|
|
//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
// $NoKeywords: $
//
//=============================================================================//
// ThreadedTCPSocket.cpp : Defines the entry point for the console application.
//
#include <winsock2.h>
#include <mswsock.h>
#include "IThreadedTCPSocket.h"
#include "utllinkedlist.h"
#include "threadhelpers.h"
#include "iphelpers.h"
#include "tier1/strtools.h"
#define SEND_KEEPALIVE_INTERVAL 3000
#define KEEPALIVE_TIMEOUT 25000 // The sockets timeout after this long.
#define KEEPALIVE_SENTINEL -12345 // When first 4 bytes of a packet = this, then it's just a keepalive.
static int g_KeepaliveSentinel = KEEPALIVE_SENTINEL; bool g_bHandleTimeouts = true;
// If true, it'll set the socket thread priorities lower than normal.
bool g_bSetTCPSocketThreadPriorities = true;
// We get crashes at runtime if they don't link in the multithreaded runtime libraries,
// so raise a ruckus if they're using singlethreaded libraries.
#ifndef _MT
#pragma message( "**** WARNING **** ThreadedTCPSocket requires multithreaded runtime libraries to be used.\n" )
class MTChecker { public: MTChecker() { Assert( false ); } } g_MTChecker; #endif
// ------------------------------------------------------------------------------------------------ //
// Static helpers.
// ------------------------------------------------------------------------------------------------ //
static SOCKET TCPBind( const CIPAddr *pAddr ) { // Create a socket to send and receive through.
SOCKET sock = WSASocket( AF_INET, SOCK_STREAM, IPPROTO_TCP, NULL, 0, WSA_FLAG_OVERLAPPED ); if ( sock == INVALID_SOCKET ) { Assert( false ); return INVALID_SOCKET; }
// bind to it!
sockaddr_in addr; IPAddrToSockAddr( pAddr, &addr );
int status = bind( sock, (sockaddr*)&addr, sizeof(addr) ); if ( status == 0 ) { return sock; } else { closesocket( sock ); return INVALID_SOCKET; } }
// ------------------------------------------------------------------------------------------------ //
// CTCPPacket.
// ------------------------------------------------------------------------------------------------ //
int CTCPPacket::GetUserData() const { return m_UserData; }
void CTCPPacket::SetUserData( int userData ) { m_UserData = userData; }
void CTCPPacket::Release() { free( this ); }
// ------------------------------------------------------------------------------------------------ //
// CThreadedTCPSocket.
// ------------------------------------------------------------------------------------------------ //
class CThreadedTCPSocket : public IThreadedTCPSocket { public: static IThreadedTCPSocket* Create( SOCKET iSocket, CIPAddr remoteAddr, ITCPSocketHandler *pHandler ) { CThreadedTCPSocket *pRet = new CThreadedTCPSocket; if ( pRet->Init( iSocket, remoteAddr, pHandler ) ) { return pRet; } else { pRet->Release(); return NULL; } }
// IThreadedTCPSocket implementation.
public:
virtual void Release() { delete this; }
virtual CIPAddr GetRemoteAddr() const { return m_RemoteAddr; }
virtual bool IsValid() { return !CheckErrorSignal(); }
virtual bool Send( const void *pData, int len ) { const void *pChunks[1] = { pData }; return SendChunks( pChunks, &len, 1 ); }
virtual bool SendChunks( void const * const *pChunks, const int *pChunkLengths, int nChunks ) { if ( CheckErrorSignal() ) return false;
return InternalSend( pChunks, pChunkLengths, nChunks, true ); }
// Initialization.
private:
CThreadedTCPSocket() { m_Socket = INVALID_SOCKET; m_pHandler = NULL; memset( &m_SendOverlapped, 0, sizeof( m_SendOverlapped ) ); memset( &m_RecvOverlapped, 0, sizeof( m_RecvOverlapped ) ); m_bWaitingForSendCompletion = false; m_nBytesToReceive = -1; m_bWaitingForSize = false; m_bErrorSignal = false; m_pRecvBuffer = NULL; }
virtual ~CThreadedTCPSocket() { Term(); }
bool Init( SOCKET iSocket, CIPAddr remoteAddr, ITCPSocketHandler *pHandler ) { m_Socket = iSocket; m_RemoteAddr = remoteAddr; m_pHandler = pHandler;
SetInitialSocketOptions();
// Create all the event objects we'll use to communicate.
m_hExitThreadsEvent.Init( true, false ); m_hSendCompletionEvent.Init( false, false ); m_hReadyToSendEvent.Init( false, false ); m_hRecvEvent.Init( false, false );
m_SendOverlapped.hEvent = m_hSendCompletionEvent.GetEventHandle(); m_RecvOverlapped.hEvent = m_hRecvEvent.GetEventHandle();
// Create our threads.
DWORD dwSendThreadID, dwRecvThreadID; m_hSendThread = CreateThread( NULL, 0, &CThreadedTCPSocket::StaticSendThreadFn, this, CREATE_SUSPENDED, &dwSendThreadID ); m_hRecvThread = CreateThread( NULL, 0, &CThreadedTCPSocket::StaticRecvThreadFn, this, CREATE_SUSPENDED, &dwRecvThreadID ); if ( !m_hSendThread || !m_hRecvThread ) { return false; }
if ( g_bSetTCPSocketThreadPriorities ) { SetThreadPriority( m_hSendThread, THREAD_PRIORITY_LOWEST ); SetThreadPriority( m_hRecvThread, THREAD_PRIORITY_LOWEST ); } ThreadSetDebugName( (ThreadId_t)dwSendThreadID, "TCPSend" ); ThreadSetDebugName( (ThreadId_t)dwRecvThreadID, "TCPRecv" );
// Make sure to init the handler before the threads actually run, so it isn't handed data before initializing.
m_pHandler->Init( this );
ResumeThread( m_hSendThread ); ResumeThread( m_hRecvThread );
return true; }
void Term() { // Signal our threads to exit.
m_hExitThreadsEvent.SetEvent(); if ( m_hSendThread ) { WaitForSingleObject( m_hSendThread, INFINITE ); CloseHandle( m_hSendThread ); m_hSendThread = NULL; } if ( m_hRecvThread ) { WaitForSingleObject( m_hRecvThread, INFINITE ); CloseHandle( m_hRecvThread ); m_hRecvThread = NULL; } m_hExitThreadsEvent.ResetEvent();
if ( m_Socket != INVALID_SOCKET ) { closesocket( m_Socket ); m_Socket = INVALID_SOCKET; } }
// Set the initial socket options that we want.
void SetInitialSocketOptions() { // Set nodelay to improve latency.
BOOL val = TRUE; setsockopt( m_Socket, IPPROTO_TCP, TCP_NODELAY, (const char FAR *)&val, sizeof(BOOL) );
// Make it linger for 3 seconds when it exits.
LINGER linger; linger.l_onoff = 1; linger.l_linger = 3; setsockopt( m_Socket, SOL_SOCKET, SO_LINGER, (char*)&linger, sizeof( linger ) ); }
// Send thread functionality.
private:
// This function copies off the payload and adds a SendChunk_t to the list of chunks to be sent.
// It also fires the ReadyToSend event so the thread will pick it up.
bool InternalSend( void const * const *pChunks, const int *pChunkLengths, int nChunks, bool bPrependLength ) { int totalLength = 0; for ( int i=0; i < nChunks; i++ ) totalLength += pChunkLengths[i];
if ( bPrependLength ) { if ( totalLength == 0 ) return true;
totalLength += 4; }
// Copy all the data into a SendData_t.
SendData_t *pSendData = (SendData_t*)malloc( sizeof( SendData_t ) - 1 + totalLength ); pSendData->m_Len = totalLength;
char *pOut = pSendData->m_Payload; if ( bPrependLength ) { *((int*)pOut) = totalLength - 4; // The length we prepend is the size of the data, not data size + integer for length.
pOut += 4; } for ( int i=0; i < nChunks; i++ ) { memcpy( pOut, pChunks[i], pChunkLengths[i] ); pOut += pChunkLengths[i]; }
CCriticalSectionLock csLock( &m_SendCS ); csLock.Lock(); m_SendDatas.AddToTail( pSendData ); m_hReadyToSendEvent.SetEvent(); // Notify the thread that there is data to send.
csLock.Unlock();
return true; }
void SendThread_HandleTimeout() { // Timeout.. send a keepalive.
// But only if we're not already sending something.
CCriticalSectionLock csLock( &m_SendCS ); csLock.Lock(); int count = m_SendDatas.Count(); csLock.Unlock();
if ( count == 0 ) { void *pBuf[1] = { &g_KeepaliveSentinel }; int len[1] = { sizeof( g_KeepaliveSentinel ) }; InternalSend( pBuf, len, 1, false ); } }
bool SendThread_HandleSendCompletionEvent() { Assert( m_bWaitingForSendCompletion ); m_bWaitingForSendCompletion = false;
// A send operation just completed. Now do the next one.
DWORD cbTransfer, flags; if ( !WSAGetOverlappedResult( m_Socket, &m_SendOverlapped, &cbTransfer, TRUE, &flags ) ) { HandleError( WSAGetLastError() ); return false; }
if ( cbTransfer != m_nBytesToTransfer ) { char str[512]; Q_snprintf( str, sizeof( str ), "Invalid # bytes transferred (%d) in send thread (should be %d)", cbTransfer, m_nBytesToTransfer ); HandleError( ITCPSocketHandler::SocketError, str ); return false; }
// Remove the block we just sent.
CCriticalSectionLock csLock( &m_SendCS ); csLock.Lock();
SendData_t *pSendData = m_SendDatas[ m_SendDatas.Head() ]; free( pSendData ); m_SendDatas.Remove( m_SendDatas.Head() ); m_bWaitingForSendCompletion = false; // Set our send event if there's anything else to send.
if ( m_SendDatas.Count() > 0 ) m_hReadyToSendEvent.SetEvent();
csLock.Unlock(); return true; }
bool SendThread_HandleReadyToSendEvent() { // We've got at least one buffer that's ready to be sent.
// NOTE: don't send anything until our current send is completed.
CCriticalSectionLock csLock( &m_SendCS ); csLock.Lock(); Assert( !m_bWaitingForSendCompletion );
// Send it off!
SendData_t *pSendData = m_SendDatas[ m_SendDatas.Head() ]; WSABUF buf = { pSendData->m_Len, pSendData->m_Payload };
m_nBytesToTransfer = pSendData->m_Len; m_bWaitingForSendCompletion = true; csLock.Unlock();
DWORD dwNumBytesSent = 0; DWORD ret = WSASend( m_Socket, &buf, 1, &dwNumBytesSent, 0, &m_SendOverlapped, NULL ); DWORD err = WSAGetLastError(); if ( ret == 0 || ( ret == SOCKET_ERROR && err == WSA_IO_PENDING ) ) { // Either way, the operation completed successfully, and m_hSendCompletionEvent is now set.
return true; } else { HandleError( err ); return false; }
return true; } DWORD SendThreadFn() { while ( 1 ) { HANDLE handles[] = { m_hExitThreadsEvent.GetEventHandle(), m_hSendCompletionEvent.GetEventHandle(), m_hReadyToSendEvent.GetEventHandle() }; int nHandles = ARRAYSIZE( handles ); // While waiting for send completion, don't handle "ready to send" events.
if ( m_bWaitingForSendCompletion ) --nHandles;
DWORD waitValue = WaitForMultipleObjects( nHandles, handles, FALSE, SEND_KEEPALIVE_INTERVAL ); switch ( waitValue ) { case WAIT_TIMEOUT: { if ( g_bHandleTimeouts ) { // We haven't sent anything in a bit. Send out a keepalive.
SendThread_HandleTimeout(); } } break;
case WAIT_OBJECT_0: { // The main thread is signaling us to exit.
return 0; }
case WAIT_OBJECT_0 + 1: { if ( !SendThread_HandleSendCompletionEvent() ) return 1; } break; case WAIT_OBJECT_0 + 2: { if ( !SendThread_HandleReadyToSendEvent() ) return 1; } break;
case WAIT_FAILED: { // Uh oh. We're dead. Cleanup and signal an error.
HandleError( GetLastError() ); return 1; }
default: { char str[512]; Q_snprintf( str, sizeof( str ), "Unknown return value (%lu) from WaitForMultipleObjects", waitValue ); HandleError( ITCPSocketHandler::SocketError, str ); return 0; } } }
return 0; }
static DWORD WINAPI StaticSendThreadFn( LPVOID pParameter ) { return ((CThreadedTCPSocket*)pParameter)->SendThreadFn(); }
// Receive thread functionality.
private:
bool RecvThread_WaitToReceiveSize() { return RecvThread_InternalRecv( &m_NextPacketLen, sizeof( m_NextPacketLen ), false, true ); }
bool RecvThread_InternalHandleRecvCompletion( DWORD dwTransfer ) { int cbTransfer = (int)dwTransfer; int nBytesWanted = m_nBytesToReceive - m_nBytesReceivedSoFar; if ( cbTransfer > nBytesWanted ) { char str[512]; Q_snprintf( str, sizeof( str ), "Invalid # bytes received (%d) in recv thread (should be %d)", cbTransfer, m_nBytesToReceive ); HandleError( ITCPSocketHandler::SocketError, str ); return false; } else if ( cbTransfer < nBytesWanted ) { // We have to reissue the receive command because it didn't receive all the data.
m_nBytesReceivedSoFar += cbTransfer; char *pDest = (char*)&m_NextPacketLen; if ( !m_bWaitingForSize ) { Assert( m_pRecvBuffer ); pDest = m_pRecvBuffer->m_Data; }
return RecvThread_InternalRecv( &pDest[m_nBytesReceivedSoFar], m_nBytesToReceive - m_nBytesReceivedSoFar, true ); }
if ( m_bWaitingForSize ) { // If we were waiting for size, now wait for the data.
if ( m_NextPacketLen == KEEPALIVE_SENTINEL ) { // Ok, it was just a keepalive. Wait for size again.
return RecvThread_WaitToReceiveSize(); } else { if ( m_NextPacketLen < 1 || m_NextPacketLen > 1024*1024*75 ) { char str[512]; Q_snprintf( str, sizeof( str ), "Invalid packet size in RecvThread (size = %d)", m_NextPacketLen ); HandleError( ITCPSocketHandler::SocketError, str ); return false; } else { Assert( !m_pRecvBuffer ); m_pRecvBuffer = (CTCPPacket*)malloc( sizeof( CTCPPacket ) - 1 + m_NextPacketLen ); m_pRecvBuffer->m_UserData = 0; m_pRecvBuffer->m_Len = m_NextPacketLen;
return RecvThread_InternalRecv( m_pRecvBuffer->m_Data, m_pRecvBuffer->m_Len, false, false ); } } } else { // Got a packet! Give it to the app.
m_pHandler->OnPacketReceived( m_pRecvBuffer ); m_pRecvBuffer = NULL;
return RecvThread_WaitToReceiveSize(); } }
bool RecvThread_HandleRecvCompletionEvent() { // A send operation just completed. Now do the next one.
DWORD cbTransfer, flags; if ( !WSAGetOverlappedResult( m_Socket, &m_RecvOverlapped, &cbTransfer, TRUE, &flags ) ) { HandleError( WSAGetLastError() ); return false; }
return RecvThread_InternalHandleRecvCompletion( cbTransfer ); }
bool RecvThread_InternalRecv( void *pDest, int destSize, bool bContinuation, bool bWaitingForSize = false ) { WSABUF buf = { destSize, (char*)pDest };
if ( !bContinuation ) { // If this is not a continuation of whatever we were receiving before, then
m_bWaitingForSize = bWaitingForSize; m_nBytesToReceive = destSize; m_nBytesReceivedSoFar = 0; }
DWORD dwFlags = 0; DWORD nBytesReceived = 0; DWORD ret = WSARecv( m_Socket, &buf, 1, &nBytesReceived, &dwFlags, &m_RecvOverlapped, NULL ); DWORD dwLastError = WSAGetLastError(); if ( ret == 0 || ( ret == SOCKET_ERROR && dwLastError == WSA_IO_PENDING ) ) { // Note: m_hRecvEvent is in a signaled state, so the RecvThread will pick up the results next time around.
return true; } else { HandleError( dwLastError ); return false; } }
DWORD RecvThreadFn() { // Start us off by setting up to receive the first packet size.
if ( !RecvThread_WaitToReceiveSize() ) return 1;
HANDLE handles[] = { m_hExitThreadsEvent.GetEventHandle(), m_hRecvEvent.GetEventHandle() };
while ( 1 ) { DWORD waitValue = WaitForMultipleObjects( ARRAYSIZE( handles ), handles, FALSE, KEEPALIVE_TIMEOUT ); switch ( waitValue ) { case WAIT_TIMEOUT: { if ( g_bHandleTimeouts ) { HandleError( ITCPSocketHandler::ConnectionTimedOut, "Connection timed out" ); return 1; } } break;
case WAIT_OBJECT_0: { // We're being told to exit.
return 0; }
case WAIT_OBJECT_0 + 1: { // Just finished receiving something.
if ( !RecvThread_HandleRecvCompletionEvent() ) return 1; } break;
case WAIT_FAILED: { // Uh oh. We're dead. Cleanup and signal an error.
HandleError( GetLastError() ); return 1; }
default: { char str[512]; Q_snprintf( str, sizeof( str ), "Unknown return value (%lu) from WaitForMultipleObjects", waitValue ); HandleError( ITCPSocketHandler::SocketError, str ); return 1; } } }
return 0; }
static DWORD WINAPI StaticRecvThreadFn( LPVOID pParameter ) { return ((CThreadedTCPSocket*)pParameter)->RecvThreadFn(); }
// Error handling.
private:
// This checks to see if either thread has signaled an error. If so, it shuts down the socket and returns true.
bool CheckErrorSignal() { return m_bErrorSignal; }
// This is called from any of the threads and signals that something went awry. It shuts down the object
// and makes it return false from all of its functions.
void HandleError( DWORD errorValue ) { char *lpMsgBuf; FormatMessage( FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS, NULL, GetLastError(), MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), // Default language
(char*)&lpMsgBuf, 0, NULL ); // Windows likes to stick a carriage return in there and we don't want it so get rid of it.
int len = strlen( lpMsgBuf ); while ( len > 0 && ( lpMsgBuf[len-1] == '\n' || lpMsgBuf[len-1] == '\r' ) ) { --len; lpMsgBuf[len] = 0; }
HandleError( ITCPSocketHandler::SocketError, lpMsgBuf );
LocalFree( lpMsgBuf ); }
void HandleError( int errorCode, const char *pErrorString ) { //Assert( false );
// Tell the app.
m_pHandler->OnError( errorCode, pErrorString );
// Tell the threads to exit.
m_hExitThreadsEvent.SetEvent(); // Notify the main thread so it can call Term() when it gets a chance.
m_bErrorSignal = true; }
private:
// Data for the send thread.
typedef struct { //WSAOVERLAPPED m_Overlapped;
int m_Len; char m_Payload[1]; } SendData_t;
HANDLE m_hSendThread; WSAOVERLAPPED m_SendOverlapped; CEvent m_hReadyToSendEvent; CEvent m_hSendCompletionEvent; CCriticalSection m_SendCS; DWORD m_nBytesToTransfer; bool m_bWaitingForSendCompletion; CUtlLinkedList<SendData_t*, int> m_SendDatas; // Added to the tail, popped off the head for sending.
// Data for the recv thread.
HANDLE m_hRecvThread; int m_nBytesToReceive; // This stores how many bytes we want to receive for the next packet.
int m_nBytesReceivedSoFar; // This stores how many bytes we've received so far.
bool m_bWaitingForSize; // This tells if we're trying to receive the next packet length or the next packet's data.
int m_NextPacketLen; // Data is received INTO here before it receives each packet. This
// holds the length of each incoming packet.
WSAOVERLAPPED m_RecvOverlapped; CEvent m_hRecvEvent; CTCPPacket *m_pRecvBuffer; // This is allocated for each packet we're receiving and given to the
// app when the packet is done being received.
volatile bool m_bErrorSignal;
CEvent m_hExitThreadsEvent;
ITCPSocketHandler *m_pHandler;
SOCKET m_Socket; CIPAddr m_RemoteAddr; };
// ------------------------------------------------------------------------------------------------ //
// CTCPConnectSocket_Listener
// ------------------------------------------------------------------------------------------------ //
class CTCPConnectSocket_Listener : public ITCPConnectSocket { public: CTCPConnectSocket_Listener() { m_Socket = INVALID_SOCKET; }
virtual ~CTCPConnectSocket_Listener() { if ( m_Socket != INVALID_SOCKET ) { closesocket( m_Socket ); } }
// The main function to create one of these suckers.
static ITCPConnectSocket* Create( IHandlerCreator *pHandlerCreator, const unsigned short port, int nQueueLength ) { CTCPConnectSocket_Listener *pRet = new CTCPConnectSocket_Listener; if ( !pRet ) return NULL;
if ( nQueueLength < 0 ) { Error( "CTCPConnectSocket_Listener::Create - SOMAXCONN not allowed - causes some XP SP2 systems to stop receiving any network data (systemwide)." ); }
// Bind it to a socket and start listening.
CIPAddr addr( 0, 0, 0, 0, port ); // INADDR_ANY
pRet->m_Socket = TCPBind( &addr ); if ( pRet->m_Socket == INVALID_SOCKET || listen( pRet->m_Socket, nQueueLength == -1 ? SOMAXCONN : nQueueLength ) != 0 ) { pRet->Release(); return false; }
pRet->m_pHandler = pHandlerCreator; return pRet; }
// ITCPConnectSocket implementation.
public:
virtual void Release() { delete this; } virtual bool Update( IThreadedTCPSocket **pSocket, unsigned long milliseconds ) { *pSocket = NULL; if ( m_Socket == INVALID_SOCKET ) return false;
// We're still ok.. just wait until the socket becomes writable (is connected) or we timeout.
fd_set readSet; readSet.fd_count = 1; readSet.fd_array[0] = m_Socket; TIMEVAL timeVal = {0, milliseconds*1000};
// Wait until it connects.
int status = select( 0, &readSet, NULL, NULL, &timeVal ); if ( status > 0 ) { sockaddr_in addr; int addrSize = sizeof( addr );
// Now accept the final connection.
SOCKET newSock = accept( m_Socket, (struct sockaddr*)&addr, &addrSize ); if ( newSock == INVALID_SOCKET ) { Assert( false ); return true; } else { CIPAddr connectedAddr; SockAddrToIPAddr( &addr, &connectedAddr );
IThreadedTCPSocket *pRet = CThreadedTCPSocket::Create( newSock, connectedAddr, m_pHandler->CreateNewHandler() ); if ( !pRet ) { Assert( false ); closesocket( m_Socket ); m_Socket = INVALID_SOCKET; return false; }
*pSocket = pRet; return true; } } else if ( status == SOCKET_ERROR ) { closesocket( m_Socket ); m_Socket = INVALID_SOCKET; return false; } else { return true; } }
private: SOCKET m_Socket; IHandlerCreator *m_pHandler; };
ITCPConnectSocket* ThreadedTCP_CreateListener( IHandlerCreator *pHandlerCreator, const unsigned short port, int nQueueLength ) { return CTCPConnectSocket_Listener::Create( pHandlerCreator, port, nQueueLength ); }
// ------------------------------------------------------------------------------------------------ //
// CTCPConnectSocket_Connector
// ------------------------------------------------------------------------------------------------ //
class CTCPConnectSocket_Connector : public ITCPConnectSocket { public: CTCPConnectSocket_Connector() { m_bConnected = false; m_Socket = INVALID_SOCKET; m_bError = false; }
virtual ~CTCPConnectSocket_Connector() { if ( m_Socket != INVALID_SOCKET ) { closesocket( m_Socket ); } }
static ITCPConnectSocket* Create( const CIPAddr &connectAddr, const CIPAddr &localAddr, IHandlerCreator *pHandlerCreator ) { CTCPConnectSocket_Connector *pRet = new CTCPConnectSocket_Connector; pRet->m_Socket = TCPBind( &localAddr ); if ( pRet->m_Socket == INVALID_SOCKET ) { pRet->Release(); return NULL; }
sockaddr_in addr; IPAddrToSockAddr( &connectAddr, &addr );
// We don't want the connect() call to block.
DWORD val = 1; int status = ioctlsocket( pRet->m_Socket, FIONBIO, &val ); if ( status != 0 ) { Assert( false ); pRet->Release(); return NULL; }
pRet->m_RemoteAddr = connectAddr; pRet->m_pHandlerCreator = pHandlerCreator;
int ret = connect( pRet->m_Socket, (struct sockaddr*)&addr, sizeof( addr ) ); if ( ret == 0 ) { pRet->m_bConnected = true; return pRet; } else if ( ret == SOCKET_ERROR && WSAGetLastError() == WSAEWOULDBLOCK ) { return pRet; } else { Assert( false ); pRet->Release(); return NULL; } }
// ITCPConnectSocket implementation.
public:
virtual void Release() { delete this; }
virtual bool Update( IThreadedTCPSocket **pSocket, unsigned long milliseconds ) { *pSocket = NULL;
// If we got an error previously, keep returning false.
if ( m_bError ) return false;
// If this condition holds, then we already returned a valid socket and we're just waiting to be released.
if ( m_Socket == INVALID_SOCKET ) return true;
// Ok, see if we're connected now.
if ( !m_bConnected ) { TIMEVAL timeVal = { 0, milliseconds*1000 }; fd_set writeSet; writeSet.fd_count = 1; writeSet.fd_array[0] = m_Socket;
int ret = select( 0, NULL, &writeSet, NULL, &timeVal ); if ( ret > 0 ) { m_bConnected = true; } else if ( ret == SOCKET_ERROR ) { return EnterErrorMode(); } }
if ( m_bConnected ) { // Ok, return a connected socket for them.
// Make our socket blocking again.
DWORD val = 0; int status = ioctlsocket( m_Socket, FIONBIO, &val ); if ( status != 0 ) { Assert( false ); m_bError = true; closesocket( m_Socket ); m_Socket = INVALID_SOCKET; return false; }
IThreadedTCPSocket *pRet = CThreadedTCPSocket::Create( m_Socket, m_RemoteAddr, m_pHandlerCreator->CreateNewHandler() ); if ( pRet ) { m_Socket = INVALID_SOCKET; *pSocket = pRet; return true; } else { return EnterErrorMode(); } } else { // Still waiting..
return true; } }
// Shutdown the socket and start returning false from Update().
bool EnterErrorMode() { Assert( false ); m_bError = true; closesocket( m_Socket ); m_Socket = INVALID_SOCKET; return false; }
private: bool m_bError; bool m_bConnected;
SOCKET m_Socket; CIPAddr m_RemoteAddr;
IHandlerCreator *m_pHandlerCreator; };
ITCPConnectSocket* ThreadedTCP_CreateConnector( const CIPAddr &addr, const CIPAddr &localAddr, IHandlerCreator *pHandlerCreator ) { return CTCPConnectSocket_Connector::Create( addr, localAddr, pHandlerCreator ); }
void ThreadedTCP_EnableTimeouts( bool bEnable ) { g_bHandleTimeouts = bEnable; }
void ThreadedTCP_SetTCPSocketThreadPriorities( bool bSetTCPSocketThreadPriorities ) { g_bSetTCPSocketThreadPriorities = bSetTCPSocketThreadPriorities; }
|