );
// Top of render target stack
ITexture *pTexture = m_RenderTargetStack.Top().m_pRenderTargets[ nRenderTargetID ];
return pTexture;
}
void CMatRenderContextBase::SetFrameBufferCopyTexture( ITexture *pTexture, int textureIndex )
{
if( textureIndex < 0 || textureIndex > MAX_FB_TEXTURES )
{
Assert( 0 );
return;
}
// FIXME: Do I need to increment/decrement ref counts here, or assume that the app is going to do it?
m_pCurrentFrameBufferCopyTexture[textureIndex] = pTexture;
}
ITexture *CMatRenderContextBase::GetFrameBufferCopyTexture( int textureIndex )
{
if( textureIndex < 0 || textureIndex > MAX_FB_TEXTURES )
{
Assert( 0 );
return NULL; // FIXME! This should return the error texture.
}
return m_pCurrentFrameBufferCopyTexture[textureIndex];
}
void CMatRenderContextBase::MatrixMode( MaterialMatrixMode_t mode )
{
Assert( m_MatrixStacks[mode].Count() );
m_MatrixMode = mode;
m_pCurMatrixItem = &m_MatrixStacks[mode].Top();
}
void CMatRenderContextBase::CurrentMatrixChanged()
{
if ( m_MatrixMode == MATERIAL_VIEW )
{
m_bDirtyViewState = true;
m_bDirtyViewProjState = true;
}
else if ( m_MatrixMode == MATERIAL_PROJECTION )
{
m_bDirtyViewProjState = true;
}
}
void CMatRenderContextBase::PushMatrix()
{
CUtlStack<MatrixStackItem_t> &curStack = m_MatrixStacks[ m_MatrixMode ];
Assert( curStack.Count() );
int iNew = curStack.Push();
curStack[ iNew ] = curStack[ iNew - 1 ];
m_pCurMatrixItem = &curStack.Top();
CurrentMatrixChanged();
}
void CMatRenderContextBase::PopMatrix()
{
Assert( m_MatrixStacks[m_MatrixMode].Count() > 1 );
m_MatrixStacks[ m_MatrixMode ].Pop();
m_pCurMatrixItem = &m_MatrixStacks[m_MatrixMode].Top();
CurrentMatrixChanged();
}
void CMatRenderContextBase::LoadMatrix( const VMatrix& matrix )
{
m_pCurMatrixItem->matrix = matrix;
m_pCurMatrixItem->flags = MSF_DIRTY; // clearing identity implicitly
CurrentMatrixChanged();
}
void CMatRenderContextBase::LoadMatrix( const matrix3x4_t& matrix )
{
m_pCurMatrixItem->matrix = matrix;
m_pCurMatrixItem->flags = MSF_DIRTY; // clearing identity implicitly
CurrentMatrixChanged();
}
void CMatRenderContextBase::MultMatrix( const VMatrix& matrix )
{
VMatrix result;
MatrixMultiply( matrix, m_pCurMatrixItem->matrix, result );
m_pCurMatrixItem->matrix = result;
m_pCurMatrixItem->flags = MSF_DIRTY; // clearing identity implicitly
CurrentMatrixChanged();
}
void CMatRenderContextBase::MultMatrix( const matrix3x4_t& matrix )
{
CMatRenderContextBase::MultMatrix( VMatrix( matrix ) );
}
void CMatRenderContextBase::MultMatrixLocal( const VMatrix& matrix )
{
VMatrix result;
MatrixMultiply( m_pCurMatrixItem->matrix, matrix, result );
m_pCurMatrixItem->matrix = result;
m_pCurMatrixItem->flags = MSF_DIRTY; // clearing identity implicitly
CurrentMatrixChanged();
}
void CMatRenderContextBase::MultMatrixLocal( const matrix3x4_t& matrix )
{
CMatRenderContextBase::MultMatrixLocal( VMatrix( matrix ) );
}
void CMatRenderContextBase::LoadIdentity()
{
// FIXME: possibly track is identity so can call shader API LoadIdentity() later instead of LoadMatrix()?
m_pCurMatrixItem->matrix.Identity();
m_pCurMatrixItem->flags = ( MSF_DIRTY | MSF_IDENTITY );
CurrentMatrixChanged();
}
void CMatRenderContextBase::Ortho( double left, double top, double right, double bottom, double zNear, double zFar )
{
MatrixOrtho( m_pCurMatrixItem->matrix, left, top, right, bottom, zNear, zFar );
m_pCurMatrixItem->flags = MSF_DIRTY;
}
void CMatRenderContextBase::PerspectiveX( double flFovX, double flAspect, double flZNear, double flZFar )
{
MatrixPerspectiveX( m_pCurMatrixItem->matrix, flFovX, flAspect, flZNear, flZFar );
m_pCurMatrixItem->flags = MSF_DIRTY;
}
void CMatRenderContextBase::PerspectiveOffCenterX( double flFovX, double flAspect, double flZNear, double flZFar, double bottom, double top, double left, double right )
{
MatrixPerspectiveOffCenterX( m_pCurMatrixItem->matrix, flFovX, flAspect, flZNear, flZFar, bottom, top, left, right );
m_pCurMatrixItem->flags = MSF_DIRTY;
}
void CMatRenderContextBase::PickMatrix( int x, int y, int nWidth, int nHeight )
{
int vx, vy, vwidth, vheight;
GetViewport( vx, vy, vwidth, vheight );
// Compute the location of the pick region in projection space...
float px = 2.0 * (float)(x - vx) / (float)vwidth - 1;
float py = 2.0 * (float)(y - vy)/ (float)vheight - 1;
float pw = 2.0 * (float)nWidth / (float)vwidth;
float ph = 2.0 * (float)nHeight / (float)vheight;
// we need to translate (px, py) to the origin
// and scale so (pw,ph) -> (2, 2)
VMatrix mat;
MatrixSetIdentity( mat );
mat.m[0][0] = 2.0 / pw;
mat.m[1][1] = 2.0 / ph;
mat.m[0][3] = -2.0 * px / pw;
mat.m[1][3] = -2.0 * py / ph;
CMatRenderContextBase::MultMatrixLocal( mat );
}
void CMatRenderContextBase::Rotate( float flAngle, float x, float y, float z )
{
MatrixRotate( m_pCurMatrixItem->matrix, Vector( x, y, z ), flAngle );
m_pCurMatrixItem->flags = MSF_DIRTY;
}
void CMatRenderContextBase::Translate( float x, float y, float z )
{
MatrixTranslate( m_pCurMatrixItem->matrix, Vector( x, y, z ) );
m_pCurMatrixItem->flags = MSF_DIRTY;
}
void CMatRenderContextBase::Scale( float x, float y, float z )
{
VMatrix mat;
MatrixBuildScale( mat, x, y, z );
CMatRenderContextBase::MultMatrixLocal( mat );
}
void CMatRenderContextBase::GetMatrix( MaterialMatrixMode_t matrixMode, VMatrix *pMatrix )
{
CUtlStack<MatrixStackItem_t> &stack = m_MatrixStacks[ matrixMode ];
if ( !stack.Count() )
{
pMatrix->Identity();
return;
}
*pMatrix = stack.Top().matrix;
}
void CMatRenderContextBase::GetMatrix( MaterialMatrixMode_t matrixMode, matrix3x4_t *pMatrix )
{
CUtlStack<MatrixStackItem_t> &stack = m_MatrixStacks[ matrixMode ];
if ( !stack.Count() )
{
SetIdentityMatrix( *pMatrix );
return;
}
*pMatrix = stack.Top().matrix.As3x4();
}
void CMatRenderContextBase::RecomputeViewState()
{
if ( !m_bDirtyViewState )
return;
m_bDirtyViewState = false;
// FIXME: Cache this off to make it less expensive?
matrix3x4_t viewMatrix;
GetMatrix( MATERIAL_VIEW, &viewMatrix );
m_vecViewOrigin.x =
-( viewMatrix[0][3] * viewMatrix[0][0] +
viewMatrix[1][3] * viewMatrix[1][0] +
viewMatrix[2][3] * viewMatrix[2][0] );
m_vecViewOrigin.y =
-( viewMatrix[0][3] * viewMatrix[0][1] +
viewMatrix[1][3] * viewMatrix[1][1] +
viewMatrix[2][3] * viewMatrix[2][1] );
m_vecViewOrigin.z =
-( viewMatrix[0][3] * viewMatrix[0][2] +
viewMatrix[1][3] * viewMatrix[1][2] +
viewMatrix[2][3] * viewMatrix[2][2] );
// FIXME Implement computation of m_vecViewForward, etc
m_vecViewForward.Init();
m_vecViewRight.Init();
// FIXME: Is this correct?
m_vecViewUp.Init( viewMatrix[1][0], viewMatrix[1][1], viewMatrix[1][2] );
}
void CMatRenderContextBase::GetWorldSpaceCameraPosition( Vector *pCameraPos )
{
RecomputeViewState();
VectorCopy( m_vecViewOrigin, *pCameraPos );
}
void CMatRenderContextBase::GetWorldSpaceCameraVectors( Vector *pVecForward, Vector *pVecRight, Vector *pVecUp )
{
RecomputeViewState();
// FIXME Implement computation of m_vecViewForward
Assert( 0 );
if ( pVecForward )
{
VectorCopy( m_vecViewForward, *pVecForward );
}
if ( pVecRight )
{
VectorCopy( m_vecViewRight, *pVecRight );
}
if ( pVecUp )
{
VectorCopy( m_vecViewUp, *pVecUp );
}
}
void *CMatRenderContextBase::LockRenderData( int nSizeInBytes )
{
MEM_ALLOC_CREDIT();
void *pDest = sm_RenderData[ sm_nRenderStack ].Alloc( nSizeInBytes, false );
if ( !pDest )
{
ExecuteNTimes( 10, Warning("MaterialSystem: Out of memory in render data!\n") );
}
AddRefRenderData();
return pDest;
}
void CMatRenderContextBase::UnlockRenderData( void *pData )
{
ReleaseRenderData();
}
void CMatRenderContextBase::AddRefRenderData()
{
++sm_nRenderLockCount;
}
void CMatRenderContextBase::ReleaseRenderData()
{
--sm_nRenderLockCount;
Assert( sm_nRenderLockCount >= 0 );
if ( sm_nRenderLockCount == 0 )
{
OnRenderDataUnreferenced();
}
}
void CMatRenderContextBase::SyncMatrices()
{
}
void CMatRenderContextBase::SyncMatrix( MaterialMatrixMode_t mode )
{
}
void CMatRenderContextBase::SetHeightClipMode( enum MaterialHeightClipMode_t heightClipMode )
{
if( m_HeightClipMode != heightClipMode )
{
m_HeightClipMode = heightClipMode;
UpdateHeightClipUserClipPlane();
/*if ( HardwareConfig()->MaxUserClipPlanes() >= 1 && !HardwareConfig()->UseFastClipping())
{
UpdateHeightClipUserClipPlane();
}
else
{
g_pShaderAPI->SetHeightClipMode( heightClipMode );
}*/
}
}
void CMatRenderContextBase::SetHeightClipZ( float z )
{
if( z != m_HeightClipZ )
{
m_HeightClipZ = z;
UpdateHeightClipUserClipPlane();
}
// FIXME! : Need to move user clip plane support back to pre-dx9 cards (all of the pixel shaders
// have texkill in them. . blich.)
/*if ( HardwareConfig()->MaxUserClipPlanes() >= 1 && !HardwareConfig()->UseFastClipping() )
{
UpdateHeightClipUserClipPlane();
}
else
{
g_pShaderAPI->SetHeightClipZ( z );
}*/
}
bool CMatRenderContextBase::EnableClipping( bool bEnable )
{
if( bEnable != m_bEnableClipping )
{
m_bEnableClipping = bEnable;
ApplyCustomClipPlanes();
return !bEnable;
}
return bEnable;
}
void CMatRenderContextBase::Viewport( int x, int y, int width, int height )
{
// Verify valid top of RT stack
Assert ( m_RenderTargetStack.Count() > 0 );
// Reset the top of stack to the new viewport
RenderTargetStackElement_t newTOS;
memcpy(&newTOS,&(m_RenderTargetStack.Top()),sizeof(newTOS));
newTOS.m_nViewX = x;
newTOS.m_nViewY = y;
newTOS.m_nViewW = width;
newTOS.m_nViewH = height;
m_RenderTargetStack.Pop( );
m_RenderTargetStack.Push( newTOS );
}
//-----------------------------------------------------------------------------
// This version will push the current rendertarget + current viewport onto the stack
//-----------------------------------------------------------------------------
void CMatRenderContextBase::PushRenderTargetAndViewport( )
{
// Necessary to push the stack top onto itself; realloc could happen otherwise
m_RenderTargetStack.EnsureCapacity( m_RenderTargetStack.Count() + 1 );
m_RenderTargetStack.Push( m_RenderTargetStack.Top() );
CommitRenderTargetAndViewport();
}
//-----------------------------------------------------------------------------
// Pushes a render target on the render target stack. Without a specific
// viewport also being pushed, this function uses dummy values which indicate
// that the viewport should span the the full render target and pushes
// the RenderTargetStackElement_t onto the stack
//
// The push and pop methods also implicitly set the render target to the new top of stack
//
// NULL for pTexture indicates rendering to the back buffer
//-----------------------------------------------------------------------------
void CMatRenderContextBase::PushRenderTargetAndViewport( ITexture *pTexture )
{
// Just blindly push the data on the stack with flags indicating full bounds
#if !defined( _X360 )
RenderTargetStackElement_t element = { {pTexture, NULL, NULL, NULL}, 0, 0, -1, -1 };
#else
RenderTargetStackElement_t element = { {pTexture}, 0, 0, -1, -1 };
#endif
m_RenderTargetStack.Push( element );
CommitRenderTargetAndViewport();
}
//-----------------------------------------------------------------------------
// Pushes a render target on the render target stack and sets the viewport
//
// NULL for pTexture indicates rendering to the back buffer
//
// The push and pop methods also implicitly set the render target to the new top of stack
//-----------------------------------------------------------------------------
void CMatRenderContextBase::PushRenderTargetAndViewport( ITexture *pTexture, int nViewX, int nViewY, int nViewW, int nViewH )
{
CMatRenderContextBase::PushRenderTargetAndViewport( pTexture, NULL, nViewX, nViewY, nViewW, nViewH );
}
//-----------------------------------------------------------------------------
// Pushes a render target on the render target stack and sets the viewport
// The push and pop methods also implicitly set the render target to the new top of stack
//-----------------------------------------------------------------------------
void CMatRenderContextBase::PushRenderTargetAndViewport( ITexture *pTexture, ITexture *pDepthTexture, int nViewX, int nViewY, int nViewW, int nViewH )
{
// Just blindly push the data on the stack
#if !defined( _X360 )
RenderTargetStackElement_t element = { {pTexture, NULL, NULL, NULL}, pDepthTexture, nViewX, nViewY, nViewW, nViewH };
#else
RenderTargetStackElement_t element = { {pTexture}, pDepthTexture, nViewX, nViewY, nViewW, nViewH };
#endif
m_RenderTargetStack.Push( element );
CommitRenderTargetAndViewport();
}
//-----------------------------------------------------------------------------
// Pops from the render target stack
// Also implicitly sets the render target to the new top of stack
//-----------------------------------------------------------------------------
void CMatRenderContextBase::PopRenderTargetAndViewport( void )
{
// Check for underflow
if ( m_RenderTargetStack.Count() == 0 )
{
Assert( !"CMatRenderContext::PopRenderTargetAndViewport: Stack is empty!!!" );
return;
}
// Changelist #266217 added this to main/src/materialsystem.
Flush();
// Remove the top of stack
m_RenderTargetStack.Pop( );
CommitRenderTargetAndViewport();
}
void CMatRenderContextBase::RecomputeViewProjState()
{
if ( m_bDirtyViewProjState )
{
VMatrix viewMatrix, projMatrix;
// FIXME: Should consider caching this upon change for projection or view matrix.
GetMatrix( MATERIAL_VIEW, &viewMatrix );
GetMatrix( MATERIAL_PROJECTION, &projMatrix );
m_viewProjMatrix = projMatrix * viewMatrix;
m_bDirtyViewProjState = false;
}
}
//-----------------------------------------------------------------------------
// This returns the diameter of the sphere in pixels based on
// the current model, view, + projection matrices and viewport.
//-----------------------------------------------------------------------------
float CMatRenderContextBase::ComputePixelDiameterOfSphere( const Vector& vecAbsOrigin, float flRadius )
{
RecomputeViewState();
RecomputeViewProjState();
// This is sort of faked, but it's faster that way
// FIXME: Also, there's a much faster way to do this with similar triangles
// but I want to make sure it exactly matches the current matrices, so
// for now, I do it this conservative way
Vector4D testPoint1, testPoint2;
VectorMA( vecAbsOrigin, flRadius, m_vecViewUp, testPoint1.AsVector3D() );
VectorMA( vecAbsOrigin, -flRadius, m_vecViewUp, testPoint2.AsVector3D() );
testPoint1.w = testPoint2.w = 1.0f;
Vector4D clipPos1, clipPos2;
Vector4DMultiply( m_viewProjMatrix, testPoint1, clipPos1 );
Vector4DMultiply( m_viewProjMatrix, testPoint2, clipPos2 );
if (clipPos1.w >= 0.001f)
{
clipPos1.y /= clipPos1.w;
}
else
{
clipPos1.y *= 1000;
}
if (clipPos2.w >= 0.001f)
{
clipPos2.y /= clipPos2.w;
}
else
{
clipPos2.y *= 1000;
}
int vx, vy, vwidth, vheight;
GetViewport( vx, vy, vwidth, vheight );
// The divide-by-two here is because y goes from -1 to 1 in projection space
return vheight * fabs( clipPos2.y - clipPos1.y ) / 2.0f;
}
ConVar mat_accelerate_adjust_exposure_down( "mat_accelerate_adjust_exposure_down", "3.0", FCVAR_CHEAT );
ConVar mat_hdr_manual_tonemap_rate( "mat_hdr_manual_tonemap_rate", "1.0" );
ConVar mat_hdr_tonemapscale( "mat_hdr_tonemapscale", "1.0", FCVAR_CHEAT );
ConVar mat_tonemap_algorithm( "mat_tonemap_algorithm", "1", FCVAR_CHEAT, "0 = Original Algorithm 1 = New Algorithm" );
void CMatRenderContextBase::TurnOnToneMapping(void)
{
if ( ( HardwareConfig()->GetHDRType() != HDR_TYPE_NONE ) && ( m_FrameTime > 0.0f ) )
{
float elapsed_time = m_FrameTime;
float goalScale = m_GoalToneMapScale;
float rate = mat_hdr_manual_tonemap_rate.GetFloat();
if ( mat_tonemap_algorithm.GetInt() == 1 )
{
rate *= 2.0f; // Default 2x for the new tone mapping algorithm so it feels the same as the original
}
if ( rate == 0.0f ) // Zero indicates instantaneous tonemap scaling
{
m_CurToneMapScale = goalScale;
}
else
{
if ( goalScale < m_CurToneMapScale )
{
float acc_exposure_adjust = mat_accelerate_adjust_exposure_down.GetFloat();
// Adjust at up to 4x rate when over-exposed.
rate = min( ( acc_exposure_adjust * rate ), FLerp( rate, ( acc_exposure_adjust * rate ), 0.0f, 1.5f, ( m_CurToneMapScale - goalScale ) ) );
}
float flRateTimesTime = rate * elapsed_time;
if ( mat_tonemap_algorithm.GetInt() == 1 )
{
// For the new tone mapping algorithm, limit the rate based on the number of bins to
// help reduce the tone map scalar "riding the wave" of the histogram re-building
//Warning( "flRateTimesTime = %.4f", flRateTimesTime );
flRateTimesTime = min( flRateTimesTime, ( 1.0f / 16.0f ) * 0.25f ); // 16 is number of HDR sample bins defined in viewpostprocess.cpp
//Warning( " --> %.4f\n", flRateTimesTime );
}
float alpha = max( 0.0f, min( 1.0f, flRateTimesTime ) );
m_CurToneMapScale = ( goalScale * alpha ) + ( m_CurToneMapScale * ( 1.0f - alpha ) );
if ( !IsFinite( m_CurToneMapScale ) )
{
Assert( 0 );
m_CurToneMapScale = goalScale;
}
}
SetToneMappingScaleLinear( Vector( m_CurToneMapScale, m_CurToneMapScale, m_CurToneMapScale ) );
m_LastSetToneMapScale = Vector( m_CurToneMapScale, m_CurToneMapScale, m_CurToneMapScale );
}
}
void CMatRenderContextBase::ResetToneMappingScale(float sc)
{
m_CurToneMapScale = sc;
SetToneMappingScaleLinear( Vector( m_CurToneMapScale, m_CurToneMapScale, m_CurToneMapScale ) );
m_LastSetToneMapScale = Vector( m_CurToneMapScale, m_CurToneMapScale, m_CurToneMapScale );
// mat_hdr_tonemapscale.SetValue(1.0f);
m_GoalToneMapScale = 1;
}
void CMatRenderContextBase::SetGoalToneMappingScale( float monoscale)
{
Assert( IsFinite( monoscale ) );
if( IsFinite( monoscale ) )
{
m_GoalToneMapScale = monoscale;
}
}
Vector CMatRenderContextBase::GetToneMappingScaleLinear( void )
{
if ( HardwareConfig()->GetHDRType() == HDR_TYPE_NONE )
return Vector( 1.0f, 1.0f, 1.0f );
else
return m_LastSetToneMapScale;
}
void CMatRenderContextBase::OnAsyncCreateTextureFromRenderTarget( ITexture* pSrcRt, const char** ppDstName, IAsyncTextureOperationReceiver* pRecipient )
{
Assert( pSrcRt != NULL );
Assert( pRecipient != NULL );
Assert( ppDstName != NULL && *ppDstName != NULL);
// Bump the ref count on the recipient before handing it off. This ensures the receiver won't go away before we have completed our work.
pSrcRt->AddRef();
pRecipient->AddRef();
// Also, need to allocate a copy of the string and use that one s.t. the caller doesn't have to worry about it.
char* pDstNameCopy = new char[ V_strlen( *ppDstName ) + 1 ];
V_strcpy( pDstNameCopy, *ppDstName );
( *ppDstName ) = pDstNameCopy;
}
// Map and unmap a texture. The pRecipient->OnAsyncMapComplete is called when complete.
void CMatRenderContextBase::OnAsyncMap( ITextureInternal* pTexToMap, IAsyncTextureOperationReceiver* pRecipient, void* pExtraArgs )
{
Assert( pTexToMap != NULL );
Assert( pRecipient != NULL );
pTexToMap->AddRef();
pRecipient->AddRef();
}
void CMatRenderContextBase::OnAsyncUnmap( ITextureInternal* pTexToUnmap )
{
Assert( pTexToUnmap != NULL );
pTexToUnmap->AddRef();
}
void CMatRenderContextBase::OnAsyncCopyRenderTargetToStagingTexture( ITexture* pDst, ITexture* pSrc, IAsyncTextureOperationReceiver* pRecipient )
{
Assert( pDst != NULL );
Assert( pSrc != NULL );
Assert( pRecipient != NULL );
pDst->AddRef();
pSrc->AddRef();
pRecipient->AddRef();
}
#undef g_pShaderAPI
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
CMatRenderContext::CMatRenderContext()
{
g_FrameNum = 0;
m_pBatchIndices = NULL;
m_pBatchMesh = NULL;
m_pCurrentIndexBuffer = NULL;
m_pMorphRenderContext = NULL;
m_NonInteractiveMode = MATERIAL_NON_INTERACTIVE_MODE_NONE;
}
InitReturnVal_t CMatRenderContext::Init( CMaterialSystem *pMaterialSystem )
{
InitReturnVal_t nRetVal = BaseClass::Init();
if ( nRetVal != INIT_OK )
return nRetVal;
m_pMaterialSystem = pMaterialSystem;
m_pBoundMorph = NULL;
// Create some lovely textures
m_pLocalCubemapTexture = TextureManager()->ErrorTexture();
m_pMorphRenderContext = g_pMorphMgr->AllocateRenderContext();
return INIT_OK;
}
void CMatRenderContext::Shutdown( )
{
if ( m_pUserDefinedLightmap )
{
m_pUserDefinedLightmap->DecrementReferenceCount();
m_pUserDefinedLightmap = NULL;
}
if ( m_pMorphRenderContext )
{
g_pMorphMgr->FreeRenderContext( m_pMorphRenderContext );
m_pMorphRenderContext = NULL;
}
BaseClass::Shutdown();
}
void CMatRenderContext::OnReleaseShaderObjects()
{
// alt-tab unbinds the morph
m_pBoundMorph = NULL;
}
#ifdef DX_TO_GL_ABSTRACTION
void CMatRenderContext::DoStartupShaderPreloading( void )
{
g_pShaderDevice->DoStartupShaderPreloading();
}
#endif
void CMatRenderContext::TextureManagerUpdate()
{
TextureManager()->Update();
}
inline IMaterialInternal *CMatRenderContext::GetMaterialInternal( MaterialHandle_t h ) const
{
return GetMaterialSystem()->GetMaterialInternal( h );
}
inline IMaterialInternal *CMatRenderContext::GetDrawFlatMaterial()
{
return GetMaterialSystem()->GetDrawFlatMaterial();
}
inline IMaterialInternal *CMatRenderContext::GetBufferClearObeyStencil( int i )
{
return GetMaterialSystem()->GetBufferClearObeyStencil(i );
}
inline ShaderAPITextureHandle_t CMatRenderContext::GetFullbrightLightmapTextureHandle() const
{
return GetMaterialSystem()->GetFullbrightLightmapTextureHandle();
}
inline ShaderAPITextureHandle_t CMatRenderContext::GetFullbrightBumpedLightmapTextureHandle() const
{
return GetMaterialSystem()->GetFullbrightBumpedLightmapTextureHandle();
}
inline ShaderAPITextureHandle_t CMatRenderContext::GetBlackTextureHandle() const
{
return GetMaterialSystem()->GetBlackTextureHandle();
}
inline ShaderAPITextureHandle_t CMatRenderContext::GetFlatNormalTextureHandle() const
{
return GetMaterialSystem()->GetFlatNormalTextureHandle();
}
inline ShaderAPITextureHandle_t CMatRenderContext::GetGreyTextureHandle() const
{
return GetMaterialSystem()->GetGreyTextureHandle();
}
inline ShaderAPITextureHandle_t CMatRenderContext::GetGreyAlphaZeroTextureHandle() const
{
return GetMaterialSystem()->GetGreyAlphaZeroTextureHandle();
}
inline ShaderAPITextureHandle_t CMatRenderContext::GetWhiteTextureHandle() const
{
return GetMaterialSystem()->GetWhiteTextureHandle();
}
inline const CMatLightmaps *CMatRenderContext::GetLightmaps() const
{
return GetMaterialSystem()->GetLightmaps();
}
inline CMatLightmaps *CMatRenderContext::GetLightmaps()
{
return GetMaterialSystem()->GetLightmaps();
}
inline ShaderAPITextureHandle_t CMatRenderContext::GetMaxDepthTextureHandle() const
{
return GetMaterialSystem()->GetMaxDepthTextureHandle();
}
void CMatRenderContext::BeginRender()
{
#if 1 // Rick's optimization: not sure this is needed anymore
if ( GetMaterialSystem()->GetThreadMode() != MATERIAL_SINGLE_THREADED )
{
VPROF_INCREMENT_GROUP_COUNTER( "render/CMatBeginRender", COUNTER_GROUP_TELEMETRY, 1 );
TelemetrySetLockName( TELEMETRY_LEVEL1, (char const *)&g_MatSysMutex, "MatSysMutex" );
tmTryLock( TELEMETRY_LEVEL1, (char const *)&g_MatSysMutex, "BeginRender" );
g_MatSysMutex.Lock();
tmEndTryLock( TELEMETRY_LEVEL1, (char const *)&g_MatSysMutex, TMLR_SUCCESS );
tmSetLockState( TELEMETRY_LEVEL1, (char const *)&g_MatSysMutex, TMLS_LOCKED, "BeginRender" );
}
#endif
}
void CMatRenderContext::EndRender()
{
#if 1 // Rick's optimization: not sure this is needed anymore
if ( GetMaterialSystem()->GetThreadMode() != MATERIAL_SINGLE_THREADED )
{
g_MatSysMutex.Unlock();
tmSetLockState( TELEMETRY_LEVEL1, (char const *)&g_MatSysMutex, TMLS_RELEASED, "EndRender" );
}
#endif
}
void CMatRenderContext::Flush( bool flushHardware )
{
VPROF( "CMatRenderContextBase::Flush" );
g_pShaderAPI->FlushBufferedPrimitives();
if ( IsPC() && flushHardware )
{
g_pShaderAPI->FlushBufferedPrimitives();
}
}
bool CMatRenderContext::TestMatrixSync( MaterialMatrixMode_t mode )
{
if ( !ShouldValidateMatrices() )
{
return true;
}
VMatrix transposeMatrix, matrix;
g_pShaderAPI->GetMatrix( mode, (float*)transposeMatrix.m );
MatrixTranspose( transposeMatrix, matrix );
ValidateMatrices( matrix, m_MatrixStacks[mode].Top().matrix );
return true;
}
void CMatRenderContext::MatrixMode( MaterialMatrixMode_t mode )
{
CMatRenderContextBase::MatrixMode( mode );
g_pShaderAPI->MatrixMode( mode );
if ( ShouldValidateMatrices() )
{
TestMatrixSync( mode );
}
}
void CMatRenderContext::PushMatrix()
{
if ( ShouldValidateMatrices() )
{
TestMatrixSync( m_MatrixMode );
}
CMatRenderContextBase::PushMatrix();
g_pShaderAPI->PushMatrix();
if ( ShouldValidateMatrices() )
{
TestMatrixSync( m_MatrixMode );
}
}
void CMatRenderContext::PopMatrix()
{
if ( ShouldValidateMatrices() )
{
TestMatrixSync( m_MatrixMode );
}
CMatRenderContextBase::PopMatrix();
g_pShaderAPI->PopMatrix();
if ( ShouldValidateMatrices() )
{
TestMatrixSync( m_MatrixMode );
}
}
void CMatRenderContext::LoadMatrix( const VMatrix& matrix )
{
CMatRenderContextBase::LoadMatrix( matrix );
ForceSync();
if ( ShouldValidateMatrices() )
{
VMatrix transposeMatrix;
MatrixTranspose( matrix, transposeMatrix );
g_pShaderAPI->LoadMatrix( transposeMatrix.Base() );
TestMatrixSync( m_MatrixMode );
}
}
void CMatRenderContext::LoadMatrix( const matrix3x4_t& matrix )
{
CMatRenderContextBase::LoadMatrix( matrix );
ForceSync();
if ( ShouldValidateMatrices() )
{
VMatrix transposeMatrix;
MatrixTranspose( VMatrix(matrix), transposeMatrix );
g_pShaderAPI->LoadMatrix( transposeMatrix.Base() );
TestMatrixSync( m_MatrixMode );
}
}
void CMatRenderContext::MultMatrix( const VMatrix& matrix )
{
CMatRenderContextBase::MultMatrix( matrix );
ForceSync();
if ( ShouldValidateMatrices() )
{
VMatrix transposeMatrix;
MatrixTranspose( matrix, transposeMatrix );
g_pShaderAPI->MultMatrix( transposeMatrix.Base() );
TestMatrixSync( m_MatrixMode );
}
}
void CMatRenderContext::MultMatrix( const matrix3x4_t& matrix )
{
CMatRenderContextBase::MultMatrix( VMatrix( matrix ) );
ForceSync();
if ( ShouldValidateMatrices() )
{
VMatrix transposeMatrix;
MatrixTranspose( VMatrix(matrix), transposeMatrix );
g_pShaderAPI->MultMatrix( transposeMatrix.Base() );
TestMatrixSync( m_MatrixMode );
}
}
void CMatRenderContext::MultMatrixLocal( const VMatrix& matrix )
{
CMatRenderContextBase::MultMatrixLocal( matrix );
ForceSync();
if ( ShouldValidateMatrices() )
{
VMatrix transposeMatrix;
MatrixTranspose( matrix, transposeMatrix );
g_pShaderAPI->MultMatrixLocal( transposeMatrix.Base() );
TestMatrixSync( m_MatrixMode );
}
}
void CMatRenderContext::MultMatrixLocal( const matrix3x4_t& matrix )
{
CMatRenderContextBase::MultMatrixLocal( VMatrix( matrix ) );
ForceSync();
if ( ShouldValidateMatrices() )
{
VMatrix transposeMatrix;
MatrixTranspose( VMatrix(matrix), transposeMatrix );
g_pShaderAPI->MultMatrixLocal( transposeMatrix.Base() );
TestMatrixSync( m_MatrixMode );
}
}
void CMatRenderContext::LoadIdentity()
{
CMatRenderContextBase::LoadIdentity();
ForceSync();
if ( ShouldValidateMatrices() )
{
g_pShaderAPI->LoadIdentity();
TestMatrixSync( m_MatrixMode );
}
}
void CMatRenderContext::Ortho( double left, double top, double right, double bottom, double zNear, double zFar )
{
CMatRenderContextBase::Ortho( left, top, right, bottom, zNear, zFar );
ForceSync();
if ( ShouldValidateMatrices() )
{
g_pShaderAPI->Ortho( left, top, right, bottom, zNear, zFar );
TestMatrixSync( m_MatrixMode );
}
}
void CMatRenderContext::PerspectiveX( double flFovX, double flAspect, double flZNear, double flZFar )
{
CMatRenderContextBase::PerspectiveX( flFovX, flAspect, flZNear, flZFar );
ForceSync();
if ( ShouldValidateMatrices() )
{
g_pShaderAPI->PerspectiveX( flFovX, flAspect, flZNear, flZFar );
TestMatrixSync( m_MatrixMode );
}
}
void CMatRenderContext::PerspectiveOffCenterX( double flFovX, double flAspect, double flZNear, double flZFar, double bottom, double top, double left, double right )
{
CMatRenderContextBase::PerspectiveOffCenterX( flFovX, flAspect, flZNear, flZFar, bottom, top, left, right );
ForceSync();
if ( ShouldValidateMatrices() )
{
g_pShaderAPI->PerspectiveOffCenterX( flFovX, flAspect, flZNear, flZFar, bottom, top, left, right );
TestMatrixSync( m_MatrixMode );
}
}
void CMatRenderContext::PickMatrix( int x, int y, int nWidth, int nHeight )
{
CMatRenderContextBase::PickMatrix( x, y, nWidth, nHeight );
ForceSync();
if ( ShouldValidateMatrices() )
{
g_pShaderAPI->PickMatrix( x, y, nWidth, nHeight );
TestMatrixSync( m_MatrixMode );
}
}
void CMatRenderContext::Rotate( float flAngle, float x, float y, float z )
{
CMatRenderContextBase::Rotate( flAngle, x, y, z );
ForceSync();
if ( ShouldValidateMatrices() )
{
g_pShaderAPI->Rotate( flAngle, x, y, z );
TestMatrixSync( m_MatrixMode );
}
}
void CMatRenderContext::Translate( float x, float y, float z )
{
CMatRenderContextBase::Translate( x, y, z );
ForceSync();
if ( ShouldValidateMatrices() )
{
g_pShaderAPI->Translate( x, y, z );
TestMatrixSync( m_MatrixMode );
}
}
void CMatRenderContext::Scale( float x, float y, float z )
{
CMatRenderContextBase::Scale( x, y, z );
ForceSync();
if ( ShouldValidateMatrices() )
{
g_pShaderAPI->Scale( x, y, z );
TestMatrixSync( m_MatrixMode );
}
}
void CMatRenderContext::GetMatrix( MaterialMatrixMode_t matrixMode, VMatrix *pMatrix )
{
CMatRenderContextBase::GetMatrix( matrixMode, pMatrix );
ForceSync();
if ( ShouldValidateMatrices() )
{
VMatrix testMatrix;
VMatrix transposeMatrix;
g_pShaderAPI->GetMatrix( matrixMode, (float*)transposeMatrix.m );
MatrixTranspose( transposeMatrix, testMatrix );
ValidateMatrices( testMatrix, *pMatrix );
}
}
void CMatRenderContext::GetMatrix( MaterialMatrixMode_t matrixMode, matrix3x4_t *pMatrix )
{
if ( !ShouldValidateMatrices() )
{
CMatRenderContextBase::GetMatrix( matrixMode, pMatrix );
}
else
{
VMatrix matrix;
CMatRenderContext::GetMatrix( matrixMode, &matrix );
*pMatrix = matrix.As3x4();
}
}
void CMatRenderContext::SyncMatrices()
{
if ( !ShouldValidateMatrices() && AllowLazyMatrixSync() )
{
for( int i = 0; i < NUM_MATRIX_MODES; i++ )
{
MatrixStackItem_t &top = m_MatrixStacks[i].Top();
if ( top.flags & MSF_DIRTY )
{
g_pShaderAPI->MatrixMode( (MaterialMatrixMode_t)i );
if ( !( top.flags & MSF_IDENTITY ) )
{
VMatrix transposeTop;
MatrixTranspose( top.matrix, transposeTop );
g_pShaderAPI->LoadMatrix( transposeTop.Base() );
}
else
{
g_pShaderAPI->LoadIdentity();
}
top.flags &= ~MSF_DIRTY;
}
}
}
}
void CMatRenderContext::ForceSyncMatrix( MaterialMatrixMode_t mode )
{
MatrixStackItem_t &top = m_MatrixStacks[mode].Top();
if ( top.flags & MSF_DIRTY )
{
bool bSetMode = ( m_MatrixMode != mode );
if ( bSetMode )
{
g_pShaderAPI->MatrixMode( (MaterialMatrixMode_t)mode );
}
if ( !( top.flags & MSF_IDENTITY ) )
{
VMatrix transposeTop;
MatrixTranspose( top.matrix, transposeTop );
g_pShaderAPI->LoadMatrix( transposeTop.Base() );
}
else
{
g_pShaderAPI->LoadIdentity();
}
if ( bSetMode )
{
g_pShaderAPI->MatrixMode( (MaterialMatrixMode_t)mode );
}
top.flags &= ~MSF_DIRTY;
}
}
void CMatRenderContext::SyncMatrix( MaterialMatrixMode_t mode )
{
if ( !ShouldValidateMatrices() && AllowLazyMatrixSync() )
{
ForceSyncMatrix( mode );
}
}
//-----------------------------------------------------------------------------
// Swap buffers
//-----------------------------------------------------------------------------
void CMatRenderContext::SwapBuffers()
{
g_pMorphMgr->AdvanceFrame();
g_pOcclusionQueryMgr->AdvanceFrame();
g_pShaderDevice->Present();
#ifdef _X360
if ( s_bDirtyDisk )
{
SpinPresent();
}
#endif
}
//-----------------------------------------------------------------------------
// Clears the render data after we're done with it
//-----------------------------------------------------------------------------
void CMatRenderContext::OnRenderDataUnreferenced()
{
MarkRenderDataUnused( false );
}
//-----------------------------------------------------------------------------
// Custom clip planes
//-----------------------------------------------------------------------------
void CMatRenderContext::PushCustomClipPlane( const float *pPlane )
{
PlaneStackElement psePlane;
memcpy( psePlane.fValues, pPlane, sizeof( float ) * 4 );
psePlane.bHack_IsHeightClipPlane = false;
m_CustomClipPlanes.AddToTail( psePlane ); //we're doing this as a UtlVector so height clip planes never change their cached index
ApplyCustomClipPlanes();
}
void CMatRenderContext::PopCustomClipPlane( void )
{
Assert( m_CustomClipPlanes.Count() );
//remove the endmost non-height plane found
int i;
for( i = m_CustomClipPlanes.Count(); --i >= 0; )
{
if( m_CustomClipPlanes[i].bHack_IsHeightClipPlane == false )
{
m_CustomClipPlanes.Remove(i);
break;
}
}
Assert( i != -1 ); //only the height clip plane was found, which means this pop had no associated push
ApplyCustomClipPlanes();
}
void CMatRenderContext::ApplyCustomClipPlanes( void )
{
int iMaxClipPlanes = HardwareConfig()->MaxUserClipPlanes();
int iCustomPlanes;
if( m_bEnableClipping )
iCustomPlanes = m_CustomClipPlanes.Count();
else
iCustomPlanes = 0;
float fFakePlane[4];
unsigned int iFakePlaneVal = 0xFFFFFFFF;
fFakePlane[0] = fFakePlane[1] = fFakePlane[2] = fFakePlane[3] = *((float *)&iFakePlaneVal);
SyncMatrices();
if( iMaxClipPlanes >= 1 && !HardwareConfig()->UseFastClipping() )
{
//yay, we get to be the cool clipping club
if( iMaxClipPlanes >= iCustomPlanes )
{
int i;
for( i = 0; i < iCustomPlanes; ++i )
{
g_pShaderAPI->SetClipPlane( i, m_CustomClipPlanes[i].fValues );
g_pShaderAPI->EnableClipPlane( i, true );
}
for( ; i < iMaxClipPlanes; ++i ) //disable unused planes
{
g_pShaderAPI->EnableClipPlane( i, false );
g_pShaderAPI->SetClipPlane( i, fFakePlane );
}
}
else
{
int iCustomPlaneOffset = iCustomPlanes - iMaxClipPlanes;
//can't enable them all
for( int i = iCustomPlaneOffset; i < iCustomPlanes; ++i )
{
g_pShaderAPI->SetClipPlane( i % iMaxClipPlanes, m_CustomClipPlanes[i].fValues );
g_pShaderAPI->EnableClipPlane( i % iMaxClipPlanes, true );
}
}
}
else
{
//hmm, at most we can make 1 clip plane work
if( iCustomPlanes == 0 )
{
//no planes at all
g_pShaderAPI->EnableFastClip( false );
g_pShaderAPI->SetFastClipPlane( fFakePlane );
}
else
{
//we have to wire the topmost plane into the fast clipping scheme
g_pShaderAPI->EnableFastClip( true );
g_pShaderAPI->SetFastClipPlane( m_CustomClipPlanes[iCustomPlanes - 1].fValues );
}
}
}
//-----------------------------------------------------------------------------
// Creates/destroys morph data associated w/ a particular material
//-----------------------------------------------------------------------------
IMorph *CMatRenderContext::CreateMorph( MorphFormat_t format, const char *pDebugName )
{
Assert( format != 0 );
IMorphInternal *pMorph = g_pMorphMgr->CreateMorph( );
pMorph->Init( format, pDebugName );
return pMorph;
}
void CMatRenderContext::DestroyMorph( IMorph *pMorph )
{
g_pMorphMgr->DestroyMorph( static_cast<IMorphInternal*>(pMorph) );
}
void CMatRenderContext::BindMorph( IMorph *pMorph )
{
IMorphInternal *pMorphInternal = static_cast<IMorphInternal*>(pMorph);
if ( m_pBoundMorph != pMorphInternal )
{
g_pShaderAPI->FlushBufferedPrimitives();
m_pBoundMorph = pMorphInternal;
bool bEnableHWMorph = false;
if ( pMorphInternal == MATERIAL_MORPH_DECAL )
{
bEnableHWMorph = true;
}
else if ( pMorphInternal )
{
bEnableHWMorph = true;
pMorphInternal->Bind( m_pMorphRenderContext );
}
g_pShaderAPI->EnableHWMorphing( bEnableHWMorph );
}
}
IMesh* CMatRenderContext::GetDynamicMesh( bool buffered, IMesh* pVertexOverride, IMesh* pIndexOverride, IMaterial *pAutoBind )
{
VPROF_ASSERT_ACCOUNTED( "CMatRenderContext::GetDynamicMesh" );
if( pAutoBind )
{
Bind( pAutoBind, NULL );
}
if ( pVertexOverride )
{
if ( CompressionType( pVertexOverride->GetVertexFormat() ) != VERTEX_COMPRESSION_NONE )
{
// UNDONE: support compressed dynamic meshes if needed (pro: less VB memory, con: time spent compressing)
DebuggerBreak();
return NULL;
}
}
// For anything more than 1 bone, imply the last weight from the 1 - the sum of the others.
int nCurrentBoneCount = GetCurrentNumBones();
Assert( nCurrentBoneCount <= 4 );
if ( nCurrentBoneCount > 1 )
{
--nCurrentBoneCount;
}
return g_pShaderAPI->GetDynamicMesh( GetCurrentMaterialInternal(), nCurrentBoneCount,
buffered, pVertexOverride, pIndexOverride);
}
IMesh* CMatRenderContext::GetDynamicMeshEx( VertexFormat_t vertexFormat, bool bBuffered, IMesh* pVertexOverride, IMesh* pIndexOverride, IMaterial *pAutoBind )
{
VPROF_ASSERT_ACCOUNTED( "CMatRenderContext::GetDynamicMesh" );
if( pAutoBind )
{
Bind( pAutoBind, NULL );
}
if ( pVertexOverride )
{
if ( CompressionType( pVertexOverride->GetVertexFormat() ) != VERTEX_COMPRESSION_NONE )
{
// UNDONE: support compressed dynamic meshes if needed (pro: less VB memory, con: time spent compressing)
DebuggerBreak();
return NULL;
}
}
// For anything more than 1 bone, imply the last weight from the 1 - the sum of the others.
// FIXME: this seems wrong - in common_vs_fxc.h, we only infer the last weight if we have 3 (not 2)
int nCurrentBoneCount = GetCurrentNumBones();
Assert( nCurrentBoneCount <= 4 );
if ( nCurrentBoneCount > 1 )
{
--nCurrentBoneCount;
}
return g_pShaderAPI->GetDynamicMeshEx( GetCurrentMaterialInternal(), vertexFormat, nCurrentBoneCount,
bBuffered, pVertexOverride, pIndexOverride );
}
//-----------------------------------------------------------------------------
// Deals with depth range
//-----------------------------------------------------------------------------
void CMatRenderContext::DepthRange( float zNear, float zFar )
{
m_Viewport.m_flMinZ = zNear;
m_Viewport.m_flMaxZ = zFar;
g_pShaderAPI->SetViewports( 1, &m_Viewport );
}
//-----------------------------------------------------------------------------
// Private utility function to actually commit the top of the RT/Viewport stack
// to the device. Only called by the push and pop routines above.
//-----------------------------------------------------------------------------
void CMatRenderContext::CommitRenderTargetAndViewport( void )
{
Assert( m_RenderTargetStack.Count() > 0 );
const RenderTargetStackElement_t &element = m_RenderTargetStack.Top( );
for( int rt=0; rt<NELEMS(element.m_pRenderTargets); rt++ )
{
// If we're dealing with the back buffer
if ( element.m_pRenderTargets[rt] == NULL )
{
g_pShaderAPI->SetRenderTargetEx(rt); // No texture parameter here indicates back buffer
if ( IsPC() )
{
Assert( ImageLoader::SizeInBytes( g_pShaderDevice->GetBackBufferFormat() ) <= 4 );
g_pShaderAPI->EnableLinearColorSpaceFrameBuffer( false );
}
if (rt == 0) // the first rt sets the viewport
{
// If either dimension is negative, set to full bounds of back buffer
if ( (element.m_nViewW < 0) || (element.m_nViewH < 0) )
{
m_Viewport.m_nTopLeftX = 0;
m_Viewport.m_nTopLeftY = 0;
g_pShaderAPI->GetBackBufferDimensions( m_Viewport.m_nWidth, m_Viewport.m_nHeight );
g_pShaderAPI->SetViewports( 1, &m_Viewport );
}
else // use the bounds in the element
{
m_Viewport.m_nTopLeftX = element.m_nViewX;
m_Viewport.m_nTopLeftY = element.m_nViewY;
m_Viewport.m_nWidth = element.m_nViewW;
m_Viewport.m_nHeight = element.m_nViewH;
g_pShaderAPI->SetViewports( 1, &m_Viewport );
}
}
}
else // We're dealing with a texture
{
ITextureInternal *pTexInt = static_cast<ITextureInternal*>(element.m_pRenderTargets[rt]);
pTexInt->SetRenderTarget( rt, element.m_pDepthTexture );
if (rt == 0)
{
if ( IsPC() )
{
if( element.m_pRenderTargets[rt]->GetImageFormat() == IMAGE_FORMAT_RGBA16161616F )
{
g_pShaderAPI->EnableLinearColorSpaceFrameBuffer( true );
}
else
{
g_pShaderAPI->EnableLinearColorSpaceFrameBuffer( false );
}
}
// If either dimension is negative, set to full bounds of target
if ( (element.m_nViewW < 0) || (element.m_nViewH < 0) )
{
m_Viewport.m_nTopLeftX = 0;
m_Viewport.m_nTopLeftY = 0;
m_Viewport.m_nWidth = element.m_pRenderTargets[rt]->GetActualWidth();
m_Viewport.m_nHeight = element.m_pRenderTargets[rt]->GetActualHeight();
g_pShaderAPI->SetViewports( 1, &m_Viewport );
}
else // use the bounds passed in
{
m_Viewport.m_nTopLeftX = element.m_nViewX;
m_Viewport.m_nTopLeftY = element.m_nViewY;
m_Viewport.m_nWidth = element.m_nViewW;
m_Viewport.m_nHeight = element.m_nViewH;
g_pShaderAPI->SetViewports( 1, &m_Viewport );
}
}
}
}
}
void CMatRenderContext::SetFrameBufferCopyTexture( ITexture *pTexture, int textureIndex )
{
if( textureIndex < 0 || textureIndex > MAX_FB_TEXTURES )
{
Assert( 0 );
return;
}
if( m_pCurrentFrameBufferCopyTexture[textureIndex] != pTexture )
{
g_pShaderAPI->FlushBufferedPrimitives();
}
// FIXME: Do I need to increment/decrement ref counts here, or assume that the app is going to do it?
m_pCurrentFrameBufferCopyTexture[textureIndex] = pTexture;
}
void CMatRenderContext::BindLocalCubemap( ITexture *pTexture )
{
ITexture *pPreviousTexture = m_pLocalCubemapTexture;
CMatRenderContextBase::BindLocalCubemap( pTexture );
if( m_pLocalCubemapTexture != pPreviousTexture )
{
g_pShaderAPI->FlushBufferedPrimitives();
}
}
void CMatRenderContext::SetNonInteractivePacifierTexture( ITexture *pTexture, float flNormalizedX, float flNormalizedY, float flNormalizedSize )
{
m_pNonInteractivePacifier.Init( pTexture );
m_flNormalizedX = flNormalizedX;
m_flNormalizedY = flNormalizedY;
m_flNormalizedSize = flNormalizedSize;
}
void CMatRenderContext::SetNonInteractiveTempFullscreenBuffer( ITexture *pTexture, MaterialNonInteractiveMode_t mode )
{
if ( mode != MATERIAL_NON_INTERACTIVE_MODE_NONE )
{
m_pNonInteractiveTempFullscreenBuffer[mode].Init( pTexture );
}
}
void CMatRenderContext::RefreshFrontBufferNonInteractive()
{
g_pShaderDevice->RefreshFrontBufferNonInteractive();
#ifdef _X360
if ( s_bDirtyDisk )
{
if ( m_NonInteractiveMode == MATERIAL_NON_INTERACTIVE_MODE_NONE )
{
SpinPresent();
}
else
{
while ( true )
{
g_pShaderDevice->RefreshFrontBufferNonInteractive();
}
}
}
#endif
}
void CMatRenderContext::EnableNonInteractiveMode( MaterialNonInteractiveMode_t mode )
{
m_NonInteractiveMode = mode;
if ( mode == MATERIAL_NON_INTERACTIVE_MODE_NONE )
{
g_pShaderDevice->EnableNonInteractiveMode( mode );
}
else
{
ShaderNonInteractiveInfo_t info;
info.m_flNormalizedX = m_flNormalizedX;
info.m_flNormalizedY = m_flNormalizedY;
info.m_flNormalizedSize = m_flNormalizedSize;
ITextureInternal *pTexInternal = static_cast<ITextureInternal*>( (ITexture*)m_pNonInteractiveTempFullscreenBuffer[mode] );
info.m_hTempFullscreenTexture = pTexInternal ?
pTexInternal->GetTextureHandle(0) : INVALID_SHADERAPI_TEXTURE_HANDLE;
ITextureInternal *pTexPacifierInternal = static_cast<ITextureInternal*>( (ITexture*)m_pNonInteractivePacifier );
info.m_nPacifierCount = pTexPacifierInternal ? pTexPacifierInternal->GetNumAnimationFrames() : 0;
for ( int i = 0; i < info.m_nPacifierCount; ++i )
{
info.m_pPacifierTextures[i] = pTexPacifierInternal->GetTextureHandle( i );
}
g_pShaderDevice->EnableNonInteractiveMode( mode, &info );
}
}
void CMatRenderContext::SetRenderTargetEx( int nRenderTargetID, ITexture *pNewTarget )
{
// Verify valid top of RT stack
Assert ( m_RenderTargetStack.Count() > 0 );
// Grab the old target
ITexture *pOldTarget = m_RenderTargetStack.Top().m_pRenderTargets[nRenderTargetID];
CMatRenderContextBase::SetRenderTargetEx( nRenderTargetID, pNewTarget );
// If we're actually changing render targets
if( pNewTarget != pOldTarget )
{
// If we're going to render to the back buffer
if ( pNewTarget == NULL )
{
if ( nRenderTargetID == 0) // reset viewport on set of rt 0
{
m_Viewport.m_nTopLeftX = 0;
m_Viewport.m_nTopLeftY = 0;
g_pShaderAPI->GetBackBufferDimensions( m_Viewport.m_nWidth, m_Viewport.m_nHeight );
g_pShaderAPI->SetViewports( 1, &m_Viewport );
}
g_pShaderAPI->SetRenderTargetEx( nRenderTargetID ); // No parameter here indicates back buffer
}
else
{
// If we're going to render to a texture
// Make sure the texture is a render target...
bool reset = true;
if (nRenderTargetID==0)
{
// reset vp on change of rt#0
m_Viewport.m_nTopLeftX = 0;
m_Viewport.m_nTopLeftY = 0;
m_Viewport.m_nWidth = pNewTarget->GetActualWidth();
m_Viewport.m_nHeight = pNewTarget->GetActualHeight();
g_pShaderAPI->SetViewports( 1, &m_Viewport );
}
ITextureInternal *pTexInt = static_cast<ITextureInternal*>(pNewTarget);
if ( pTexInt )
{
reset = !pTexInt->SetRenderTarget( nRenderTargetID );
if ( reset )
{
g_pShaderAPI->SetRenderTargetEx( nRenderTargetID );
}
}
if( pNewTarget && pNewTarget->GetImageFormat() == IMAGE_FORMAT_RGBA16161616F )
{
g_pShaderAPI->EnableLinearColorSpaceFrameBuffer( true );
}
else
{
g_pShaderAPI->EnableLinearColorSpaceFrameBuffer( false );
}
}
}
CommitRenderTargetAndViewport();
}
void CMatRenderContext::GetRenderTargetDimensions( int &width, int &height ) const
{
// Target at top of stack
ITexture *pTOS = m_RenderTargetStack.Top().m_pRenderTargets[0];
// If top of stack isn't the back buffer, get dimensions from the texture
if ( pTOS != NULL )
{
width = pTOS->GetActualWidth();
height = pTOS->GetActualHeight();
}
else // otherwise, get them from the shader API
{
g_pShaderAPI->GetBackBufferDimensions( width, height );
}
}
//-----------------------------------------------------------------------------
// What are the lightmap dimensions?
//-----------------------------------------------------------------------------
void CMatRenderContext::GetLightmapDimensions( int *w, int *h )
{
*w = GetMaterialSystem()->GetLightmapWidth( GetLightmapPage() );
*h = GetMaterialSystem()->GetLightmapHeight( GetLightmapPage() );
}
void CMatRenderContext::DrawScreenSpaceQuad( IMaterial* pMaterial )
{
// Despite saying we render a full screen quad, this actually renders a single triangle
// that covers the whole screen.
int w, h;
GetRenderTargetDimensions( w, h );
if ( ( w == 0 ) || ( h == 0 ) )
return;
// DX9 disagrees about (0, 0) in a render target and (0, 0) in the texture.
// Fix that here by doing a half-pixel offset for the pixel.
// Because we are working in clip space which is 2 units across, the adjustment factor is 1.
float flOffsetW = 1.0f / w;
float flOffsetH = 1.0f / h;
Bind( pMaterial );
IMesh* pMesh = GetDynamicMesh( true );
CMeshBuilder meshBuilder;;
meshBuilder.Begin( pMesh, MATERIAL_TRIANGLES, 1 );
enum { TL, BL, TR, COORDS_COUNT };
struct CoordSSQ_t
{
float x, y;
float u, v;
};
CoordSSQ_t coords[] = {
{ -1.0f - 1.0f * flOffsetW, 1.0f + 1.0f * flOffsetH, 0.0f, 0.0f }, // TL
{ -1.0f - 1.0f * flOffsetW, -3.0f + 1.0f * flOffsetH, 0.0f, 2.0f }, // BL
{ 3.0f - 1.0f * flOffsetW, 1.0f + 1.0f * flOffsetH, 2.0f, 0.0f }, // TR
};
static_assert( ARRAYSIZE( coords ) == COORDS_COUNT, "Unexpected number of coords in triangle, should match enum." );
MatrixMode( MATERIAL_VIEW );
PushMatrix();
LoadIdentity();
MatrixMode( MATERIAL_PROJECTION );
PushMatrix();
LoadIdentity();
for ( int i = 0; i < COORDS_COUNT; ++i )
{
meshBuilder.Position3f( coords[ i ].x, coords[ i ].y, 0.0f );
meshBuilder.Normal3f( 0.0f, 0.0f, 1.0f );
meshBuilder.TangentS3f( 0.0f, 1.0f, 0.0f );
meshBuilder.TangentT3f( 1.0f, 0.0f, 0.0f );
meshBuilder.TexCoord2f( 0, coords[ i ].u, coords[ i ].v );
meshBuilder.AdvanceVertex();
}
meshBuilder.End();
pMesh->Draw();
MatrixMode( MATERIAL_VIEW );
PopMatrix();
MatrixMode( MATERIAL_PROJECTION );
PopMatrix();
}
void CMatRenderContext::DrawScreenSpaceRectangle(
IMaterial *pMaterial,
int destx, int desty,
int width, int height,
float src_texture_x0, float src_texture_y0, // which texel you want to appear at
// destx/y
float src_texture_x1, float src_texture_y1, // which texel you want to appear at
// destx+width-1, desty+height-1
int src_texture_width, int src_texture_height, // needed for fixup
void *pClientRenderable,
int nXDice, int nYDice ) // Amount to tessellate the quad
{
pMaterial = ((IMaterialInternal *)pMaterial)->GetRealTimeVersion();
::DrawScreenSpaceRectangle( pMaterial, destx, desty, width, height,
src_texture_x0, src_texture_y0, src_texture_x1, src_texture_y1,
src_texture_width, src_texture_height, pClientRenderable, nXDice, nYDice );
return;
}
static int CompareVertexFormats( VertexFormat_t Fmt1, VertexFormat_t Fmt2 )
{
if ( Fmt1 != Fmt2 )
{
if ( Fmt1 > Fmt2 )
return 1;
else
return -1;
}
else
return 0;
}
int CMatRenderContext::CompareMaterialCombos( IMaterial *pMaterial1, IMaterial *pMaterial2, int lightMapID1, int lightMapID2 )
{
pMaterial1 = ((IMaterialInternal *)pMaterial1)->GetRealTimeVersion(); //always work with the real time version of materials internally.
pMaterial2 = ((IMaterialInternal *)pMaterial2)->GetRealTimeVersion(); //always work with the real time version of materials internally.
IMaterialInternal *pMat1 = (IMaterialInternal *)pMaterial1;
IMaterialInternal *pMat2 = (IMaterialInternal *)pMaterial2;
ShaderRenderState_t *pState1 = pMat1->GetRenderState();
ShaderRenderState_t *pState2 = pMat2->GetRenderState();
int dPass = pState2->m_pSnapshots->m_nPassCount - pState1->m_pSnapshots->m_nPassCount;
if ( dPass )
return dPass;
if ( pState1->m_pSnapshots->m_nPassCount > 1 )
{
int dFormat = CompareVertexFormats( pMat1->GetVertexFormat(), pMat2->GetVertexFormat() );
if ( dFormat )
return dFormat;
}
for ( int i = 0; i < pState1->m_pSnapshots->m_nPassCount; i++ )
{
// UNDONE: Compare snapshots in the shaderapi?
int dSnapshot = pState1->m_pSnapshots->m_Snapshot[i] - pState2->m_pSnapshots->m_Snapshot[i];
if ( dSnapshot )
{
dSnapshot = g_pShaderAPI->CompareSnapshots( pState1->m_pSnapshots->m_Snapshot[i], pState2->m_pSnapshots->m_Snapshot[i] );
if ( dSnapshot )
return dSnapshot;
}
}
int dFormat = CompareVertexFormats( pMat1->GetVertexFormat(), pMat2->GetVertexFormat() );
if ( dFormat )
return dFormat;
IMaterialVar **pParams1 = pMat1->GetShaderParams();
IMaterialVar **pParams2 = pMat2->GetShaderParams();
int nParams1 = pMat1->ShaderParamCount();
int nParams2 = pMat2->ShaderParamCount();
int nBaseTexParamType1 = pParams1 && nParams1 > BASETEXTURE ? pParams1[BASETEXTURE]->GetType() : -1;
int nBaseTexParamType2 = pParams2 && nParams2 > BASETEXTURE ? pParams2[BASETEXTURE]->GetType() : -1;
if( nBaseTexParamType1 == MATERIAL_VAR_TYPE_TEXTURE || nBaseTexParamType2 == MATERIAL_VAR_TYPE_TEXTURE )
{
if( nBaseTexParamType1 != nBaseTexParamType2 )
{
return nBaseTexParamType2 - nBaseTexParamType1;
}
int dBaseTexture = Q_stricmp( pParams1[BASETEXTURE]->GetTextureValue()->GetName(), pParams2[BASETEXTURE]->GetTextureValue()->GetName() );
if ( dBaseTexture )
return dBaseTexture;
}
int dLightmap = lightMapID1 - lightMapID2;
if ( dLightmap )
return dLightmap;
return (int)pMat1 - (int)pMat2;
}
void CMatRenderContext::Bind( IMaterial *iMaterial, void *proxyData )
{
if ( !iMaterial )
{
if ( !g_pErrorMaterial )
return;
Warning( "Programming error: CMatRenderContext::Bind: NULL material\n" );
iMaterial = g_pErrorMaterial;
}
else
{
iMaterial = iMaterial->CheckProxyReplacement( proxyData );
}
IMaterialInternal *material = static_cast<IMaterialInternal *>( iMaterial );
material = material->GetRealTimeVersion(); //always work with the real time versions of materials internally
if ( material->GetReferenceCount() <= 0 )
{
static ConVarRef matTextureListConVar( "mat_texture_list" );
static ConVarRef matShowWaterTextureConVar( "mat_showwatertextures" );
if ( ( !matTextureListConVar.IsValid() || !matTextureListConVar.GetBool() ) &&
( !matShowWaterTextureConVar.IsValid() || !matShowWaterTextureConVar.GetBool() ))
{
Warning( "Material %s has bad reference count %d when being bound\n", material->GetName(), material->GetReferenceCount() );
// The usual solution for this for global materials that really don't need refcounting is to do material->AddRef();
Assert( 0 );
iMaterial = g_pErrorMaterial;
}
}
if (g_config.bDrawFlat && !material->NoDebugOverride())
{
material = static_cast<IMaterialInternal *>( GetDrawFlatMaterial() );
}
CMatRenderContextBase::Bind( iMaterial, proxyData );
// We've always gotta call the bind proxy
SyncMatrices();
if ( GetMaterialSystem()->GetThreadMode() == MATERIAL_SINGLE_THREADED )
{
GetCurrentMaterialInternal()->CallBindProxy( proxyData );
}
g_pShaderAPI->Bind( GetCurrentMaterialInternal() );
}
void CMatRenderContext::CopyRenderTargetToTextureEx( ITexture *pTexture, int nRenderTargetID, Rect_t *pSrcRect, Rect_t *pDstRect )
{
if ( !pTexture )
{
Assert( 0 );
return;
}
GetMaterialSystem()->Flush( false );
ITextureInternal *pTextureInternal = (ITextureInternal *)pTexture;
if ( IsPC() || !IsX360() )
{
pTextureInternal->CopyFrameBufferToMe( nRenderTargetID, pSrcRect, pDstRect );
}
else
{
// X360 only does 1:1 resolves. So we can do full resolves to textures of size
// equal or greater than the viewport trivially. Downsizing is nasty.
Rect_t srcRect;
if ( !pSrcRect )
{
// build out source rect
pSrcRect = &srcRect;
int x, y, w, h;
GetViewport( x, y, w, h );
pSrcRect->x = 0;
pSrcRect->y = 0;
pSrcRect->width = w;
pSrcRect->height = h;
}
Rect_t dstRect;
if ( !pDstRect )
{
// build out target rect
pDstRect = &dstRect;
pDstRect->x = 0;
pDstRect->y = 0;
pDstRect->width = pTexture->GetActualWidth();
pDstRect->height = pTexture->GetActualHeight();
}
if ( pSrcRect->width == pDstRect->width && pSrcRect->height == pDstRect->height )
{
// 1:1 mapping, no stretching needed, use direct path
pTextureInternal->CopyFrameBufferToMe( nRenderTargetID, pSrcRect, pDstRect );
return;
}
if( (pDstRect->x == 0) && (pDstRect->y == 0) &&
(pDstRect->width == pTexture->GetActualWidth()) && (pDstRect->height == pTexture->GetActualHeight()) &&
(pDstRect->width >= pSrcRect->width) && (pDstRect->height >= pSrcRect->height) )
{
// Resolve takes up the whole texture, and the texture is large enough to hold the resolve.
// This is turned into a 1:1 resolve within shaderapi by making D3D think the texture is smaller from now on. (Until it resolves from a bigger source)
pTextureInternal->CopyFrameBufferToMe( nRenderTargetID, pSrcRect, pDstRect );
return;
}
// currently assuming disparate copies are only for FB blits
// ensure active render target is actually the back buffer
Assert( m_RenderTargetStack.Top().m_pRenderTargets[0] == NULL );
// nasty sequence:
// resolve FB surface to matching clone DDR texture
// gpu draw from clone DDR FB texture to disparate RT target surface
// resolve to its matching DDR clone texture
ITextureInternal *pFullFrameFB = (ITextureInternal*)GetMaterialSystem()->FindTexture( "_rt_FullFrameFB", TEXTURE_GROUP_RENDER_TARGET );
pFullFrameFB->CopyFrameBufferToMe( nRenderTargetID, NULL, NULL );
// target texture must be a render target
PushRenderTargetAndViewport( pTexture );
// blit FB source to render target
DrawScreenSpaceRectangle(
GetMaterialSystem()->GetRenderTargetBlitMaterial(),
pDstRect->x, pDstRect->y, pDstRect->width, pDstRect->height,
pSrcRect->x, pSrcRect->y, pSrcRect->x+pSrcRect->width-1, pSrcRect->y+pSrcRect->height-1,
pFullFrameFB->GetActualWidth(), pFullFrameFB->GetActualHeight() );
// resolve render target to texture
((ITextureInternal *)pTexture)->CopyFrameBufferToMe( 0, NULL, NULL );
// restore render target and viewport
PopRenderTargetAndViewport();
}
}
void CMatRenderContext::CopyRenderTargetToTexture( ITexture *pTexture )
{
CopyRenderTargetToTextureEx( pTexture, NULL, NULL );
}
void CMatRenderContext::CopyTextureToRenderTargetEx( int nRenderTargetID, ITexture *pTexture, Rect_t *pSrcRect, Rect_t *pDstRect )
{
if ( !pTexture )
{
Assert( 0 );
return;
}
GetMaterialSystem()->Flush( false );
ITextureInternal *pTextureInternal = (ITextureInternal *)pTexture;
if ( IsPC() || !IsX360() )
{
pTextureInternal->CopyMeToFrameBuffer( nRenderTargetID, pSrcRect, pDstRect );
}
else
{
Assert( 0 );
}
}
void CMatRenderContext::ClearBuffers( bool bClearColor, bool bClearDepth, bool bClearStencil )
{
int width, height;
GetRenderTargetDimensions( width, height );
g_pShaderAPI->ClearBuffers( bClearColor, bClearDepth, bClearStencil, width, height );
}
void CMatRenderContext::DrawClearBufferQuad( unsigned char r, unsigned char g, unsigned char b, unsigned char a, bool bClearColor, bool bClearAlpha, bool bClearDepth )
{
IMaterialInternal *pClearMaterial = GetBufferClearObeyStencil( bClearColor + ( bClearAlpha << 1 ) + ( bClearDepth << 2 ) );
Bind( pClearMaterial );
IMesh* pMesh = GetDynamicMesh( true );
MatrixMode( MATERIAL_MODEL );
PushMatrix();
LoadIdentity();
MatrixMode( MATERIAL_VIEW );
PushMatrix();
LoadIdentity();
MatrixMode( MATERIAL_PROJECTION );
PushMatrix();
LoadIdentity();
float flDepth = GetMaterialSystem()->GetConfig().bReverseDepth ? 0.0f : 1.0f;
CMeshBuilder meshBuilder;
meshBuilder.Begin( pMesh, MATERIAL_QUADS, 1 );
//1.1 instead of 1.0 to fix small borders around the edges in full screen with anti-aliasing enabled
meshBuilder.Position3f( -1.1f, -1.1f, flDepth );
meshBuilder.Color4ub( r, g, b, a );
meshBuilder.AdvanceVertex();
meshBuilder.Position3f( -1.1f, 1.1f, flDepth );
meshBuilder.Color4ub( r, g, b, a );
meshBuilder.AdvanceVertex();
meshBuilder.Position3f( 1.1f, 1.1f, flDepth );
meshBuilder.Color4ub( r, g, b, a );
meshBuilder.AdvanceVertex();
meshBuilder.Position3f( 1.1f, -1.1f, flDepth );
meshBuilder.Color4ub( r, g, b, a );
meshBuilder.AdvanceVertex();
meshBuilder.End();
pMesh->Draw();
MatrixMode( MATERIAL_MODEL );
PopMatrix();
MatrixMode( MATERIAL_VIEW );
PopMatrix();
MatrixMode( MATERIAL_PROJECTION );
PopMatrix();
}
//-----------------------------------------------------------------------------
// Should really be called SetViewport
//-----------------------------------------------------------------------------
void CMatRenderContext::Viewport( int x, int y, int width, int height )
{
CMatRenderContextBase::Viewport( x, y, width, height );
// If either dimension is negative, set to full bounds of current target
if ( (width < 0) || (height < 0) )
{
ITexture *pTarget = m_RenderTargetStack.Top().m_pRenderTargets[0];
// If target is the back buffer
if ( pTarget == NULL )
{
m_Viewport.m_nTopLeftX = 0;
m_Viewport.m_nTopLeftY = 0;
g_pShaderAPI->GetBackBufferDimensions( m_Viewport.m_nWidth, m_Viewport.m_nHeight );
g_pShaderAPI->SetViewports( 1, &m_Viewport );
}
else // target is a texture
{
m_Viewport.m_nTopLeftX = 0;
m_Viewport.m_nTopLeftY = 0;
m_Viewport.m_nWidth = pTarget->GetActualWidth();
m_Viewport.m_nHeight = pTarget->GetActualHeight();
g_pShaderAPI->SetViewports( 1, &m_Viewport );
}
}
else // use the bounds passed in
{
m_Viewport.m_nTopLeftX = x;
m_Viewport.m_nTopLeftY = y;
m_Viewport.m_nWidth = width;
m_Viewport.m_nHeight = height;
g_pShaderAPI->SetViewports( 1, &m_Viewport );
}
}
void CMatRenderContext::GetViewport( int& x, int& y, int& width, int& height ) const
{
// Verify valid top of RT stack
Assert ( m_RenderTargetStack.Count() > 0 );
// Grab the top of stack
const RenderTargetStackElement_t& element = m_RenderTargetStack.Top();
// If either dimension is not positive, set to full bounds of current target
if ( (element.m_nViewW <= 0) || (element.m_nViewH <= 0) )
{
// Viewport origin at target origin
x = y = 0;
// If target is back buffer
if ( element.m_pRenderTargets[0] == NULL )
{
g_pShaderAPI->GetBackBufferDimensions( width, height );
}
else // if target is texture
{
width = element.m_pRenderTargets[0]->GetActualWidth();
height = element.m_pRenderTargets[0]->GetActualHeight();
}
}
else // use the bounds from the stack directly
{
x = element.m_nViewX;
y = element.m_nViewY;
width = element.m_nViewW;
height = element.m_nViewH;
}
}
//-----------------------------------------------------------------------------
// Methods related to user clip planes
//-----------------------------------------------------------------------------
void CMatRenderContext::UpdateHeightClipUserClipPlane( void )
{
PlaneStackElement pse;
pse.bHack_IsHeightClipPlane = true;
int iExistingHeightClipPlaneIndex;
for( iExistingHeightClipPlaneIndex = m_CustomClipPlanes.Count(); --iExistingHeightClipPlaneIndex >= 0; )
{
if( m_CustomClipPlanes[iExistingHeightClipPlaneIndex].bHack_IsHeightClipPlane )
break;
}
switch( m_HeightClipMode )
{
case MATERIAL_HEIGHTCLIPMODE_DISABLE:
if( iExistingHeightClipPlaneIndex != -1 )
m_CustomClipPlanes.Remove( iExistingHeightClipPlaneIndex );
break;
case MATERIAL_HEIGHTCLIPMODE_RENDER_ABOVE_HEIGHT:
pse.fValues[0] = 0.0f;
pse.fValues[1] = 0.0f;
pse.fValues[2] = 1.0f;
pse.fValues[3] = m_HeightClipZ;
if( iExistingHeightClipPlaneIndex != -1 )
{
memcpy( m_CustomClipPlanes.Base() + iExistingHeightClipPlaneIndex, &pse, sizeof( PlaneStackElement ) );
}
else
{
m_CustomClipPlanes.AddToTail( pse );
}
break;
case MATERIAL_HEIGHTCLIPMODE_RENDER_BELOW_HEIGHT:
pse.fValues[0] = 0.0f;
pse.fValues[1] = 0.0f;
pse.fValues[2] = -1.0f;
pse.fValues[3] = -m_HeightClipZ;
if( iExistingHeightClipPlaneIndex != -1 )
{
memcpy( m_CustomClipPlanes.Base() + iExistingHeightClipPlaneIndex, &pse, sizeof( PlaneStackElement ) );
}
else
{
m_CustomClipPlanes.AddToTail( pse );
}
break;
};
ApplyCustomClipPlanes();
/*switch( m_HeightClipMode )
{
case MATERIAL_HEIGHTCLIPMODE_DISABLE:
g_pShaderAPI->EnableClipPlane( 0, false );
break;
case MATERIAL_HEIGHTCLIPMODE_RENDER_ABOVE_HEIGHT:
plane[0] = 0.0f;
plane[1] = 0.0f;
plane[2] = 1.0f;
plane[3] = m_HeightClipZ;
g_pShaderAPI->SetClipPlane( 0, plane );
g_pShaderAPI->EnableClipPlane( 0, true );
break;
case MATERIAL_HEIGHTCLIPMODE_RENDER_BELOW_HEIGHT:
plane[0] = 0.0f;
plane[1] = 0.0f;
plane[2] = -1.0f;
plane[3] = -m_HeightClipZ;
g_pShaderAPI->SetClipPlane( 0, plane );
g_pShaderAPI->EnableClipPlane( 0, true );
break;
}*/
}
//-----------------------------------------------------------------------------
// Lightmap stuff
//-----------------------------------------------------------------------------
void CMatRenderContext::BindLightmapPage( int lightmapPageID )
{
if ( m_lightmapPageID == lightmapPageID )
return;
// We gotta make sure there's no buffered primitives 'cause this'll
// change the render state.
g_pShaderAPI->FlushBufferedPrimitives();
CMatRenderContextBase::BindLightmapPage( lightmapPageID );
}
void CMatRenderContext::BindLightmapTexture( ITexture *pLightmapTexture )
{
if ( ( m_lightmapPageID == MATERIAL_SYSTEM_LIGHTMAP_PAGE_USER_DEFINED ) && ( m_pUserDefinedLightmap == pLightmapTexture ) )
return;
// We gotta make sure there's no buffered primitives 'cause this'll
// change the render state.
g_pShaderAPI->FlushBufferedPrimitives();
m_lightmapPageID = MATERIAL_SYSTEM_LIGHTMAP_PAGE_USER_DEFINED;
if ( pLightmapTexture )
{
pLightmapTexture->IncrementReferenceCount();
}
if ( m_pUserDefinedLightmap )
{
m_pUserDefinedLightmap->DecrementReferenceCount();
}
m_pUserDefinedLightmap = static_cast<ITextureInternal*>( pLightmapTexture );
}
void CMatRenderContext::BindLightmap( Sampler_t sampler )
{
switch ( m_lightmapPageID )
{
default:
Assert( ( m_lightmapPageID == 0 && GetLightmaps()->GetNumLightmapPages() == 0 ) || ( m_lightmapPageID >= 0 && m_lightmapPageID < GetLightmaps()->GetNumLightmapPages() ) );
if( m_lightmapPageID >= 0 && m_lightmapPageID < GetLightmaps()->GetNumLightmapPages() )
{
g_pShaderAPI->BindTexture( sampler, GetLightmaps()->GetLightmapPageTextureHandle( m_lightmapPageID ) );
}
break;
case MATERIAL_SYSTEM_LIGHTMAP_PAGE_USER_DEFINED:
AssertOnce( m_pUserDefinedLightmap );
g_pShaderAPI->BindTexture( sampler, m_pUserDefinedLightmap->GetTextureHandle( 0 ) );
break;
case MATERIAL_SYSTEM_LIGHTMAP_PAGE_WHITE:
BindFullbrightLightmap( sampler );
break;
case MATERIAL_SYSTEM_LIGHTMAP_PAGE_WHITE_BUMP:
BindBumpedFullbrightLightmap( sampler );
break;
}
}
void CMatRenderContext::BindBumpLightmap( Sampler_t sampler )
{
switch ( m_lightmapPageID )
{
default:
Assert( m_lightmapPageID >= 0 && m_lightmapPageID < GetLightmaps()->GetNumLightmapPages() );
if( m_lightmapPageID >= 0 && m_lightmapPageID < GetLightmaps()->GetNumLightmapPages() )
{
g_pShaderAPI->BindTexture( sampler, GetLightmaps()->GetLightmapPageTextureHandle( m_lightmapPageID ) );
g_pShaderAPI->BindTexture( (Sampler_t)(sampler+1), GetLightmaps()->GetLightmapPageTextureHandle( m_lightmapPageID ) );
g_pShaderAPI->BindTexture( (Sampler_t)(sampler+2), GetLightmaps()->GetLightmapPageTextureHandle( m_lightmapPageID ) );
}
break;
case MATERIAL_SYSTEM_LIGHTMAP_PAGE_USER_DEFINED:
AssertOnce( m_pUserDefinedLightmap );
g_pShaderAPI->BindTexture( sampler, m_pUserDefinedLightmap->GetTextureHandle( 0 ) );
g_pShaderAPI->BindTexture( (Sampler_t)(sampler+1), m_pUserDefinedLightmap->GetTextureHandle( 0 ) );
g_pShaderAPI->BindTexture( (Sampler_t)(sampler+2), m_pUserDefinedLightmap->GetTextureHandle( 0 ) );
break;
case MATERIAL_SYSTEM_LIGHTMAP_PAGE_WHITE_BUMP:
BindBumpedFullbrightLightmap( sampler );
BindBumpedFullbrightLightmap( (Sampler_t)(sampler+1) );
BindBumpedFullbrightLightmap( (Sampler_t)(sampler+2) );
break;
case MATERIAL_SYSTEM_LIGHTMAP_PAGE_WHITE:
BindBumpedFullbrightLightmap( sampler );
BindBumpedFullbrightLightmap( (Sampler_t)(sampler+1) );
BindBumpedFullbrightLightmap( (Sampler_t)(sampler+2) );
break;
}
}
void CMatRenderContext::BindFullbrightLightmap( Sampler_t sampler )
{
g_pShaderAPI->BindTexture( sampler, GetFullbrightLightmapTextureHandle() );
}
void CMatRenderContext::BindBumpedFullbrightLightmap( Sampler_t sampler )
{
g_pShaderAPI->BindTexture( sampler, GetFullbrightBumpedLightmapTextureHandle() );
}
//-----------------------------------------------------------------------------
// Bind standard textures
//-----------------------------------------------------------------------------
void CMatRenderContext::BindStandardTexture( Sampler_t sampler, StandardTextureId_t id )
{
switch ( id )
{
case TEXTURE_LIGHTMAP:
BindLightmap( sampler );
return;
case TEXTURE_LIGHTMAP_BUMPED:
BindBumpLightmap( sampler );
return;
case TEXTURE_LIGHTMAP_FULLBRIGHT:
BindFullbrightLightmap( sampler );
return;
case TEXTURE_LIGHTMAP_BUMPED_FULLBRIGHT:
BindBumpedFullbrightLightmap( sampler );
return;
case TEXTURE_WHITE:
g_pShaderAPI->BindTexture( sampler, GetWhiteTextureHandle() );
return;
case TEXTURE_BLACK:
g_pShaderAPI->BindTexture( sampler, GetBlackTextureHandle() );
return;
case TEXTURE_GREY:
g_pShaderAPI->BindTexture( sampler, GetGreyTextureHandle() );
return;
case TEXTURE_GREY_ALPHA_ZERO:
g_pShaderAPI->BindTexture( sampler, GetGreyAlphaZeroTextureHandle() );
return;
case TEXTURE_NORMALMAP_FLAT:
g_pShaderAPI->BindTexture( sampler, GetFlatNormalTextureHandle() );
return;
case TEXTURE_NORMALIZATION_CUBEMAP:
TextureManager()->NormalizationCubemap()->Bind( sampler );
return;
case TEXTURE_NORMALIZATION_CUBEMAP_SIGNED:
TextureManager()->SignedNormalizationCubemap()->Bind( sampler );
return;
case TEXTURE_FRAME_BUFFER_FULL_TEXTURE_0:
case TEXTURE_FRAME_BUFFER_FULL_TEXTURE_1:
{
int nTextureIndex = id - TEXTURE_FRAME_BUFFER_FULL_TEXTURE_0;
if( m_pCurrentFrameBufferCopyTexture[ nTextureIndex ] )
{
( ( ITextureInternal * )m_pCurrentFrameBufferCopyTexture[ nTextureIndex ] )->Bind( sampler );
}
}
return;
case TEXTURE_COLOR_CORRECTION_VOLUME_0:
case TEXTURE_COLOR_CORRECTION_VOLUME_1:
case TEXTURE_COLOR_CORRECTION_VOLUME_2:
case TEXTURE_COLOR_CORRECTION_VOLUME_3:
{
ITextureInternal *pTexture = TextureManager()->ColorCorrectionTexture( id - TEXTURE_COLOR_CORRECTION_VOLUME_0 );
if( pTexture )
{
pTexture->Bind( sampler );
}
}
return;
case TEXTURE_SHADOW_NOISE_2D:
TextureManager()->ShadowNoise2D()->Bind( sampler );
return;
case TEXTURE_IDENTITY_LIGHTWARP:
TextureManager()->IdentityLightWarp()->Bind( sampler );
return;
case TEXTURE_MORPH_ACCUMULATOR:
g_pMorphMgr->MorphAccumulator()->Bind( sampler );
return;
case TEXTURE_MORPH_WEIGHTS:
g_pMorphMgr->MorphWeights()->Bind( sampler );
return;
case TEXTURE_FRAME_BUFFER_FULL_DEPTH:
if( m_bFullFrameDepthIsValid )
TextureManager()->FullFrameDepthTexture()->Bind( sampler );
else
g_pShaderAPI->BindTexture( sampler, GetMaxDepthTextureHandle() );
return;
case TEXTURE_DEBUG_LUXELS:
TextureManager()->DebugLuxels2D()->Bind( sampler );
return;
default:
Assert(0);
}
}
void CMatRenderContext::BindStandardVertexTexture( VertexTextureSampler_t sampler, StandardTextureId_t id )
{
switch ( id )
{
case TEXTURE_MORPH_ACCUMULATOR:
g_pMorphMgr->MorphAccumulator()->BindVertexTexture( sampler );
return;
case TEXTURE_MORPH_WEIGHTS:
g_pMorphMgr->MorphWeights()->BindVertexTexture( sampler );
return;
default:
Assert(0);
}
}
void CMatRenderContext::GetStandardTextureDimensions( int *pWidth, int *pHeight, StandardTextureId_t id )
{
ITexture *pTexture = NULL;
switch ( id )
{
case TEXTURE_LIGHTMAP:
case TEXTURE_LIGHTMAP_BUMPED:
case TEXTURE_LIGHTMAP_FULLBRIGHT:
case TEXTURE_LIGHTMAP_BUMPED_FULLBRIGHT:
// NOTE: Doesn't exactly work since we may be in fullbright mode
// GetLightmapDimensions( pWidth, pHeight );
// break;
case TEXTURE_WHITE:
case TEXTURE_BLACK:
case TEXTURE_GREY:
case TEXTURE_GREY_ALPHA_ZERO:
case TEXTURE_NORMALMAP_FLAT:
default:
Assert( 0 );
Warning( "GetStandardTextureDimensions: still unimplemented for this type!\n" );
*pWidth = *pHeight = -1;
break;
case TEXTURE_NORMALIZATION_CUBEMAP:
pTexture = TextureManager()->NormalizationCubemap();
break;
case TEXTURE_NORMALIZATION_CUBEMAP_SIGNED:
pTexture = TextureManager()->SignedNormalizationCubemap();
break;
case TEXTURE_FRAME_BUFFER_FULL_TEXTURE_0:
case TEXTURE_FRAME_BUFFER_FULL_TEXTURE_1:
{
int nTextureIndex = id - TEXTURE_FRAME_BUFFER_FULL_TEXTURE_0;
pTexture = m_pCurrentFrameBufferCopyTexture[ nTextureIndex ];
}
break;
case TEXTURE_COLOR_CORRECTION_VOLUME_0:
case TEXTURE_COLOR_CORRECTION_VOLUME_1:
case TEXTURE_COLOR_CORRECTION_VOLUME_2:
case TEXTURE_COLOR_CORRECTION_VOLUME_3:
pTexture = TextureManager()->ColorCorrectionTexture( id - TEXTURE_COLOR_CORRECTION_VOLUME_0 );
break;
case TEXTURE_SHADOW_NOISE_2D:
pTexture = TextureManager()->ShadowNoise2D();
break;
case TEXTURE_IDENTITY_LIGHTWARP:
pTexture = TextureManager()->IdentityLightWarp();
return;
case TEXTURE_MORPH_ACCUMULATOR:
pTexture = g_pMorphMgr->MorphAccumulator();
break;
case TEXTURE_MORPH_WEIGHTS:
pTexture = g_pMorphMgr->MorphWeights();
break;
case TEXTURE_DEBUG_LUXELS:
pTexture = TextureManager()->DebugLuxels2D();
break;
}
if ( pTexture )
{
*pWidth = pTexture->GetActualWidth();
*pHeight = pTexture->GetActualHeight();
}
else
{
Warning( "GetStandardTextureDimensions: Couldn't find the texture to get the dimensions!\n" );
*pWidth = *pHeight = -1;
}
}
void CMatRenderContext::FogColor3f( float r, float g, float b )
{
unsigned char fogColor[3];
fogColor[0] = clamp( (int)(r * 255.0f), 0, 255 );
fogColor[1] = clamp( (int)(g * 255.0f), 0, 255 );
fogColor[2] = clamp( (int)(b * 255.0f), 0, 255 );
g_pShaderAPI->SceneFogColor3ub( fogColor[0], fogColor[1], fogColor[2] );
}
void CMatRenderContext::FogColor3fv( const float* rgb )
{
unsigned char fogColor[3];
fogColor[0] = clamp( (int)(rgb[0] * 255.0f), 0, 255 );
fogColor[1] = clamp( (int)(rgb[1] * 255.0f), 0, 255 );
fogColor[2] = clamp( (int)(rgb[2] * 255.0f), 0, 255 );
g_pShaderAPI->SceneFogColor3ub( fogColor[0], fogColor[1], fogColor[2] );
}
void CMatRenderContext::SetFlashlightMode( bool bEnable )
{
if( bEnable != m_bFlashlightEnable )
{
g_pShaderAPI->FlushBufferedPrimitives();
m_bFlashlightEnable = bEnable;
}
}
bool CMatRenderContext::GetFlashlightMode( ) const
{
return m_bFlashlightEnable;
}
void CMatRenderContext::SetFlashlightStateEx( const FlashlightState_t &state, const VMatrix &worldToTexture, ITexture *pFlashlightDepthTexture )
{
g_pShaderAPI->SetFlashlightStateEx( state, worldToTexture, pFlashlightDepthTexture );
if ( IsPC() && g_config.dxSupportLevel <= 70 )
{
// Going to go ahead and set a single hardware light here to do all lighting except for
// the spotlight falloff function, which is done with a texture.
SetAmbientLight( 0.0f, 0.0f, 0.0f );
static Vector4D blackCube[6];
int i;
for( i = 0; i < 6; i++ )
{
blackCube[i].Init( 0.0f, 0.0f, 0.0f, 0.0f );
}
SetAmbientLightCube( blackCube );
// Disable all the lights except for the first one.
for( i = 1; i < HardwareConfig()->MaxNumLights(); ++i )
{
LightDesc_t desc;
desc.m_Type = MATERIAL_LIGHT_DISABLE;
SetLight( i, desc );
}
LightDesc_t desc;
desc.m_Type = MATERIAL_LIGHT_POINT;
desc.m_Attenuation0 = state.m_fConstantAtten;
desc.m_Attenuation1 = state.m_fLinearAtten;
desc.m_Attenuation2 = state.m_fQuadraticAtten;
// flashlightfixme: I don't know why this scale has to be here to get fixed function lighting to work.
desc.m_Color.x = state.m_Color[0] * 17000.0f;
desc.m_Color.y = state.m_Color[1] * 17000.0f;
desc.m_Color.z = state.m_Color[2] * 17000.0f;
desc.m_Position = state.m_vecLightOrigin;
QAngle angles;
QuaternionAngles( state.m_quatOrientation, angles );
AngleVectors( angles, &desc.m_Direction );
desc.m_Range = state.m_FarZ;
desc.m_Falloff = 0.0f;
SetLight( 0, desc );
}
}
void CMatRenderContext::SetScissorRect( const int nLeft, const int nTop, const int nRight, const int nBottom, const bool bEnableScissor )
{
g_pShaderAPI->SetScissorRect( nLeft, nTop, nRight, nBottom, bEnableScissor );
}
void CMatRenderContext::SetToneMappingScaleLinear( const Vector &scale )
{
g_pShaderAPI->SetToneMappingScaleLinear( scale );
}
void CMatRenderContext::BeginBatch( IMesh* pIndices )
{
Assert( !m_pBatchMesh && !m_pBatchIndices);
m_pBatchIndices = pIndices;
}
void CMatRenderContext::BindBatch( IMesh* pVertices, IMaterial *pAutoBind )
{
m_pBatchMesh = GetDynamicMesh( false, pVertices, m_pBatchIndices, pAutoBind );
}
void CMatRenderContext::DrawBatch(int firstIndex, int numIndices )
{
Assert( m_pBatchMesh );
m_pBatchMesh->Draw( firstIndex, numIndices );
}
void CMatRenderContext::EndBatch()
{
m_pBatchIndices = NULL;
m_pBatchMesh = NULL;
}
bool CMatRenderContext::OnDrawMesh( IMesh *pMesh, int firstIndex, int numIndices )
{
SyncMatrices();
return true;
}
bool CMatRenderContext::OnDrawMesh( IMesh *pMesh, CPrimList *pLists, int nLists )
{
SyncMatrices();
return true;
}
void CMatRenderContext::AsyncCreateTextureFromRenderTarget( ITexture* pSrcRt, const char* pDstName, ImageFormat dstFmt, bool bGenMips, int nAdditionalCreationFlags, IAsyncTextureOperationReceiver* pRecipient, void* pExtraArgs )
{
if ( g_pMaterialSystem->GetThreadMode() == MATERIAL_SINGLE_THREADED )
{
OnAsyncCreateTextureFromRenderTarget( pSrcRt, &pDstName, pRecipient );
}
TextureManager()->AsyncCreateTextureFromRenderTarget( pSrcRt, pDstName, dstFmt, bGenMips, nAdditionalCreationFlags, pRecipient, pExtraArgs );
}
void CMatRenderContext::AsyncMap( ITextureInternal* pTexToMap, IAsyncTextureOperationReceiver* pRecipient, void* pExtraArgs )
{
if ( g_pMaterialSystem->GetThreadMode() == MATERIAL_SINGLE_THREADED )
{
OnAsyncMap( pTexToMap, pRecipient, pExtraArgs );
}
void* pMemory = NULL;
int nPitch = NULL;
pTexToMap->Map( &pMemory, &nPitch );
pRecipient->OnAsyncMapComplete( pTexToMap, pExtraArgs, pMemory, nPitch );
// Release references held earlier in OnAsyncMap
SafeRelease( &pRecipient );
SafeRelease( &pTexToMap );
}
void CMatRenderContext::AsyncUnmap( ITextureInternal* pTexToUnmap )
{
if ( g_pMaterialSystem->GetThreadMode() == MATERIAL_SINGLE_THREADED )
{
OnAsyncUnmap( pTexToUnmap );
}
pTexToUnmap->Unmap();
SafeRelease( &pTexToUnmap ); // Matches AddRef from OnAsyncUnmap
}
void CMatRenderContext::AsyncCopyRenderTargetToStagingTexture( ITexture* pDst, ITexture* pSrc, IAsyncTextureOperationReceiver* pRecipient, void* pExtraArgs )
{
if ( g_pMaterialSystem->GetThreadMode() == MATERIAL_SINGLE_THREADED )
{
OnAsyncCopyRenderTargetToStagingTexture( pDst, pSrc, pRecipient );
}
pSrc->CopyToStagingTexture( pDst );
pRecipient->OnAsyncReadbackBegin( pDst, pSrc, pExtraArgs );
SafeRelease( &pDst );
SafeRelease( &pSrc );
SafeRelease( &pRecipient );
}
//-----------------------------------------------------------------------------
// Methods related to morph accumulation
//-----------------------------------------------------------------------------
void CMatRenderContext::BeginMorphAccumulation()
{
g_pMorphMgr->BeginMorphAccumulation( m_pMorphRenderContext );
}
void CMatRenderContext::EndMorphAccumulation()
{
g_pMorphMgr->EndMorphAccumulation( m_pMorphRenderContext );
}
void CMatRenderContext::AccumulateMorph( IMorph* pMorph, int nMorphCount, const MorphWeight_t* pWeights )
{
g_pMorphMgr->AccumulateMorph( m_pMorphRenderContext, pMorph, nMorphCount, pWeights );
}
bool CMatRenderContext::GetMorphAccumulatorTexCoord( Vector2D *pTexCoord, IMorph *pMorph, int nVertex )
{
return g_pMorphMgr->GetMorphAccumulatorTexCoord( m_pMorphRenderContext, pTexCoord, pMorph, nVertex );
}
//-----------------------------------------------------------------------------
// Occlusion query support
//-----------------------------------------------------------------------------
OcclusionQueryObjectHandle_t CMatRenderContext::CreateOcclusionQueryObject()
{
OcclusionQueryObjectHandle_t h = g_pOcclusionQueryMgr->CreateOcclusionQueryObject();
g_pOcclusionQueryMgr->OnCreateOcclusionQueryObject( h );
return h;
}
int CMatRenderContext::OcclusionQuery_GetNumPixelsRendered( OcclusionQueryObjectHandle_t h )
{
return g_pOcclusionQueryMgr->OcclusionQuery_GetNumPixelsRendered( h, true );
}
void CMatRenderContext::SetFullScreenDepthTextureValidityFlag( bool bIsValid )
{
m_bFullFrameDepthIsValid = bIsValid;
}
//-----------------------------------------------------------------------------
// Debug logging
//-----------------------------------------------------------------------------
void CMatRenderContext::PrintfVA( char *fmt, va_list vargs )
{
#if GLMDEBUG
g_pShaderAPI->PrintfVA( fmt, vargs );
#endif
}
void CMatRenderContext::Printf( const char *fmt, ... )
{
#if GLMDEBUG
va_list vargs;
va_start(vargs, fmt);
g_pShaderAPI->PrintfVA( (char *)fmt, vargs );
va_end( vargs );
#endif
}
float CMatRenderContext::Knob( char *knobname, float *setvalue )
{
#if GLMDEBUG
return g_pShaderAPI->Knob( knobname, setvalue );
#else
return 0.0f;
#endif
}