|
|
/*
Copyright (c) 1992 Microsoft Corporation
Module Name:
server.c
Abstract:
This module contains server global data and server init code. This is used by the admin interface to start-off the server.
Author:
Jameel Hyder (microsoft!jameelh)
Revision History: 25 Apr 1992 Initial Version
Notes: Tab stop: 4 --*/
#define _GLOBALS_
#define SERVER_LOCALS
#define FILENUM FILE_SERVER
#include <seposix.h>
#include <afp.h>
#include <afpadmin.h>
#include <access.h>
#include <client.h>
#include <tcp.h>
#ifdef ALLOC_PRAGMA
#pragma alloc_text( INIT, AfpInitializeDataAndSubsystems)
#pragma alloc_text( PAGE, AfpDeinitializeSubsystems)
#pragma alloc_text( PAGE, AfpAdmSystemShutdown)
#pragma alloc_text( PAGE, AfpCreateNewThread)
#pragma alloc_text( PAGE_AFP, AfpAdmWServerSetInfo)
//#pragma alloc_text( PAGE_AFP, AfpSetServerStatus)
#endif
// This is the device handle to the stack.
BOOLEAN afpSpNameRegistered = False; HANDLE afpSpAddressHandle = NULL; PDEVICE_OBJECT afpSpAppleTalkDeviceObject = NULL; PFILE_OBJECT afpSpAddressObject = NULL; LONG afpSpNumOutstandingReplies = 0;
/*** AfpInitializeDataAndSubsystems
* * Initialize Server Data and all subsystems. */ NTSTATUS AfpInitializeDataAndSubsystems( VOID ) { NTSTATUS Status; PBYTE pBuffer; PBYTE pDest; LONG i, j;
// Initialize various global locks
INITIALIZE_SPIN_LOCK(&AfpServerGlobalLock); INITIALIZE_SPIN_LOCK(&AfpSwmrLock); INITIALIZE_SPIN_LOCK(&AfpStatisticsLock);
#if DBG
INITIALIZE_SPIN_LOCK(&AfpDebugSpinLock); InitializeListHead(&AfpDebugDelAllocHead); #endif
KeInitializeEvent(&AfpStopConfirmEvent, NotificationEvent, False); KeInitializeMutex(&AfpPgLkMutex, 0xFFFF); AfpInitializeWorkItem(&AfpTerminateThreadWI, NULL, NULL);
// The default security quality of service
AfpSecurityQOS.Length = sizeof(AfpSecurityQOS); AfpSecurityQOS.ImpersonationLevel = SecurityImpersonation; AfpSecurityQOS.ContextTrackingMode = SECURITY_STATIC_TRACKING; AfpSecurityQOS.EffectiveOnly = False;
// Timeout(s) value used by AfpIoWait
FiveSecTimeOut.QuadPart = (-5*NUM_100ns_PER_SECOND); ThreeSecTimeOut.QuadPart = (-3*NUM_100ns_PER_SECOND); TwoSecTimeOut.QuadPart = (-2*NUM_100ns_PER_SECOND); OneSecTimeOut.QuadPart = (-1*NUM_100ns_PER_SECOND);
// Default Type Creator. Careful with the initialization here.This has
// to be processor independent
AfpSwmrInitSwmr(&AfpEtcMapLock); PUTBYTE42BYTE4(&AfpDefaultEtcMap.etc_type, AFP_DEFAULT_ETC_TYPE); PUTBYTE42BYTE4(&AfpDefaultEtcMap.etc_creator, AFP_DEFAULT_ETC_CREATOR); PUTBYTE42BYTE4(&AfpDefaultEtcMap.etc_extension, AFP_DEFAULT_ETC_EXT);
// Determine if the machine is little or big endian. This is not currently used
// at all. The idea is to maintain all on-disk databases in little-endian
// format and on big-endian machines, convert on the way-in and out.
i = 0x01020304; AfpIsMachineLittleEndian = (*(BYTE *)(&i) == 0x04); AfpServerState = AFP_STATE_IDLE; AfpServerOptions = AFP_SRVROPT_NONE; AfpServerMaxSessions = AFP_MAXSESSIONS;
// Check if server needs the Greek fix
{ UNICODE_STRING valueName; UNICODE_STRING regPath; HANDLE ParametersHandle = NULL; PBYTE Storage = NULL; PKEY_VALUE_FULL_INFORMATION Info = NULL; ULONG bytesWritten; PDWORD Value; OBJECT_ATTRIBUTES ObjectAttributes; NTSTATUS status;
AfpServerIsGreek = FALSE;
RtlInitUnicodeString (®Path, AFP_KEYPATH_SERVER_PARAMS_GREEK);
InitializeObjectAttributes(&ObjectAttributes, ®Path, OBJ_CASE_INSENSITIVE, NULL, NULL);
status = ZwOpenKey(&ParametersHandle, KEY_READ, &ObjectAttributes);
if (NT_SUCCESS(status)) { RtlInitUnicodeString (&valueName, AFPREG_VALNAME_GreekServer);
status = ZwQueryValueKey(ParametersHandle, &valueName, KeyValueFullInformation, NULL, 0, &bytesWritten); if (status == STATUS_BUFFER_TOO_SMALL) { Storage = (PBYTE)AfpAllocNonPagedMemory (bytesWritten); Info = (PKEY_VALUE_FULL_INFORMATION)Storage; status = ZwQueryValueKey(ParametersHandle, &valueName, KeyValueFullInformation, Info, Storage?bytesWritten:0, &bytesWritten);
if (NT_SUCCESS(status)) { if (Info->Type != REG_DWORD) { DBGPRINT(DBG_COMP_INIT, DBG_LEVEL_ERR, ("AfpInitializeDataAndSubsystems: Invalid value type=(%ld) expected=(%ld)\n", Info->Type, REG_DWORD)); } else { Value = (PDWORD)((PBYTE)Info + Info->DataOffset); DBGPRINT(DBG_COMP_INIT, DBG_LEVEL_ERR, ("AfpInitializeDataAndSubsystems: Read in value for Greek key (%ld)\n", *Value)); if (*Value == TRUE) { AfpServerIsGreek = TRUE; } } } else { AfpServerIsGreek = FALSE; DBGPRINT(DBG_COMP_INIT, DBG_LEVEL_ERR, ("AfpInitializeDataAndSubsystems: ZwQueryValueKey 2 failed with error (%0lx), Storagesize=(%ld), BytesNeeded=(%ld)\n", status, sizeof(Storage), bytesWritten)); } } else { DBGPRINT(DBG_COMP_INIT, DBG_LEVEL_ERR, ("AfpInitializeDataAndSubsystems: ZwQueryValueKey 1 failed with error (%0lx), Storagesize=(%ld), BytesNeeded=(%ld)\n", status, sizeof(Storage), bytesWritten)); } } else { DBGPRINT(DBG_COMP_INIT, DBG_LEVEL_ERR, ("AfpInitializeDataAndSubsystems: ZwOpenKey failed with error (%0lx)\n", status)); }
if (ParametersHandle != NULL) { ZwClose(ParametersHandle); } if (Storage != NULL) { AfpFreeMemory (Storage); } status = STATUS_SUCCESS; }
AfpGetCurrentTimeInMacFormat((PAFPTIME)&AfpServerStatistics.stat_TimeStamp);
//AfpGetCurrentTimeInMacFormat(&AfpSrvrNotifSentTime);
// generate a "unique" signature for our server
pDest = &AfpServerSignature[0]; for (i=0; i<2; i++) { pBuffer = AfpGetChallenge(); if (pBuffer) { RtlCopyMemory(pDest, pBuffer, MSV1_0_CHALLENGE_LENGTH); pDest += MSV1_0_CHALLENGE_LENGTH; AfpFreeMemory(pBuffer); } }
#ifdef PROFILING
// Allocate this directly since AfpAllocMemory() uses AfpServerProfile !!!
if ((AfpServerProfile = (PAFP_PROFILE_INFO)ExAllocatePoolWithTag(NonPagedPool, sizeof(AFP_PROFILE_INFO), AFP_TAG)) == NULL) return STATUS_INSUFFICIENT_RESOURCES; RtlZeroMemory(AfpServerProfile, sizeof(AFP_PROFILE_INFO)); KeQueryPerformanceCounter(&AfpServerProfile->perf_PerfFreq); #endif
AfpInitStrings();
// Initialize the sub-systems
for (i = 0; i < NUM_INIT_SYSTEMS; i++) { DBGPRINT(DBG_COMP_INIT, DBG_LEVEL_INFO, ("AfpInitializeDataAndSubsystems: Initializing s\n", AfpInitSubSystems[i].InitRoutineName));
if (AfpInitSubSystems[i].InitRoutine != NULL) { Status = (*AfpInitSubSystems[i].InitRoutine)(); if (!NT_SUCCESS(Status)) { DBGPRINT(DBG_COMP_INIT, DBG_LEVEL_INFO, ("AfpInitializeDataAndSubsystems: %s failed %lx\n", AfpInitSubSystems[i].InitRoutineName, Status));
// One of the subsystems failed to initialize. Deinitialize all
// of them which succeeded.
for (j = 0; j < i; j++) { if (AfpInitSubSystems[j].DeInitRoutine != NULL) { DBGPRINT(DBG_COMP_INIT, DBG_LEVEL_INFO, ("AfpInitializeDataAndSubsystems: Deinitializing %s\n", AfpInitSubSystems[j].DeInitRoutineName)); (*AfpInitSubSystems[j].DeInitRoutine)(); } #if DBG
AfpInitSubSystems[j].Deinitialized = True; #endif
} return Status; } #if DBG
AfpInitSubSystems[i].Initialized = True; #endif
} }
return STATUS_SUCCESS; }
/*** AfpDeinitializeSubsystems
* * De-initialize all subsystems. */ VOID AfpDeinitializeSubsystems( VOID ) { LONG i;
PAGED_CODE( );
// De-initialize the sub-systems
for (i = 0; i < NUM_INIT_SYSTEMS; i++) { if (AfpInitSubSystems[i].DeInitRoutine != NULL) { DBGPRINT(DBG_COMP_INIT, DBG_LEVEL_INFO, ("AfpDeinitializeDataAndSubsystems: Deinitializing %s\n", AfpInitSubSystems[i].DeInitRoutineName)); (*AfpInitSubSystems[i].DeInitRoutine)(); } #if DBG
AfpInitSubSystems[i].Deinitialized = True; #endif
} }
/*** AfpSetServerStatus
* * Set the Server status block via afpSpSetStatus. This is called in once at * server startup and anytime a change in server status makes this necessary. * By now, ServerSetInfo() has happened and it has been validated that all * paramters are kosher. * * LOCKS: AfpServerGlobalLock (SPIN) */ AFPSTATUS AfpSetServerStatus( IN VOID ) { KIRQL OldIrql; AFPSTATUS Status=STATUS_SUCCESS; AFPSTATUS Status2; struct _StatusHeader { BYTE _MachineString[2]; // These are offsets relative to the struct
BYTE _AfpVersions[2]; // ---------- do ------------
BYTE _UAMs[2]; // ---------- do ------------
BYTE _VolumeIcon[2]; // ---------- do ------------
BYTE _Flags[2]; // Server Flags
// The actual strings start here
} *pStatusHeader; PASCALSTR pStr; PBYTE pNumUamPtr; LONG Size; USHORT Flags; BOOLEAN GuestAllowed = False, ClearTextAllowed = False, NativeAppleUamSupported = False, MicrosoftUamSupported = False, AllowSavePass = False; BYTE CountOfUams; PBYTE pSignOffset; PBYTE pNetAddrOffset; DWORD IpAddrCount=0; PBYTE IpAddrBlob=NULL; NTSTATUS ntStatus;
// Assert that all the info that we can possibly stuff in can indeed fit
// in the buffer that we'll allocate
// Allocate a buffer to fill the status information in. This will be
// freed by AfpSpSetStatus(), this can be freed. We do not know up front
// how much we'll need. Err on the safe side
if ((pStatusHeader = (struct _StatusHeader *) AfpAllocZeroedNonPagedMemory(ASP_MAX_STATUS_BUF)) == NULL) { return STATUS_INSUFFICIENT_RESOURCES; }
//
// first, find out if we have any TCPIP addresses
//
ntStatus = DsiGetIpAddrBlob(&IpAddrCount, &IpAddrBlob); if (!NT_SUCCESS(ntStatus)) { AfpFreeMemory(pStatusHeader);
DBGPRINT(DBG_COMP_STACKIF, DBG_LEVEL_ERR, ("AfpSetServerStatus: DsiGetIpAddrBlob failed %lx\n",ntStatus)); return STATUS_INSUFFICIENT_RESOURCES; }
ACQUIRE_SPIN_LOCK(&AfpServerGlobalLock, &OldIrql);
GuestAllowed = (AfpServerOptions & AFP_SRVROPT_GUESTLOGONALLOWED) ? True : False;
ClearTextAllowed = (AfpServerOptions & AFP_SRVROPT_CLEARTEXTLOGONALLOWED) ? True : False;
MicrosoftUamSupported = (AfpServerOptions & AFP_SRVROPT_MICROSOFT_UAM)? True : False;
NativeAppleUamSupported = (AfpServerOptions & AFP_SRVROPT_NATIVEAPPLEUAM) ? True : False;
if (!ClearTextAllowed && !MicrosoftUamSupported && !NativeAppleUamSupported) { DBGPRINT(DBG_COMP_INIT, DBG_LEVEL_WARN, ("AfpSetServerStatus: got to enable at least one UAM! Failing request\n"));
RELEASE_SPIN_LOCK(&AfpServerGlobalLock, OldIrql); AfpFreeMemory(pStatusHeader); if (IpAddrBlob) { AfpFreeMemory(IpAddrBlob); } return(STATUS_INVALID_PARAMETER); }
Size = sizeof(struct _StatusHeader) + // Status header
AfpServerName.Length + 1 + // Server Name
AFP_MACHINE_TYPE_LEN + 1 + // Machine String
AfpVersion20.Length + 1 + // Afp Versions
AfpVersion21.Length + 1 + ICONSIZE_ICN; // Volume Icon & Mask
ASSERT(Size <= ASP_MAX_STATUS_BUF);
// Specify our capabilities
Flags = SRVRINFO_SUPPORTS_COPYFILE | SRVRINFO_SUPPORTS_CHGPASSWD | SRVRINFO_SUPPORTS_SERVERMSG | SRVRINFO_SUPPORTS_SRVSIGN | SRVRINFO_SUPPORTS_SRVNOTIFY | #ifdef CLIENT36
SRVRINFO_SUPPORTS_MGETREQS | #endif
((AfpServerOptions & AFP_SRVROPT_ALLOWSAVEDPASSWORD) ? 0: SRVRINFO_DISALLOW_SAVEPASS);
// do we have any ipaddresses?
if (IpAddrCount > 0) { Flags |= SRVRINFO_SUPPORTS_TCPIP; }
PUTSHORT2SHORT(&pStatusHeader->_Flags, Flags);
// Copy the Server Name
pStr = (PASCALSTR)((PBYTE)pStatusHeader + sizeof(struct _StatusHeader)); pStr->ps_Length = (BYTE)(AfpServerName.Length); RtlCopyMemory(pStr->ps_String, AfpServerName.Buffer, AfpServerName.Length); (PBYTE)pStr += AfpServerName.Length + 1;
// do we need a pad byte?
if (((PBYTE)pStr - (PBYTE)pStatusHeader) % 2 == 1) { *(PBYTE)pStr = 0; ((PBYTE)pStr)++; }
// skip past the Signature Offset field: we'll store the value later
pSignOffset = (PBYTE)pStr; ((PBYTE)pStr) += 2;
if ((IpAddrCount > 0) || (AfpServerBoundToAsp)) { // skip past the Network Address Count Offset: we'll store the value later
pNetAddrOffset = (PBYTE)pStr; ((PBYTE)pStr) += 2; } else { DBGPRINT(DBG_COMP_STACKIF, DBG_LEVEL_ERR, ("AfpSetServerStatus: Neither TCP nor Appletalk is active!!\n")); }
PUTSHORT2SHORT(pStatusHeader->_MachineString, (USHORT)((PBYTE)pStr - (PBYTE)pStatusHeader));
// Copy the machine name string
pStr->ps_Length = (BYTE) AFP_MACHINE_TYPE_LEN; RtlCopyMemory(pStr->ps_String, AFP_MACHINE_TYPE_STR, AFP_MACHINE_TYPE_LEN); (PBYTE)pStr += AFP_MACHINE_TYPE_LEN + 1;
// Copy the Afp Version Strings
PUTSHORT2SHORT(pStatusHeader->_AfpVersions, (USHORT)((PBYTE)pStr - (PBYTE)pStatusHeader));
*((PBYTE)pStr)++ = AFP_NUM_VERSIONS; pStr->ps_Length = (BYTE)AfpVersion20.Length; RtlCopyMemory(pStr->ps_String, AfpVersion20.Buffer, AfpVersion20.Length); (PBYTE)pStr += AfpVersion20.Length + 1;
pStr->ps_Length = (BYTE)AfpVersion21.Length; RtlCopyMemory(pStr->ps_String, AfpVersion21.Buffer, AfpVersion21.Length); (PBYTE)pStr += AfpVersion21.Length + 1;
pStr->ps_Length = (BYTE)AfpVersion22.Length; RtlCopyMemory(pStr->ps_String, AfpVersion22.Buffer, AfpVersion22.Length); (PBYTE)pStr += AfpVersion22.Length + 1;
// We always support at least one UAM!
PUTSHORT2SHORT(pStatusHeader->_UAMs, (USHORT)((PBYTE)pStr - (PBYTE)pStatusHeader)); pNumUamPtr = (PBYTE)pStr; ((PBYTE)pStr)++;
CountOfUams = 0;
if (GuestAllowed) { pStr->ps_Length = (BYTE)AfpUamGuest.Length; RtlCopyMemory(pStr->ps_String, AfpUamGuest.Buffer, AfpUamGuest.Length); (PBYTE)pStr += AfpUamGuest.Length + 1; CountOfUams++; Size += (AfpUamGuest.Length + 1); } else { DBGPRINT(DBG_COMP_INIT, DBG_LEVEL_ERR, ("AfpSetServerStatus: Guest is disabled\n")); }
if (ClearTextAllowed) { pStr->ps_Length = (BYTE)AfpUamClearText.Length; RtlCopyMemory(pStr->ps_String, AfpUamClearText.Buffer, AfpUamClearText.Length); (PBYTE)pStr += AfpUamClearText.Length + 1; CountOfUams++; Size += (AfpUamClearText.Length + 1); } else { DBGPRINT(DBG_COMP_INIT, DBG_LEVEL_ERR, ("AfpSetServerStatus: ClearText UAM is NOT configured\n")); }
if (MicrosoftUamSupported) { // copy in "Microsoft V1.0" string
pStr->ps_Length = (BYTE)AfpUamCustomV1.Length; RtlCopyMemory(pStr->ps_String, AfpUamCustomV1.Buffer, AfpUamCustomV1.Length); (PBYTE)pStr += AfpUamCustomV1.Length + 1; CountOfUams++; Size += (AfpUamCustomV1.Length + 1 + 1);
// copy in "Microsoft V2.0" string
pStr->ps_Length = (BYTE)AfpUamCustomV2.Length; RtlCopyMemory(pStr->ps_String, AfpUamCustomV2.Buffer, AfpUamCustomV2.Length); (PBYTE)pStr += AfpUamCustomV2.Length + 1; CountOfUams++; Size += (AfpUamCustomV2.Length + 1 + 1);
// copy in "Microsoft V3.0" string
pStr->ps_Length = (BYTE)AfpUamCustomV3.Length; RtlCopyMemory(pStr->ps_String, AfpUamCustomV3.Buffer, AfpUamCustomV3.Length); (PBYTE)pStr += AfpUamCustomV3.Length + 1; CountOfUams++; Size += (AfpUamCustomV3.Length + 1 + 1); } else { DBGPRINT(DBG_COMP_INIT, DBG_LEVEL_ERR, ("AfpSetServerStatus: Microsoft UAM is NOT configured\n")); }
if (NativeAppleUamSupported) { DBGPRINT(DBG_COMP_INIT, DBG_LEVEL_ERR, ("AfpSetServerStatus: Apple's native UAM is configured\n"));
pStr->ps_Length = (BYTE)AfpUamApple.Length; RtlCopyMemory(pStr->ps_String, AfpUamApple.Buffer, AfpUamApple.Length); (PBYTE)pStr += AfpUamApple.Length + 1; CountOfUams++; Size += (AfpUamApple.Length + 1 + 1);
// 2-way not included for now
#if ALLOW_2WAY_ASWELL
pStr->ps_Length = (BYTE)AfpUamApple2Way.Length; RtlCopyMemory(pStr->ps_String, AfpUamApple2Way.Buffer, AfpUamApple2Way.Length); (PBYTE)pStr += AfpUamApple2Way.Length + 1; CountOfUams++; Size += (AfpUamApple2Way.Length + 1 + 1); #endif
}
// how many UAM's are we telling the client we support
*pNumUamPtr = CountOfUams;
// now we know where Server signature goes: write the offset
PUTSHORT2SHORT(pSignOffset,(USHORT)((PBYTE)pStr - (PBYTE)pStatusHeader));
// copy the Server signature
RtlCopyMemory((PBYTE)pStr, AfpServerSignature, 16); ((PBYTE)pStr) += 16;
//
// if we have network address(es), send that info over!
//
if ((IpAddrCount > 0) || (AfpServerBoundToAsp)) { // now we know where Network Address Count Offset goes: write the offset
PUTSHORT2SHORT(pNetAddrOffset,(USHORT)((PBYTE)pStr - (PBYTE)pStatusHeader));
// how many addresses are we returning?
*(PBYTE)pStr = ((BYTE)IpAddrCount) + ((AfpServerBoundToAsp) ? 1 : 0); ((PBYTE)pStr)++;
// copy the ipaddresses, if bound
if (IpAddrCount > 0) { // copy the blob containing the Length, Tag and Ipaddress info
RtlCopyMemory((PBYTE)pStr, IpAddrBlob, IpAddrCount*DSI_NETWORK_ADDR_LEN); ((PBYTE)pStr) += (IpAddrCount*DSI_NETWORK_ADDR_LEN); }
// now copy the appletalk addres, if bound
if (AfpServerBoundToAsp) { *(PBYTE)pStr = DSI_NETWORK_ADDR_LEN; ((PBYTE)pStr)++;
*(PBYTE)pStr = ATALK_NETWORK_ADDR_ATKTAG; ((PBYTE)pStr)++;
PUTDWORD2DWORD((PBYTE)pStr, AfpAspEntries.asp_AtalkAddr.Address);
((PBYTE)pStr) += sizeof(DWORD); } }
// Now get the volume icon, if any
if (AfpServerIcon != NULL) { RtlCopyMemory((PBYTE)pStr, AfpServerIcon, ICONSIZE_ICN); PUTSHORT2SHORT(pStatusHeader->_VolumeIcon, (USHORT)((PBYTE)pStr - (PBYTE)pStatusHeader)); } else PUTSHORT2SHORT(pStatusHeader->_VolumeIcon, 0);
RELEASE_SPIN_LOCK(&AfpServerGlobalLock, OldIrql);
if (AfpServerBoundToAsp) { Status = AfpSpSetAspStatus((PBYTE)pStatusHeader, Size); }
if (AfpServerBoundToTcp) { Status2 = AfpSpSetDsiStatus((PBYTE)pStatusHeader, Size);
// as long as one succeeds, we want the call to succeed
if (!NT_SUCCESS(Status)) { Status = Status2; } }
AfpFreeMemory(pStatusHeader);
if (IpAddrBlob) { AfpFreeMemory(IpAddrBlob); }
return Status; }
/*** AfpAdmWServerSetInfo
* * This routine sets various server globals with data supplied by the admin. The * following server globals are set by this routine: * * - Server Name * - Maximum Sessions (valid values are 1 through AFP_MAXSESSIONS) * - Server Options (i.e. guest logon allowed, etc.) * - Server Login Message * - Maximum paged and non-paged memory limits * - Macintosh Code Page File * * The server name and memory limits can only be changed while the server * is stopped. The Macintosh Code Page File may only be set ONE time after * the AFP server driver is loaded. i.e. if you want to reset the codepage, * the service must unload the AFP server, then reload it. * * This routine must execute in the context of the worker thread, since we * need to map the Macintosh CodePage into the server's virtual memory * space, not the client's. * * LOCKS: AfpServerGlobalLock (SPIN) */ AFPSTATUS AfpAdmWServerSetInfo( IN OUT PVOID InBuf OPTIONAL, IN LONG OutBufLen OPTIONAL, OUT PVOID OutBuf OPTIONAL ) { KIRQL OldIrql; AFPSTATUS rc; ANSI_STRING amsg, aname; UNICODE_STRING uname, umsg, oldloginmsgU; DWORD parmflags = ((PSETINFOREQPKT)InBuf)->sirqp_parmnum; PAFP_SERVER_INFO pSvrInfo = (PAFP_SERVER_INFO)((PCHAR)InBuf+sizeof(SETINFOREQPKT)); BOOLEAN setstatus = False; BOOLEAN locktaken = False; BOOLEAN servernameexists = False;
amsg.Length = 0; amsg.MaximumLength = 0; amsg.Buffer = NULL;
aname.Length = 0; aname.MaximumLength = 0; aname.Buffer = NULL;
AfpSetEmptyUnicodeString(&umsg, 0, NULL); AfpSetEmptyUnicodeString(&oldloginmsgU, 0, NULL);
/* Validate all limits */ if ((parmflags & ~AFP_SERVER_PARMNUM_ALL) ||
((parmflags & AFP_SERVER_PARMNUM_OPTIONS) && (pSvrInfo->afpsrv_options & ~AFP_SRVROPT_ALL)) ||
((parmflags & AFP_SERVER_PARMNUM_MAX_SESSIONS) && ((pSvrInfo->afpsrv_max_sessions > AFP_MAXSESSIONS) || (pSvrInfo->afpsrv_max_sessions == 0)))) { DBGPRINT(DBG_COMP_ADMINAPI_SRV, DBG_LEVEL_ERR, ("AfpAdmWServerSetInfo: invalid parm!\n")); return AFPERR_InvalidParms_MaxSessions; }
if (parmflags == AFP_SERVER_GUEST_ACCT_NOTIFY) { AfpServerOptions ^= AFP_SRVROPT_GUESTLOGONALLOWED;
DBGPRINT(DBG_COMP_ADMINAPI_SRV, DBG_LEVEL_ERR, ("AfpAdmWServerSetInfo: Guest account is now %s\n", (AfpServerOptions & AFP_SRVROPT_GUESTLOGONALLOWED)? "enabled":"disabled"));
AfpSetServerStatus(); return(STATUS_SUCCESS); }
if (parmflags & AFP_SERVER_PARMNUM_CODEPAGE) { // You may only set the Macintosh CodePage once
if (AfpMacCPBaseAddress != NULL) return AFPERR_InvalidServerState; else { rc = AfpGetMacCodePage(pSvrInfo->afpsrv_codepage); if (!NT_SUCCESS(rc)) { return AFPERR_CodePage; } } }
if (parmflags & AFP_SERVER_PARMNUM_LOGINMSG) { RtlInitUnicodeString(&umsg, pSvrInfo->afpsrv_login_msg); if (umsg.Length == 0) { umsg.Buffer = NULL; } amsg.MaximumLength = (USHORT)RtlUnicodeStringToAnsiSize(&umsg); amsg.Length = amsg.MaximumLength - 1;
if (amsg.Length > AFP_MESSAGE_LEN) { return AFPERR_InvalidParms_LoginMsg; }
if (amsg.Length != 0) { if ((umsg.Buffer = (LPWSTR)AfpAllocPagedMemory(umsg.Length+1)) == NULL) { return STATUS_INSUFFICIENT_RESOURCES; }
if ((amsg.Buffer = (PCHAR)AfpAllocNonPagedMemory(amsg.MaximumLength)) == NULL) { AfpFreeMemory(umsg.Buffer); return STATUS_INSUFFICIENT_RESOURCES; }
RtlCopyMemory(umsg.Buffer, pSvrInfo->afpsrv_login_msg, umsg.Length); rc = RtlUnicodeStringToAnsiString(&amsg, &umsg, False); if (!NT_SUCCESS(rc)) { AfpFreeMemory(amsg.Buffer); AfpFreeMemory(umsg.Buffer); return AFPERR_InvalidParms; } else AfpConvertHostAnsiToMacAnsi(&amsg); } }
do { if (parmflags & AFP_SERVER_PARMNUM_NAME) { RtlInitUnicodeString(&uname,pSvrInfo->afpsrv_name); aname.MaximumLength = (USHORT)RtlUnicodeStringToAnsiSize(&uname); aname.Length = aname.MaximumLength - 1;
if ((aname.Length == 0) || (aname.Length > AFP_SERVERNAME_LEN)) { DBGPRINT(DBG_COMP_ADMINAPI_SRV, DBG_LEVEL_ERR, ("AfpAdmWServerSetInfo: bad name length %d, rejecting\n,aname.Length")); rc = AFPERR_InvalidServerName_Length; break; }
if ((aname.Buffer = AfpAllocNonPagedMemory(aname.MaximumLength)) == NULL) { DBGPRINT(DBG_COMP_ADMINAPI_SRV, DBG_LEVEL_ERR, ("AfpAdmWServerSetInfo: malloc failed on name change\n")); rc = STATUS_INSUFFICIENT_RESOURCES; break; } rc = AfpConvertStringToAnsi(&uname, &aname); if (!NT_SUCCESS(rc)) { rc = AFPERR_InvalidServerName; DBGPRINT(DBG_COMP_ADMINAPI_SRV, DBG_LEVEL_ERR, ("AfpAdmWServerSetInfo: AfpConvertStringToAnsi failed %lx\n",rc)); break; } }
rc = STATUS_SUCCESS;
//
// take the global data lock and set the new information
//
ACQUIRE_SPIN_LOCK(&AfpServerGlobalLock, &OldIrql); locktaken = True;
// Validate if we are in the right state to receive some of the
// parameters
if ((AfpServerState != AFP_STATE_IDLE) && (parmflags & (AFP_SERVER_PARMNUM_PAGEMEMLIM | AFP_SERVER_PARMNUM_NONPAGEMEMLIM))) { DBGPRINT(DBG_COMP_ADMINAPI_SRV, DBG_LEVEL_ERR, ("AfpAdmWServerSetInfo: failure at 1\n"));
rc = AFPERR_InvalidServerState; break; }
else if ((AfpServerState == AFP_STATE_IDLE) && (parmflags & (AFP_SERVER_PARMNUM_NAME | AFP_SERVER_PARMNUM_PAGEMEMLIM | AFP_SERVER_PARMNUM_NONPAGEMEMLIM)) != (DWORD)(AFP_SERVER_PARMNUM_NAME | AFP_SERVER_PARMNUM_PAGEMEMLIM | AFP_SERVER_PARMNUM_NONPAGEMEMLIM)) { DBGPRINT(DBG_COMP_ADMINAPI_SRV, DBG_LEVEL_ERR, ("AfpAdmWServerSetInfo: failure at 2\n"));
rc = AFPERR_InvalidParms; break; }
if (parmflags & (AFP_SERVER_PARMNUM_PAGEMEMLIM | AFP_SERVER_PARMNUM_NONPAGEMEMLIM)) { AfpPagedPoolLimit = pSvrInfo->afpsrv_max_paged_mem * 1024; AfpNonPagedPoolLimit = pSvrInfo->afpsrv_max_nonpaged_mem * 1024; }
if (parmflags & AFP_SERVER_PARMNUM_NAME) { setstatus = ((AfpServerState == AFP_STATE_RUNNING) || (AfpServerState == AFP_STATE_START_PENDING));
rc = STATUS_SUCCESS; if (AfpServerName.Buffer == NULL) { AfpServerName = aname; } else { servernameexists = True; }
// Re-register the name only if the service up and running
// No point registering the name on a service not functioning.
// This causes problems as we falsely advertise
// the AFP server in the browser when it is not really available.
if (setstatus) {
// deregister the old name, if one exists
if ((AfpServerBoundToAsp) && (servernameexists)) { RELEASE_SPIN_LOCK(&AfpServerGlobalLock,OldIrql); rc = AfpSpRegisterName(&AfpServerName, False); ACQUIRE_SPIN_LOCK(&AfpServerGlobalLock, &OldIrql);
AfpFreeMemory(AfpServerName.Buffer); }
AfpServerName = aname;
// if deregister succeeded, register the new name
if ((NT_SUCCESS(rc)) && (AfpServerBoundToAsp)) { RELEASE_SPIN_LOCK(&AfpServerGlobalLock,OldIrql); rc = AfpSpRegisterName(&AfpServerName, True); ACQUIRE_SPIN_LOCK(&AfpServerGlobalLock, &OldIrql); }
} }
if (parmflags & AFP_SERVER_PARMNUM_OPTIONS) { if (pSvrInfo->afpsrv_options & AFP_SRVROPT_STANDALONE) { // Server is NtProductServer or NtProductWinNt
AfpServerIsStandalone = True; if (AfpSidNone == NULL) { // If we didn't initialize the AfpSidNone during
// AfpInitSidOffsets then the service either sent
// us bogus offsets, or this bit is bogus
rc = AFPERR_InvalidParms; break; } pSvrInfo->afpsrv_options &= ~AFP_SRVROPT_STANDALONE; } if (!setstatus) { setstatus = (AfpServerOptions ^ pSvrInfo->afpsrv_options) ? True : False; setstatus = setstatus && ((AfpServerState == AFP_STATE_RUNNING) || (AfpServerState == AFP_STATE_START_PENDING)); } AfpServerOptions = pSvrInfo->afpsrv_options; }
if (parmflags & AFP_SERVER_PARMNUM_LOGINMSG) { if (AfpLoginMsg.Buffer != NULL) { AfpFreeMemory(AfpLoginMsg.Buffer); } AfpLoginMsg = amsg; oldloginmsgU = AfpLoginMsgU; AfpLoginMsgU = umsg; }
if (parmflags & AFP_SERVER_PARMNUM_MAX_SESSIONS) { if (AfpServerMaxSessions != pSvrInfo->afpsrv_max_sessions) { BOOLEAN KillSome;
KillSome = (AfpServerMaxSessions > pSvrInfo->afpsrv_max_sessions);
AfpServerMaxSessions = pSvrInfo->afpsrv_max_sessions;
RELEASE_SPIN_LOCK(&AfpServerGlobalLock,OldIrql); locktaken = False; } } } while (False);
if (locktaken) { RELEASE_SPIN_LOCK(&AfpServerGlobalLock,OldIrql); }
if (!NT_SUCCESS(rc)) { DBGPRINT(DBG_COMP_ADMINAPI_SRV, DBG_LEVEL_ERR, ("AfpAdmWServerSetInfo: returning %lx\n",rc)); if (amsg.Buffer != NULL) { AfpFreeMemory(amsg.Buffer); } if (aname.Buffer != NULL) { if (AfpServerName.Buffer == aname.Buffer) { AfpServerName.Buffer = NULL; AfpServerName.MaximumLength = 0; AfpServerName.Length = 0; } AfpFreeMemory(aname.Buffer); } } else if (setstatus) { return (AfpSetServerStatus()); }
if (oldloginmsgU.Buffer != NULL) AfpFreeMemory(oldloginmsgU.Buffer);
return rc; }
/*** AfpCreateNewThread
* * Create either an admin or a worker thread. */ NTSTATUS FASTCALL AfpCreateNewThread( IN VOID (*ThreadFunc)(IN PVOID pContext), IN LONG ThreadNum ) { NTSTATUS Status; HANDLE FspThread;
DBGPRINT(DBG_COMP_INIT, DBG_LEVEL_INFO, ("AfpCreateNewThread: Creating thread %lx\n", ThreadFunc));
ASSERT(KeGetCurrentIrql() < DISPATCH_LEVEL); ASSERT ((AfpServerState == AFP_STATE_IDLE) || (ThreadNum < AFP_MAX_THREADS) && (AfpNumThreads >= AFP_MIN_THREADS)); Status = PsCreateSystemThread(&FspThread, THREAD_ALL_ACCESS, NULL, NtCurrentProcess(), NULL, ThreadFunc, (PVOID)((ULONG_PTR)ThreadNum)); if (!NT_SUCCESS(Status)) { DBGPRINT(DBG_COMP_INIT, DBG_LEVEL_WARN, ("AfpCreateNewThread: Cannot create threads %lx\n", Status)); AFPLOG_DDERROR(AFPSRVMSG_CREATE_THREAD, Status, NULL, 0, NULL); } else { // Close the handle to the thread so that it goes away when the
// thread terminates
NtClose(FspThread); } return Status; }
/*** AfpQueueWorkItem
* * Queue a work item to the worker thread. * * LOCKS: AfpStatisticsLock */ VOID FASTCALL AfpQueueWorkItem( IN PWORK_ITEM pWI ) { KIRQL OldIrql;
ACQUIRE_SPIN_LOCK(&AfpStatisticsLock, &OldIrql);
AfpServerStatistics.stat_CurrQueueLength ++; #ifdef PROFILING
AfpServerProfile->perf_QueueCount ++; #endif
if (AfpServerStatistics.stat_CurrQueueLength > AfpServerStatistics.stat_MaxQueueLength) AfpServerStatistics.stat_MaxQueueLength++;
RELEASE_SPIN_LOCK(&AfpStatisticsLock, OldIrql);
DBGPRINT(DBG_COMP_INIT, DBG_LEVEL_INFO, ("AfpQueueWorkItem: Queueing %lx (%lx)\n", pWI->wi_Worker, pWI->wi_Context));
INTERLOCKED_ADD_ULONG(&AfpWorkerRequests, 1, &AfpServerGlobalLock);
// Insert work item in worker queue
KeInsertQueue(&AfpWorkerQueue, &pWI->wi_List); }
/*** AfpWorkerThread
* * This thread is used to do all the work that is queued to the FSP. * * We want to dynamically create and destroy threads so that we can * optimize the number of threads used. The number of threads range * from AFP_MIN_THREADS - AFP_MAX_THREADS. * A new thread is created if the number of entries in the queue * exceeds AFP_THREAD_THRESHOLD_REQ. A thread is terminated if the request count * drops below AFP_THREAD_THRESHOLD_IDLE. */ VOID AfpWorkerThread( IN PVOID pContext ) { NTSTATUS Status; PLIST_ENTRY pList; PWORK_ITEM pWI; LONG IdleCount = 0; LONG ThreadNum, CreateId; ULONG BasePriority = THREAD_BASE_PRIORITY_MAX; KIRQL OldIrql; BOOLEAN Release = False; BOOLEAN ReasonToLive = True;
ThreadNum = (LONG)(LONG_PTR)pContext;
ASSERT (AfpThreadState[ThreadNum] == AFP_THREAD_STARTED);
DBGPRINT(DBG_COMP_INIT, DBG_LEVEL_WARN, ("AfpWorkerThread: Thread %ld Starting. NumThreads %ld\n", ThreadNum, AfpNumThreads));
// Update the thread statistics.
ACQUIRE_SPIN_LOCK(&AfpStatisticsLock, &OldIrql); AfpServerStatistics.stat_CurrThreadCount ++; if (AfpServerStatistics.stat_CurrThreadCount > AfpServerStatistics.stat_MaxThreadCount) AfpServerStatistics.stat_MaxThreadCount = AfpServerStatistics.stat_CurrThreadCount; RELEASE_SPIN_LOCK(&AfpStatisticsLock, OldIrql);
// Set the thread base priority to 'foreground'
NtSetInformationThread( NtCurrentThread(), ThreadBasePriority, &BasePriority, sizeof(BasePriority));
// Disable hard-error pop-ups for this thread
IoSetThreadHardErrorMode( FALSE ); AfpThreadPtrsW[ThreadNum] = PsGetCurrentThread();
do { AfpThreadState[ThreadNum] = AFP_THREAD_WAITING;
DBGPRINT(DBG_COMP_INIT, DBG_LEVEL_INFO, ("AfpWorkerThread: About to block\n"));
// DELALLOCQUEUE: unrem the #if 0 part
#if 0
//
// first check if there is someone waiting to get buffer allocation:
// let's deal with them first, so some connection doesn't get "blocked"
// because transport underneath doesn't have buffer
//
pList = KeRemoveQueue(&AfpDelAllocQueue, KernelMode, NULL); if (pList != NULL) { AfpThreadState[ThreadNum] = AFP_THREAD_BUSY;
pWI = CONTAINING_RECORD(pList, WORK_ITEM, wi_List);
// Call the worker
(pWI->wi_Worker)(pWI->wi_Context);
IdleCount = 0;
continue; } #endif
pList = KeRemoveQueue(&AfpWorkerQueue, KernelMode, &ThreeSecTimeOut); Status = STATUS_SUCCESS; if ((NTSTATUS)((ULONG_PTR)pList) == STATUS_TIMEOUT) Status = STATUS_TIMEOUT;
DBGPRINT(DBG_COMP_INIT, DBG_LEVEL_INFO, ("AfpWorkerThread: %s\n", (Status == STATUS_SUCCESS) ? "Another Work item" : "Timer - check"));
if (Status == STATUS_SUCCESS) { pWI = CONTAINING_RECORD(pList, WORK_ITEM, wi_List);
if (pWI == &AfpTerminateThreadWI) { BOOLEAN Requeue;
ReasonToLive = False; ACQUIRE_SPIN_LOCK(&AfpServerGlobalLock, &OldIrql); AfpNumThreads --; Requeue = (AfpNumThreads != 0); RELEASE_SPIN_LOCK(&AfpServerGlobalLock, OldIrql);
AfpThreadState[ThreadNum] = AFP_THREAD_DEAD; if (!Requeue) { ASSERT((AfpServerState == AFP_STATE_STOPPED) || (AfpServerState == AFP_STATE_IDLE)); Release = True; } else { // Re-queue this work-item so that other threads can die too !!!
KeInsertQueue(&AfpWorkerQueue, &AfpTerminateThreadWI.wi_List); } break; }
DBGPRINT(DBG_COMP_INIT, DBG_LEVEL_INFO, ("AfpWorkerThread: Dispatching %lx (%lx)\n", pWI->wi_Worker, pWI->wi_Context));
AfpThreadState[ThreadNum] = AFP_THREAD_BUSY; #if DBG
AfpThreadDispCount[ThreadNum] ++; #endif
// Call the worker
(pWI->wi_Worker)(pWI->wi_Context);
ASSERT (KeGetCurrentIrql() < DISPATCH_LEVEL);
INTERLOCKED_ADD_ULONG((PLONG)(&AfpServerStatistics.stat_CurrQueueLength), (ULONG)-1, &AfpStatisticsLock);
INTERLOCKED_ADD_ULONG(&AfpWorkerRequests, (ULONG)-1, &AfpServerGlobalLock); IdleCount = 0; } else { IdleCount ++; }
ACQUIRE_SPIN_LOCK(&AfpServerGlobalLock, &OldIrql);
if (((AfpWorkerRequests - AfpNumThreads) > AFP_THREAD_THRESHOLD_REQS) && (AfpNumThreads < AFP_MAX_THREADS)) { for (CreateId = 0; CreateId < AFP_MAX_THREADS; CreateId++) { if (AfpThreadState[CreateId] == AFP_THREAD_DEAD) { AfpThreadState[CreateId] = AFP_THREAD_STARTED; break; } }
if (CreateId < AFP_MAX_THREADS) { AfpNumThreads++;
ASSERT (CreateId < AFP_MAX_THREADS);
DBGPRINT(DBG_COMP_INIT, DBG_LEVEL_WARN, ("AfpWorkerThread: Creating New Thread %ld\n", CreateId));
RELEASE_SPIN_LOCK(&AfpServerGlobalLock, OldIrql); Status = AfpCreateNewThread(AfpWorkerThread, CreateId); ACQUIRE_SPIN_LOCK(&AfpServerGlobalLock, &OldIrql);
if (!NT_SUCCESS(Status)) { ASSERT(AfpThreadState[CreateId] == AFP_THREAD_STARTED); AfpThreadState[CreateId] = AFP_THREAD_DEAD; AfpNumThreads --; } } } else if ((AfpNumThreads > AFP_MIN_THREADS) && (IdleCount >= AFP_THREAD_THRESHOLD_IDLE)) { ReasonToLive = False; AfpThreadState[ThreadNum] = AFP_THREAD_DEAD; AfpNumThreads --; DBGPRINT(DBG_COMP_INIT, DBG_LEVEL_WARN, ("AfpWorkerThread: Thread %ld About to commit suicide, NumThreads %ld\n", ThreadNum, AfpNumThreads)); }
RELEASE_SPIN_LOCK(&AfpServerGlobalLock, OldIrql);
} while (ReasonToLive);
AfpThreadPtrsW[ThreadNum] = NULL;
DBGPRINT(DBG_COMP_INIT, DBG_LEVEL_WARN, ("AfpWorkerThread: Thread %ld Quitting\n", ThreadNum));
INTERLOCKED_ADD_ULONG((PLONG)&AfpServerStatistics.stat_CurrThreadCount, (ULONG)-1, &AfpStatisticsLock);
// if this is the last thread in the system, set things up so that unload code
// can wait on the pointer and know when this thread has really died and not just
// when KeSetEvent is called
if (Release) { AfpThreadPtrsW[ThreadNum] = PsGetCurrentThread(); ObReferenceObject(AfpThreadPtrsW[ThreadNum]);
KeSetEvent(&AfpStopConfirmEvent, IO_NETWORK_INCREMENT, False); } }
/*** AfpInitStrings
* * Initializes all the strings */ VOID FASTCALL AfpInitStrings( IN VOID ) { // Initialize UAM Strings
RtlInitString(&AfpUamGuest, NO_USER_AUTHENT_NAME); RtlInitString(&AfpUamClearText, CLEAR_TEXT_AUTHENT_NAME); RtlInitString(&AfpUamCustomV1, CUSTOM_UAM_NAME_V1); RtlInitString(&AfpUamCustomV2, CUSTOM_UAM_NAME_V2); RtlInitString(&AfpUamCustomV3, CUSTOM_UAM_NAME_V3); RtlInitString(&AfpUamApple, RANDNUM_EXCHANGE_NAME); RtlInitString(&AfpUamApple2Way, TWOWAY_EXCHANGE_NAME);
// Initialize AFP Versions
RtlInitString(&AfpVersion20, AFP_VER_20_NAME); RtlInitString(&AfpVersion21, AFP_VER_21_NAME); RtlInitString(&AfpVersion22, AFP_VER_22_NAME);
// Default Workstation name
RtlInitUnicodeString(&AfpDefaultWksta, AFP_DEFAULT_WORKSTATION);
RtlInitUnicodeString(&AfpNetworkTrashNameU, AFP_NWTRASH_NAME_U); }
/*** AfpAdmSystemShutdown
* * Called during system shutdown. Simply close all active sessions and stop the volumes. */ AFPSTATUS AfpAdmSystemShutdown( IN OUT PVOID Inbuf OPTIONAL, IN LONG OutBufLen OPTIONAL, OUT PVOID Outbuf OPTIONAL ) { AFP_SESSION_INFO SessInfo; NTSTATUS Status;
if ((AfpServerState & ( AFP_STATE_STOPPED | AFP_STATE_STOP_PENDING | AFP_STATE_SHUTTINGDOWN)) == 0) { AfpServerState = AFP_STATE_SHUTTINGDOWN;
DBGPRINT(DBG_COMP_ADMINAPI_SC, DBG_LEVEL_ERR, ("AfpAdmSystemShutdown: Shutting down server\n"));
// Disable listens now that we are about to stop
AfpSpDisableListens();
SessInfo.afpsess_id = 0; // Shutdown all sessions
AfpAdmWSessionClose(&SessInfo, 0, NULL);
// Wait for the sessions to complete, if there were active sessions
if (AfpNumSessions > 0) do { Status = AfpIoWait(&AfpStopConfirmEvent, &FiveSecTimeOut); if (Status == STATUS_TIMEOUT) { DBGPRINT(DBG_COMP_ADMINAPI_SC, DBG_LEVEL_ERR, ("AfpAdmSystemShutdown: Timeout Waiting for %ld sessions to die, re-waiting\n", AfpNumSessions)); } } while (Status == STATUS_TIMEOUT);
// bring down the DSI-TCP interface
DsiDestroyAdapter();
// wait until DSI cleans up its interface with TCP
AfpIoWait(&DsiShutdownEvent, NULL);
// Set the flag to indicate that server is shutting down
fAfpServerShutdownEvent = TRUE;
// Now tell each of the volume scavengers to shut-down
AfpVolumeStopAllVolumes(); }
return AFP_ERR_NONE; }
|