Leaked source code of windows server 2003
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1393 lines
45 KiB

/*
Copyright (c) 1992 Microsoft Corporation
Module Name:
server.c
Abstract:
This module contains server global data and server init code.
This is used by the admin interface to start-off the server.
Author:
Jameel Hyder (microsoft!jameelh)
Revision History:
25 Apr 1992 Initial Version
Notes: Tab stop: 4
--*/
#define _GLOBALS_
#define SERVER_LOCALS
#define FILENUM FILE_SERVER
#include <seposix.h>
#include <afp.h>
#include <afpadmin.h>
#include <access.h>
#include <client.h>
#include <tcp.h>
#ifdef ALLOC_PRAGMA
#pragma alloc_text( INIT, AfpInitializeDataAndSubsystems)
#pragma alloc_text( PAGE, AfpDeinitializeSubsystems)
#pragma alloc_text( PAGE, AfpAdmSystemShutdown)
#pragma alloc_text( PAGE, AfpCreateNewThread)
#pragma alloc_text( PAGE_AFP, AfpAdmWServerSetInfo)
//#pragma alloc_text( PAGE_AFP, AfpSetServerStatus)
#endif
// This is the device handle to the stack.
BOOLEAN afpSpNameRegistered = False;
HANDLE afpSpAddressHandle = NULL;
PDEVICE_OBJECT afpSpAppleTalkDeviceObject = NULL;
PFILE_OBJECT afpSpAddressObject = NULL;
LONG afpSpNumOutstandingReplies = 0;
/*** AfpInitializeDataAndSubsystems
*
* Initialize Server Data and all subsystems.
*/
NTSTATUS
AfpInitializeDataAndSubsystems(
VOID
)
{
NTSTATUS Status;
PBYTE pBuffer;
PBYTE pDest;
LONG i, j;
// Initialize various global locks
INITIALIZE_SPIN_LOCK(&AfpServerGlobalLock);
INITIALIZE_SPIN_LOCK(&AfpSwmrLock);
INITIALIZE_SPIN_LOCK(&AfpStatisticsLock);
#if DBG
INITIALIZE_SPIN_LOCK(&AfpDebugSpinLock);
InitializeListHead(&AfpDebugDelAllocHead);
#endif
KeInitializeEvent(&AfpStopConfirmEvent, NotificationEvent, False);
KeInitializeMutex(&AfpPgLkMutex, 0xFFFF);
AfpInitializeWorkItem(&AfpTerminateThreadWI, NULL, NULL);
// The default security quality of service
AfpSecurityQOS.Length = sizeof(AfpSecurityQOS);
AfpSecurityQOS.ImpersonationLevel = SecurityImpersonation;
AfpSecurityQOS.ContextTrackingMode = SECURITY_STATIC_TRACKING;
AfpSecurityQOS.EffectiveOnly = False;
// Timeout(s) value used by AfpIoWait
FiveSecTimeOut.QuadPart = (-5*NUM_100ns_PER_SECOND);
ThreeSecTimeOut.QuadPart = (-3*NUM_100ns_PER_SECOND);
TwoSecTimeOut.QuadPart = (-2*NUM_100ns_PER_SECOND);
OneSecTimeOut.QuadPart = (-1*NUM_100ns_PER_SECOND);
// Default Type Creator. Careful with the initialization here.This has
// to be processor independent
AfpSwmrInitSwmr(&AfpEtcMapLock);
PUTBYTE42BYTE4(&AfpDefaultEtcMap.etc_type, AFP_DEFAULT_ETC_TYPE);
PUTBYTE42BYTE4(&AfpDefaultEtcMap.etc_creator, AFP_DEFAULT_ETC_CREATOR);
PUTBYTE42BYTE4(&AfpDefaultEtcMap.etc_extension, AFP_DEFAULT_ETC_EXT);
// Determine if the machine is little or big endian. This is not currently used
// at all. The idea is to maintain all on-disk databases in little-endian
// format and on big-endian machines, convert on the way-in and out.
i = 0x01020304;
AfpIsMachineLittleEndian = (*(BYTE *)(&i) == 0x04);
AfpServerState = AFP_STATE_IDLE;
AfpServerOptions = AFP_SRVROPT_NONE;
AfpServerMaxSessions = AFP_MAXSESSIONS;
// Check if server needs the Greek fix
{
UNICODE_STRING valueName;
UNICODE_STRING regPath;
HANDLE ParametersHandle = NULL;
PBYTE Storage = NULL;
PKEY_VALUE_FULL_INFORMATION Info = NULL;
ULONG bytesWritten;
PDWORD Value;
OBJECT_ATTRIBUTES ObjectAttributes;
NTSTATUS status;
AfpServerIsGreek = FALSE;
RtlInitUnicodeString (&regPath,
AFP_KEYPATH_SERVER_PARAMS_GREEK);
InitializeObjectAttributes(&ObjectAttributes,
&regPath,
OBJ_CASE_INSENSITIVE,
NULL,
NULL);
status = ZwOpenKey(&ParametersHandle,
KEY_READ,
&ObjectAttributes);
if (NT_SUCCESS(status))
{
RtlInitUnicodeString (&valueName,
AFPREG_VALNAME_GreekServer);
status = ZwQueryValueKey(ParametersHandle,
&valueName,
KeyValueFullInformation,
NULL,
0,
&bytesWritten);
if (status == STATUS_BUFFER_TOO_SMALL)
{
Storage = (PBYTE)AfpAllocNonPagedMemory (bytesWritten);
Info = (PKEY_VALUE_FULL_INFORMATION)Storage;
status = ZwQueryValueKey(ParametersHandle,
&valueName,
KeyValueFullInformation,
Info,
Storage?bytesWritten:0,
&bytesWritten);
if (NT_SUCCESS(status))
{
if (Info->Type != REG_DWORD)
{
DBGPRINT(DBG_COMP_INIT, DBG_LEVEL_ERR,
("AfpInitializeDataAndSubsystems: Invalid value type=(%ld) expected=(%ld)\n",
Info->Type, REG_DWORD));
}
else
{
Value = (PDWORD)((PBYTE)Info + Info->DataOffset);
DBGPRINT(DBG_COMP_INIT, DBG_LEVEL_ERR,
("AfpInitializeDataAndSubsystems: Read in value for Greek key (%ld)\n",
*Value));
if (*Value == TRUE)
{
AfpServerIsGreek = TRUE;
}
}
}
else
{
AfpServerIsGreek = FALSE;
DBGPRINT(DBG_COMP_INIT, DBG_LEVEL_ERR,
("AfpInitializeDataAndSubsystems: ZwQueryValueKey 2 failed with error (%0lx), Storagesize=(%ld), BytesNeeded=(%ld)\n",
status, sizeof(Storage), bytesWritten));
}
}
else
{
DBGPRINT(DBG_COMP_INIT, DBG_LEVEL_ERR,
("AfpInitializeDataAndSubsystems: ZwQueryValueKey 1 failed with error (%0lx), Storagesize=(%ld), BytesNeeded=(%ld)\n",
status, sizeof(Storage), bytesWritten));
}
}
else
{
DBGPRINT(DBG_COMP_INIT, DBG_LEVEL_ERR,
("AfpInitializeDataAndSubsystems: ZwOpenKey failed with error (%0lx)\n",
status));
}
if (ParametersHandle != NULL)
{
ZwClose(ParametersHandle);
}
if (Storage != NULL)
{
AfpFreeMemory (Storage);
}
status = STATUS_SUCCESS;
}
AfpGetCurrentTimeInMacFormat((PAFPTIME)&AfpServerStatistics.stat_TimeStamp);
//AfpGetCurrentTimeInMacFormat(&AfpSrvrNotifSentTime);
// generate a "unique" signature for our server
pDest = &AfpServerSignature[0];
for (i=0; i<2; i++)
{
pBuffer = AfpGetChallenge();
if (pBuffer)
{
RtlCopyMemory(pDest, pBuffer, MSV1_0_CHALLENGE_LENGTH);
pDest += MSV1_0_CHALLENGE_LENGTH;
AfpFreeMemory(pBuffer);
}
}
#ifdef PROFILING
// Allocate this directly since AfpAllocMemory() uses AfpServerProfile !!!
if ((AfpServerProfile = (PAFP_PROFILE_INFO)ExAllocatePoolWithTag(NonPagedPool,
sizeof(AFP_PROFILE_INFO),
AFP_TAG)) == NULL)
return STATUS_INSUFFICIENT_RESOURCES;
RtlZeroMemory(AfpServerProfile, sizeof(AFP_PROFILE_INFO));
KeQueryPerformanceCounter(&AfpServerProfile->perf_PerfFreq);
#endif
AfpInitStrings();
// Initialize the sub-systems
for (i = 0; i < NUM_INIT_SYSTEMS; i++)
{
DBGPRINT(DBG_COMP_INIT, DBG_LEVEL_INFO,
("AfpInitializeDataAndSubsystems: Initializing s\n",
AfpInitSubSystems[i].InitRoutineName));
if (AfpInitSubSystems[i].InitRoutine != NULL)
{
Status = (*AfpInitSubSystems[i].InitRoutine)();
if (!NT_SUCCESS(Status))
{
DBGPRINT(DBG_COMP_INIT, DBG_LEVEL_INFO,
("AfpInitializeDataAndSubsystems: %s failed %lx\n",
AfpInitSubSystems[i].InitRoutineName, Status));
// One of the subsystems failed to initialize. Deinitialize all
// of them which succeeded.
for (j = 0; j < i; j++)
{
if (AfpInitSubSystems[j].DeInitRoutine != NULL)
{
DBGPRINT(DBG_COMP_INIT, DBG_LEVEL_INFO,
("AfpInitializeDataAndSubsystems: Deinitializing %s\n",
AfpInitSubSystems[j].DeInitRoutineName));
(*AfpInitSubSystems[j].DeInitRoutine)();
}
#if DBG
AfpInitSubSystems[j].Deinitialized = True;
#endif
}
return Status;
}
#if DBG
AfpInitSubSystems[i].Initialized = True;
#endif
}
}
return STATUS_SUCCESS;
}
/*** AfpDeinitializeSubsystems
*
* De-initialize all subsystems.
*/
VOID
AfpDeinitializeSubsystems(
VOID
)
{
LONG i;
PAGED_CODE( );
// De-initialize the sub-systems
for (i = 0; i < NUM_INIT_SYSTEMS; i++)
{
if (AfpInitSubSystems[i].DeInitRoutine != NULL)
{
DBGPRINT(DBG_COMP_INIT, DBG_LEVEL_INFO,
("AfpDeinitializeDataAndSubsystems: Deinitializing %s\n",
AfpInitSubSystems[i].DeInitRoutineName));
(*AfpInitSubSystems[i].DeInitRoutine)();
}
#if DBG
AfpInitSubSystems[i].Deinitialized = True;
#endif
}
}
/*** AfpSetServerStatus
*
* Set the Server status block via afpSpSetStatus. This is called in once at
* server startup and anytime a change in server status makes this necessary.
* By now, ServerSetInfo() has happened and it has been validated that all
* paramters are kosher.
*
* LOCKS: AfpServerGlobalLock (SPIN)
*/
AFPSTATUS
AfpSetServerStatus(
IN VOID
)
{
KIRQL OldIrql;
AFPSTATUS Status=STATUS_SUCCESS;
AFPSTATUS Status2;
struct _StatusHeader
{
BYTE _MachineString[2]; // These are offsets relative to the struct
BYTE _AfpVersions[2]; // ---------- do ------------
BYTE _UAMs[2]; // ---------- do ------------
BYTE _VolumeIcon[2]; // ---------- do ------------
BYTE _Flags[2]; // Server Flags
// The actual strings start here
} *pStatusHeader;
PASCALSTR pStr;
PBYTE pNumUamPtr;
LONG Size;
USHORT Flags;
BOOLEAN GuestAllowed = False,
ClearTextAllowed = False,
NativeAppleUamSupported = False,
MicrosoftUamSupported = False,
AllowSavePass = False;
BYTE CountOfUams;
PBYTE pSignOffset;
PBYTE pNetAddrOffset;
DWORD IpAddrCount=0;
PBYTE IpAddrBlob=NULL;
NTSTATUS ntStatus;
// Assert that all the info that we can possibly stuff in can indeed fit
// in the buffer that we'll allocate
// Allocate a buffer to fill the status information in. This will be
// freed by AfpSpSetStatus(), this can be freed. We do not know up front
// how much we'll need. Err on the safe side
if ((pStatusHeader = (struct _StatusHeader *)
AfpAllocZeroedNonPagedMemory(ASP_MAX_STATUS_BUF)) == NULL)
{
return STATUS_INSUFFICIENT_RESOURCES;
}
//
// first, find out if we have any TCPIP addresses
//
ntStatus = DsiGetIpAddrBlob(&IpAddrCount, &IpAddrBlob);
if (!NT_SUCCESS(ntStatus))
{
AfpFreeMemory(pStatusHeader);
DBGPRINT(DBG_COMP_STACKIF, DBG_LEVEL_ERR,
("AfpSetServerStatus: DsiGetIpAddrBlob failed %lx\n",ntStatus));
return STATUS_INSUFFICIENT_RESOURCES;
}
ACQUIRE_SPIN_LOCK(&AfpServerGlobalLock, &OldIrql);
GuestAllowed = (AfpServerOptions & AFP_SRVROPT_GUESTLOGONALLOWED) ?
True : False;
ClearTextAllowed = (AfpServerOptions & AFP_SRVROPT_CLEARTEXTLOGONALLOWED) ?
True : False;
MicrosoftUamSupported = (AfpServerOptions & AFP_SRVROPT_MICROSOFT_UAM)?
True : False;
NativeAppleUamSupported = (AfpServerOptions & AFP_SRVROPT_NATIVEAPPLEUAM) ?
True : False;
if (!ClearTextAllowed && !MicrosoftUamSupported && !NativeAppleUamSupported)
{
DBGPRINT(DBG_COMP_INIT, DBG_LEVEL_WARN,
("AfpSetServerStatus: got to enable at least one UAM! Failing request\n"));
RELEASE_SPIN_LOCK(&AfpServerGlobalLock, OldIrql);
AfpFreeMemory(pStatusHeader);
if (IpAddrBlob)
{
AfpFreeMemory(IpAddrBlob);
}
return(STATUS_INVALID_PARAMETER);
}
Size = sizeof(struct _StatusHeader) + // Status header
AfpServerName.Length + 1 + // Server Name
AFP_MACHINE_TYPE_LEN + 1 + // Machine String
AfpVersion20.Length + 1 + // Afp Versions
AfpVersion21.Length + 1 +
ICONSIZE_ICN; // Volume Icon & Mask
ASSERT(Size <= ASP_MAX_STATUS_BUF);
// Specify our capabilities
Flags = SRVRINFO_SUPPORTS_COPYFILE |
SRVRINFO_SUPPORTS_CHGPASSWD |
SRVRINFO_SUPPORTS_SERVERMSG |
SRVRINFO_SUPPORTS_SRVSIGN |
SRVRINFO_SUPPORTS_SRVNOTIFY |
#ifdef CLIENT36
SRVRINFO_SUPPORTS_MGETREQS |
#endif
((AfpServerOptions & AFP_SRVROPT_ALLOWSAVEDPASSWORD) ?
0: SRVRINFO_DISALLOW_SAVEPASS);
// do we have any ipaddresses?
if (IpAddrCount > 0)
{
Flags |= SRVRINFO_SUPPORTS_TCPIP;
}
PUTSHORT2SHORT(&pStatusHeader->_Flags, Flags);
// Copy the Server Name
pStr = (PASCALSTR)((PBYTE)pStatusHeader + sizeof(struct _StatusHeader));
pStr->ps_Length = (BYTE)(AfpServerName.Length);
RtlCopyMemory(pStr->ps_String, AfpServerName.Buffer, AfpServerName.Length);
(PBYTE)pStr += AfpServerName.Length + 1;
// do we need a pad byte?
if (((PBYTE)pStr - (PBYTE)pStatusHeader) % 2 == 1)
{
*(PBYTE)pStr = 0;
((PBYTE)pStr)++;
}
// skip past the Signature Offset field: we'll store the value later
pSignOffset = (PBYTE)pStr;
((PBYTE)pStr) += 2;
if ((IpAddrCount > 0) || (AfpServerBoundToAsp))
{
// skip past the Network Address Count Offset: we'll store the value later
pNetAddrOffset = (PBYTE)pStr;
((PBYTE)pStr) += 2;
}
else
{
DBGPRINT(DBG_COMP_STACKIF, DBG_LEVEL_ERR,
("AfpSetServerStatus: Neither TCP nor Appletalk is active!!\n"));
}
PUTSHORT2SHORT(pStatusHeader->_MachineString,
(USHORT)((PBYTE)pStr - (PBYTE)pStatusHeader));
// Copy the machine name string
pStr->ps_Length = (BYTE) AFP_MACHINE_TYPE_LEN;
RtlCopyMemory(pStr->ps_String, AFP_MACHINE_TYPE_STR, AFP_MACHINE_TYPE_LEN);
(PBYTE)pStr += AFP_MACHINE_TYPE_LEN + 1;
// Copy the Afp Version Strings
PUTSHORT2SHORT(pStatusHeader->_AfpVersions,
(USHORT)((PBYTE)pStr - (PBYTE)pStatusHeader));
*((PBYTE)pStr)++ = AFP_NUM_VERSIONS;
pStr->ps_Length = (BYTE)AfpVersion20.Length;
RtlCopyMemory(pStr->ps_String, AfpVersion20.Buffer, AfpVersion20.Length);
(PBYTE)pStr += AfpVersion20.Length + 1;
pStr->ps_Length = (BYTE)AfpVersion21.Length;
RtlCopyMemory(pStr->ps_String, AfpVersion21.Buffer, AfpVersion21.Length);
(PBYTE)pStr += AfpVersion21.Length + 1;
pStr->ps_Length = (BYTE)AfpVersion22.Length;
RtlCopyMemory(pStr->ps_String, AfpVersion22.Buffer, AfpVersion22.Length);
(PBYTE)pStr += AfpVersion22.Length + 1;
// We always support at least one UAM!
PUTSHORT2SHORT(pStatusHeader->_UAMs, (USHORT)((PBYTE)pStr - (PBYTE)pStatusHeader));
pNumUamPtr = (PBYTE)pStr;
((PBYTE)pStr)++;
CountOfUams = 0;
if (GuestAllowed)
{
pStr->ps_Length = (BYTE)AfpUamGuest.Length;
RtlCopyMemory(pStr->ps_String, AfpUamGuest.Buffer,
AfpUamGuest.Length);
(PBYTE)pStr += AfpUamGuest.Length + 1;
CountOfUams++;
Size += (AfpUamGuest.Length + 1);
}
else
{
DBGPRINT(DBG_COMP_INIT, DBG_LEVEL_ERR,
("AfpSetServerStatus: Guest is disabled\n"));
}
if (ClearTextAllowed)
{
pStr->ps_Length = (BYTE)AfpUamClearText.Length;
RtlCopyMemory(pStr->ps_String, AfpUamClearText.Buffer,
AfpUamClearText.Length);
(PBYTE)pStr += AfpUamClearText.Length + 1;
CountOfUams++;
Size += (AfpUamClearText.Length + 1);
}
else
{
DBGPRINT(DBG_COMP_INIT, DBG_LEVEL_ERR,
("AfpSetServerStatus: ClearText UAM is NOT configured\n"));
}
if (MicrosoftUamSupported)
{
// copy in "Microsoft V1.0" string
pStr->ps_Length = (BYTE)AfpUamCustomV1.Length;
RtlCopyMemory(pStr->ps_String, AfpUamCustomV1.Buffer, AfpUamCustomV1.Length);
(PBYTE)pStr += AfpUamCustomV1.Length + 1;
CountOfUams++;
Size += (AfpUamCustomV1.Length + 1 + 1);
// copy in "Microsoft V2.0" string
pStr->ps_Length = (BYTE)AfpUamCustomV2.Length;
RtlCopyMemory(pStr->ps_String, AfpUamCustomV2.Buffer, AfpUamCustomV2.Length);
(PBYTE)pStr += AfpUamCustomV2.Length + 1;
CountOfUams++;
Size += (AfpUamCustomV2.Length + 1 + 1);
// copy in "Microsoft V3.0" string
pStr->ps_Length = (BYTE)AfpUamCustomV3.Length;
RtlCopyMemory(pStr->ps_String, AfpUamCustomV3.Buffer, AfpUamCustomV3.Length);
(PBYTE)pStr += AfpUamCustomV3.Length + 1;
CountOfUams++;
Size += (AfpUamCustomV3.Length + 1 + 1);
}
else
{
DBGPRINT(DBG_COMP_INIT, DBG_LEVEL_ERR,
("AfpSetServerStatus: Microsoft UAM is NOT configured\n"));
}
if (NativeAppleUamSupported)
{
DBGPRINT(DBG_COMP_INIT, DBG_LEVEL_ERR,
("AfpSetServerStatus: Apple's native UAM is configured\n"));
pStr->ps_Length = (BYTE)AfpUamApple.Length;
RtlCopyMemory(pStr->ps_String, AfpUamApple.Buffer, AfpUamApple.Length);
(PBYTE)pStr += AfpUamApple.Length + 1;
CountOfUams++;
Size += (AfpUamApple.Length + 1 + 1);
// 2-way not included for now
#if ALLOW_2WAY_ASWELL
pStr->ps_Length = (BYTE)AfpUamApple2Way.Length;
RtlCopyMemory(pStr->ps_String, AfpUamApple2Way.Buffer, AfpUamApple2Way.Length);
(PBYTE)pStr += AfpUamApple2Way.Length + 1;
CountOfUams++;
Size += (AfpUamApple2Way.Length + 1 + 1);
#endif
}
// how many UAM's are we telling the client we support
*pNumUamPtr = CountOfUams;
// now we know where Server signature goes: write the offset
PUTSHORT2SHORT(pSignOffset,(USHORT)((PBYTE)pStr - (PBYTE)pStatusHeader));
// copy the Server signature
RtlCopyMemory((PBYTE)pStr, AfpServerSignature, 16);
((PBYTE)pStr) += 16;
//
// if we have network address(es), send that info over!
//
if ((IpAddrCount > 0) || (AfpServerBoundToAsp))
{
// now we know where Network Address Count Offset goes: write the offset
PUTSHORT2SHORT(pNetAddrOffset,(USHORT)((PBYTE)pStr - (PBYTE)pStatusHeader));
// how many addresses are we returning?
*(PBYTE)pStr = ((BYTE)IpAddrCount) + ((AfpServerBoundToAsp) ? 1 : 0);
((PBYTE)pStr)++;
// copy the ipaddresses, if bound
if (IpAddrCount > 0)
{
// copy the blob containing the Length, Tag and Ipaddress info
RtlCopyMemory((PBYTE)pStr, IpAddrBlob, IpAddrCount*DSI_NETWORK_ADDR_LEN);
((PBYTE)pStr) += (IpAddrCount*DSI_NETWORK_ADDR_LEN);
}
// now copy the appletalk addres, if bound
if (AfpServerBoundToAsp)
{
*(PBYTE)pStr = DSI_NETWORK_ADDR_LEN;
((PBYTE)pStr)++;
*(PBYTE)pStr = ATALK_NETWORK_ADDR_ATKTAG;
((PBYTE)pStr)++;
PUTDWORD2DWORD((PBYTE)pStr, AfpAspEntries.asp_AtalkAddr.Address);
((PBYTE)pStr) += sizeof(DWORD);
}
}
// Now get the volume icon, if any
if (AfpServerIcon != NULL)
{
RtlCopyMemory((PBYTE)pStr, AfpServerIcon, ICONSIZE_ICN);
PUTSHORT2SHORT(pStatusHeader->_VolumeIcon,
(USHORT)((PBYTE)pStr - (PBYTE)pStatusHeader));
}
else PUTSHORT2SHORT(pStatusHeader->_VolumeIcon, 0);
RELEASE_SPIN_LOCK(&AfpServerGlobalLock, OldIrql);
if (AfpServerBoundToAsp)
{
Status = AfpSpSetAspStatus((PBYTE)pStatusHeader, Size);
}
if (AfpServerBoundToTcp)
{
Status2 = AfpSpSetDsiStatus((PBYTE)pStatusHeader, Size);
// as long as one succeeds, we want the call to succeed
if (!NT_SUCCESS(Status))
{
Status = Status2;
}
}
AfpFreeMemory(pStatusHeader);
if (IpAddrBlob)
{
AfpFreeMemory(IpAddrBlob);
}
return Status;
}
/*** AfpAdmWServerSetInfo
*
* This routine sets various server globals with data supplied by the admin. The
* following server globals are set by this routine:
*
* - Server Name
* - Maximum Sessions (valid values are 1 through AFP_MAXSESSIONS)
* - Server Options (i.e. guest logon allowed, etc.)
* - Server Login Message
* - Maximum paged and non-paged memory limits
* - Macintosh Code Page File
*
* The server name and memory limits can only be changed while the server
* is stopped. The Macintosh Code Page File may only be set ONE time after
* the AFP server driver is loaded. i.e. if you want to reset the codepage,
* the service must unload the AFP server, then reload it.
*
* This routine must execute in the context of the worker thread, since we
* need to map the Macintosh CodePage into the server's virtual memory
* space, not the client's.
*
* LOCKS: AfpServerGlobalLock (SPIN)
*/
AFPSTATUS
AfpAdmWServerSetInfo(
IN OUT PVOID InBuf OPTIONAL,
IN LONG OutBufLen OPTIONAL,
OUT PVOID OutBuf OPTIONAL
)
{
KIRQL OldIrql;
AFPSTATUS rc;
ANSI_STRING amsg, aname;
UNICODE_STRING uname, umsg, oldloginmsgU;
DWORD parmflags = ((PSETINFOREQPKT)InBuf)->sirqp_parmnum;
PAFP_SERVER_INFO pSvrInfo = (PAFP_SERVER_INFO)((PCHAR)InBuf+sizeof(SETINFOREQPKT));
BOOLEAN setstatus = False;
BOOLEAN locktaken = False;
BOOLEAN servernameexists = False;
amsg.Length = 0;
amsg.MaximumLength = 0;
amsg.Buffer = NULL;
aname.Length = 0;
aname.MaximumLength = 0;
aname.Buffer = NULL;
AfpSetEmptyUnicodeString(&umsg, 0, NULL);
AfpSetEmptyUnicodeString(&oldloginmsgU, 0, NULL);
/* Validate all limits */
if ((parmflags & ~AFP_SERVER_PARMNUM_ALL) ||
((parmflags & AFP_SERVER_PARMNUM_OPTIONS) &&
(pSvrInfo->afpsrv_options & ~AFP_SRVROPT_ALL)) ||
((parmflags & AFP_SERVER_PARMNUM_MAX_SESSIONS) &&
((pSvrInfo->afpsrv_max_sessions > AFP_MAXSESSIONS) ||
(pSvrInfo->afpsrv_max_sessions == 0))))
{
DBGPRINT(DBG_COMP_ADMINAPI_SRV, DBG_LEVEL_ERR,
("AfpAdmWServerSetInfo: invalid parm!\n"));
return AFPERR_InvalidParms_MaxSessions;
}
if (parmflags == AFP_SERVER_GUEST_ACCT_NOTIFY)
{
AfpServerOptions ^= AFP_SRVROPT_GUESTLOGONALLOWED;
DBGPRINT(DBG_COMP_ADMINAPI_SRV, DBG_LEVEL_ERR,
("AfpAdmWServerSetInfo: Guest account is now %s\n",
(AfpServerOptions & AFP_SRVROPT_GUESTLOGONALLOWED)? "enabled":"disabled"));
AfpSetServerStatus();
return(STATUS_SUCCESS);
}
if (parmflags & AFP_SERVER_PARMNUM_CODEPAGE)
{
// You may only set the Macintosh CodePage once
if (AfpMacCPBaseAddress != NULL)
return AFPERR_InvalidServerState;
else
{
rc = AfpGetMacCodePage(pSvrInfo->afpsrv_codepage);
if (!NT_SUCCESS(rc))
{
return AFPERR_CodePage;
}
}
}
if (parmflags & AFP_SERVER_PARMNUM_LOGINMSG)
{
RtlInitUnicodeString(&umsg, pSvrInfo->afpsrv_login_msg);
if (umsg.Length == 0)
{
umsg.Buffer = NULL;
}
amsg.MaximumLength = (USHORT)RtlUnicodeStringToAnsiSize(&umsg);
amsg.Length = amsg.MaximumLength - 1;
if (amsg.Length > AFP_MESSAGE_LEN)
{
return AFPERR_InvalidParms_LoginMsg;
}
if (amsg.Length != 0)
{
if ((umsg.Buffer =
(LPWSTR)AfpAllocPagedMemory(umsg.Length+1)) == NULL)
{
return STATUS_INSUFFICIENT_RESOURCES;
}
if ((amsg.Buffer =
(PCHAR)AfpAllocNonPagedMemory(amsg.MaximumLength)) == NULL)
{
AfpFreeMemory(umsg.Buffer);
return STATUS_INSUFFICIENT_RESOURCES;
}
RtlCopyMemory(umsg.Buffer, pSvrInfo->afpsrv_login_msg, umsg.Length);
rc = RtlUnicodeStringToAnsiString(&amsg, &umsg, False);
if (!NT_SUCCESS(rc))
{
AfpFreeMemory(amsg.Buffer);
AfpFreeMemory(umsg.Buffer);
return AFPERR_InvalidParms;
}
else AfpConvertHostAnsiToMacAnsi(&amsg);
}
}
do
{
if (parmflags & AFP_SERVER_PARMNUM_NAME)
{
RtlInitUnicodeString(&uname,pSvrInfo->afpsrv_name);
aname.MaximumLength = (USHORT)RtlUnicodeStringToAnsiSize(&uname);
aname.Length = aname.MaximumLength - 1;
if ((aname.Length == 0) || (aname.Length > AFP_SERVERNAME_LEN))
{
DBGPRINT(DBG_COMP_ADMINAPI_SRV, DBG_LEVEL_ERR,
("AfpAdmWServerSetInfo: bad name length %d, rejecting\n,aname.Length"));
rc = AFPERR_InvalidServerName_Length;
break;
}
if ((aname.Buffer = AfpAllocNonPagedMemory(aname.MaximumLength)) == NULL)
{
DBGPRINT(DBG_COMP_ADMINAPI_SRV, DBG_LEVEL_ERR,
("AfpAdmWServerSetInfo: malloc failed on name change\n"));
rc = STATUS_INSUFFICIENT_RESOURCES;
break;
}
rc = AfpConvertStringToAnsi(&uname, &aname);
if (!NT_SUCCESS(rc))
{
rc = AFPERR_InvalidServerName;
DBGPRINT(DBG_COMP_ADMINAPI_SRV, DBG_LEVEL_ERR,
("AfpAdmWServerSetInfo: AfpConvertStringToAnsi failed %lx\n",rc));
break;
}
}
rc = STATUS_SUCCESS;
//
// take the global data lock and set the new information
//
ACQUIRE_SPIN_LOCK(&AfpServerGlobalLock, &OldIrql);
locktaken = True;
// Validate if we are in the right state to receive some of the
// parameters
if ((AfpServerState != AFP_STATE_IDLE) &&
(parmflags & (AFP_SERVER_PARMNUM_PAGEMEMLIM |
AFP_SERVER_PARMNUM_NONPAGEMEMLIM)))
{
DBGPRINT(DBG_COMP_ADMINAPI_SRV, DBG_LEVEL_ERR,
("AfpAdmWServerSetInfo: failure at 1\n"));
rc = AFPERR_InvalidServerState;
break;
}
else if ((AfpServerState == AFP_STATE_IDLE) &&
(parmflags & (AFP_SERVER_PARMNUM_NAME |
AFP_SERVER_PARMNUM_PAGEMEMLIM |
AFP_SERVER_PARMNUM_NONPAGEMEMLIM)) !=
(DWORD)(AFP_SERVER_PARMNUM_NAME |
AFP_SERVER_PARMNUM_PAGEMEMLIM |
AFP_SERVER_PARMNUM_NONPAGEMEMLIM))
{
DBGPRINT(DBG_COMP_ADMINAPI_SRV, DBG_LEVEL_ERR,
("AfpAdmWServerSetInfo: failure at 2\n"));
rc = AFPERR_InvalidParms;
break;
}
if (parmflags & (AFP_SERVER_PARMNUM_PAGEMEMLIM |
AFP_SERVER_PARMNUM_NONPAGEMEMLIM))
{
AfpPagedPoolLimit = pSvrInfo->afpsrv_max_paged_mem * 1024;
AfpNonPagedPoolLimit = pSvrInfo->afpsrv_max_nonpaged_mem * 1024;
}
if (parmflags & AFP_SERVER_PARMNUM_NAME)
{
setstatus = ((AfpServerState == AFP_STATE_RUNNING) ||
(AfpServerState == AFP_STATE_START_PENDING));
rc = STATUS_SUCCESS;
if (AfpServerName.Buffer == NULL)
{
AfpServerName = aname;
}
else
{
servernameexists = True;
}
// Re-register the name only if the service up and running
// No point registering the name on a service not functioning.
// This causes problems as we falsely advertise
// the AFP server in the browser when it is not really available.
if (setstatus)
{
// deregister the old name, if one exists
if ((AfpServerBoundToAsp) && (servernameexists))
{
RELEASE_SPIN_LOCK(&AfpServerGlobalLock,OldIrql);
rc = AfpSpRegisterName(&AfpServerName, False);
ACQUIRE_SPIN_LOCK(&AfpServerGlobalLock, &OldIrql);
AfpFreeMemory(AfpServerName.Buffer);
}
AfpServerName = aname;
// if deregister succeeded, register the new name
if ((NT_SUCCESS(rc)) && (AfpServerBoundToAsp))
{
RELEASE_SPIN_LOCK(&AfpServerGlobalLock,OldIrql);
rc = AfpSpRegisterName(&AfpServerName, True);
ACQUIRE_SPIN_LOCK(&AfpServerGlobalLock, &OldIrql);
}
}
}
if (parmflags & AFP_SERVER_PARMNUM_OPTIONS)
{
if (pSvrInfo->afpsrv_options & AFP_SRVROPT_STANDALONE)
{
// Server is NtProductServer or NtProductWinNt
AfpServerIsStandalone = True;
if (AfpSidNone == NULL)
{
// If we didn't initialize the AfpSidNone during
// AfpInitSidOffsets then the service either sent
// us bogus offsets, or this bit is bogus
rc = AFPERR_InvalidParms;
break;
}
pSvrInfo->afpsrv_options &= ~AFP_SRVROPT_STANDALONE;
}
if (!setstatus)
{
setstatus =
(AfpServerOptions ^ pSvrInfo->afpsrv_options) ? True : False;
setstatus = setstatus &&
((AfpServerState == AFP_STATE_RUNNING) ||
(AfpServerState == AFP_STATE_START_PENDING));
}
AfpServerOptions = pSvrInfo->afpsrv_options;
}
if (parmflags & AFP_SERVER_PARMNUM_LOGINMSG)
{
if (AfpLoginMsg.Buffer != NULL)
{
AfpFreeMemory(AfpLoginMsg.Buffer);
}
AfpLoginMsg = amsg;
oldloginmsgU = AfpLoginMsgU;
AfpLoginMsgU = umsg;
}
if (parmflags & AFP_SERVER_PARMNUM_MAX_SESSIONS)
{
if (AfpServerMaxSessions != pSvrInfo->afpsrv_max_sessions)
{
BOOLEAN KillSome;
KillSome = (AfpServerMaxSessions > pSvrInfo->afpsrv_max_sessions);
AfpServerMaxSessions = pSvrInfo->afpsrv_max_sessions;
RELEASE_SPIN_LOCK(&AfpServerGlobalLock,OldIrql);
locktaken = False;
}
}
} while (False);
if (locktaken)
{
RELEASE_SPIN_LOCK(&AfpServerGlobalLock,OldIrql);
}
if (!NT_SUCCESS(rc))
{
DBGPRINT(DBG_COMP_ADMINAPI_SRV, DBG_LEVEL_ERR,
("AfpAdmWServerSetInfo: returning %lx\n",rc));
if (amsg.Buffer != NULL)
{
AfpFreeMemory(amsg.Buffer);
}
if (aname.Buffer != NULL)
{
if (AfpServerName.Buffer == aname.Buffer)
{
AfpServerName.Buffer = NULL;
AfpServerName.MaximumLength = 0;
AfpServerName.Length = 0;
}
AfpFreeMemory(aname.Buffer);
}
}
else if (setstatus)
{
return (AfpSetServerStatus());
}
if (oldloginmsgU.Buffer != NULL)
AfpFreeMemory(oldloginmsgU.Buffer);
return rc;
}
/*** AfpCreateNewThread
*
* Create either an admin or a worker thread.
*/
NTSTATUS FASTCALL
AfpCreateNewThread(
IN VOID (*ThreadFunc)(IN PVOID pContext),
IN LONG ThreadNum
)
{
NTSTATUS Status;
HANDLE FspThread;
DBGPRINT(DBG_COMP_INIT, DBG_LEVEL_INFO,
("AfpCreateNewThread: Creating thread %lx\n", ThreadFunc));
ASSERT(KeGetCurrentIrql() < DISPATCH_LEVEL);
ASSERT ((AfpServerState == AFP_STATE_IDLE) ||
(ThreadNum < AFP_MAX_THREADS) && (AfpNumThreads >= AFP_MIN_THREADS));
Status = PsCreateSystemThread(&FspThread,
THREAD_ALL_ACCESS,
NULL,
NtCurrentProcess(),
NULL,
ThreadFunc,
(PVOID)((ULONG_PTR)ThreadNum));
if (!NT_SUCCESS(Status))
{
DBGPRINT(DBG_COMP_INIT, DBG_LEVEL_WARN,
("AfpCreateNewThread: Cannot create threads %lx\n", Status));
AFPLOG_DDERROR(AFPSRVMSG_CREATE_THREAD, Status, NULL, 0, NULL);
}
else
{
// Close the handle to the thread so that it goes away when the
// thread terminates
NtClose(FspThread);
}
return Status;
}
/*** AfpQueueWorkItem
*
* Queue a work item to the worker thread.
*
* LOCKS: AfpStatisticsLock
*/
VOID FASTCALL
AfpQueueWorkItem(
IN PWORK_ITEM pWI
)
{
KIRQL OldIrql;
ACQUIRE_SPIN_LOCK(&AfpStatisticsLock, &OldIrql);
AfpServerStatistics.stat_CurrQueueLength ++;
#ifdef PROFILING
AfpServerProfile->perf_QueueCount ++;
#endif
if (AfpServerStatistics.stat_CurrQueueLength > AfpServerStatistics.stat_MaxQueueLength)
AfpServerStatistics.stat_MaxQueueLength++;
RELEASE_SPIN_LOCK(&AfpStatisticsLock, OldIrql);
DBGPRINT(DBG_COMP_INIT, DBG_LEVEL_INFO,
("AfpQueueWorkItem: Queueing %lx (%lx)\n",
pWI->wi_Worker, pWI->wi_Context));
INTERLOCKED_ADD_ULONG(&AfpWorkerRequests, 1, &AfpServerGlobalLock);
// Insert work item in worker queue
KeInsertQueue(&AfpWorkerQueue, &pWI->wi_List);
}
/*** AfpWorkerThread
*
* This thread is used to do all the work that is queued to the FSP.
*
* We want to dynamically create and destroy threads so that we can
* optimize the number of threads used. The number of threads range
* from AFP_MIN_THREADS - AFP_MAX_THREADS.
* A new thread is created if the number of entries in the queue
* exceeds AFP_THREAD_THRESHOLD_REQ. A thread is terminated if the request count
* drops below AFP_THREAD_THRESHOLD_IDLE.
*/
VOID
AfpWorkerThread(
IN PVOID pContext
)
{
NTSTATUS Status;
PLIST_ENTRY pList;
PWORK_ITEM pWI;
LONG IdleCount = 0;
LONG ThreadNum, CreateId;
ULONG BasePriority = THREAD_BASE_PRIORITY_MAX;
KIRQL OldIrql;
BOOLEAN Release = False;
BOOLEAN ReasonToLive = True;
ThreadNum = (LONG)(LONG_PTR)pContext;
ASSERT (AfpThreadState[ThreadNum] == AFP_THREAD_STARTED);
DBGPRINT(DBG_COMP_INIT, DBG_LEVEL_WARN,
("AfpWorkerThread: Thread %ld Starting. NumThreads %ld\n",
ThreadNum, AfpNumThreads));
// Update the thread statistics.
ACQUIRE_SPIN_LOCK(&AfpStatisticsLock, &OldIrql);
AfpServerStatistics.stat_CurrThreadCount ++;
if (AfpServerStatistics.stat_CurrThreadCount > AfpServerStatistics.stat_MaxThreadCount)
AfpServerStatistics.stat_MaxThreadCount = AfpServerStatistics.stat_CurrThreadCount;
RELEASE_SPIN_LOCK(&AfpStatisticsLock, OldIrql);
// Set the thread base priority to 'foreground'
NtSetInformationThread( NtCurrentThread(),
ThreadBasePriority,
&BasePriority,
sizeof(BasePriority));
// Disable hard-error pop-ups for this thread
IoSetThreadHardErrorMode( FALSE );
AfpThreadPtrsW[ThreadNum] = PsGetCurrentThread();
do
{
AfpThreadState[ThreadNum] = AFP_THREAD_WAITING;
DBGPRINT(DBG_COMP_INIT, DBG_LEVEL_INFO,
("AfpWorkerThread: About to block\n"));
// DELALLOCQUEUE: unrem the #if 0 part
#if 0
//
// first check if there is someone waiting to get buffer allocation:
// let's deal with them first, so some connection doesn't get "blocked"
// because transport underneath doesn't have buffer
//
pList = KeRemoveQueue(&AfpDelAllocQueue, KernelMode, NULL);
if (pList != NULL)
{
AfpThreadState[ThreadNum] = AFP_THREAD_BUSY;
pWI = CONTAINING_RECORD(pList, WORK_ITEM, wi_List);
// Call the worker
(pWI->wi_Worker)(pWI->wi_Context);
IdleCount = 0;
continue;
}
#endif
pList = KeRemoveQueue(&AfpWorkerQueue, KernelMode, &ThreeSecTimeOut);
Status = STATUS_SUCCESS;
if ((NTSTATUS)((ULONG_PTR)pList) == STATUS_TIMEOUT)
Status = STATUS_TIMEOUT;
DBGPRINT(DBG_COMP_INIT, DBG_LEVEL_INFO,
("AfpWorkerThread: %s\n",
(Status == STATUS_SUCCESS) ? "Another Work item" : "Timer - check"));
if (Status == STATUS_SUCCESS)
{
pWI = CONTAINING_RECORD(pList, WORK_ITEM, wi_List);
if (pWI == &AfpTerminateThreadWI)
{
BOOLEAN Requeue;
ReasonToLive = False;
ACQUIRE_SPIN_LOCK(&AfpServerGlobalLock, &OldIrql);
AfpNumThreads --;
Requeue = (AfpNumThreads != 0);
RELEASE_SPIN_LOCK(&AfpServerGlobalLock, OldIrql);
AfpThreadState[ThreadNum] = AFP_THREAD_DEAD;
if (!Requeue)
{
ASSERT((AfpServerState == AFP_STATE_STOPPED) ||
(AfpServerState == AFP_STATE_IDLE));
Release = True;
}
else
{
// Re-queue this work-item so that other threads can die too !!!
KeInsertQueue(&AfpWorkerQueue, &AfpTerminateThreadWI.wi_List);
}
break;
}
DBGPRINT(DBG_COMP_INIT, DBG_LEVEL_INFO,
("AfpWorkerThread: Dispatching %lx (%lx)\n",
pWI->wi_Worker, pWI->wi_Context));
AfpThreadState[ThreadNum] = AFP_THREAD_BUSY;
#if DBG
AfpThreadDispCount[ThreadNum] ++;
#endif
// Call the worker
(pWI->wi_Worker)(pWI->wi_Context);
ASSERT (KeGetCurrentIrql() < DISPATCH_LEVEL);
INTERLOCKED_ADD_ULONG((PLONG)(&AfpServerStatistics.stat_CurrQueueLength),
(ULONG)-1,
&AfpStatisticsLock);
INTERLOCKED_ADD_ULONG(&AfpWorkerRequests, (ULONG)-1, &AfpServerGlobalLock);
IdleCount = 0;
}
else
{
IdleCount ++;
}
ACQUIRE_SPIN_LOCK(&AfpServerGlobalLock, &OldIrql);
if (((AfpWorkerRequests - AfpNumThreads) > AFP_THREAD_THRESHOLD_REQS) &&
(AfpNumThreads < AFP_MAX_THREADS))
{
for (CreateId = 0; CreateId < AFP_MAX_THREADS; CreateId++)
{
if (AfpThreadState[CreateId] == AFP_THREAD_DEAD)
{
AfpThreadState[CreateId] = AFP_THREAD_STARTED;
break;
}
}
if (CreateId < AFP_MAX_THREADS)
{
AfpNumThreads++;
ASSERT (CreateId < AFP_MAX_THREADS);
DBGPRINT(DBG_COMP_INIT, DBG_LEVEL_WARN,
("AfpWorkerThread: Creating New Thread %ld\n", CreateId));
RELEASE_SPIN_LOCK(&AfpServerGlobalLock, OldIrql);
Status = AfpCreateNewThread(AfpWorkerThread, CreateId);
ACQUIRE_SPIN_LOCK(&AfpServerGlobalLock, &OldIrql);
if (!NT_SUCCESS(Status))
{
ASSERT(AfpThreadState[CreateId] == AFP_THREAD_STARTED);
AfpThreadState[CreateId] = AFP_THREAD_DEAD;
AfpNumThreads --;
}
}
}
else if ((AfpNumThreads > AFP_MIN_THREADS) &&
(IdleCount >= AFP_THREAD_THRESHOLD_IDLE))
{
ReasonToLive = False;
AfpThreadState[ThreadNum] = AFP_THREAD_DEAD;
AfpNumThreads --;
DBGPRINT(DBG_COMP_INIT, DBG_LEVEL_WARN,
("AfpWorkerThread: Thread %ld About to commit suicide, NumThreads %ld\n",
ThreadNum, AfpNumThreads));
}
RELEASE_SPIN_LOCK(&AfpServerGlobalLock, OldIrql);
} while (ReasonToLive);
AfpThreadPtrsW[ThreadNum] = NULL;
DBGPRINT(DBG_COMP_INIT, DBG_LEVEL_WARN,
("AfpWorkerThread: Thread %ld Quitting\n", ThreadNum));
INTERLOCKED_ADD_ULONG((PLONG)&AfpServerStatistics.stat_CurrThreadCount,
(ULONG)-1,
&AfpStatisticsLock);
// if this is the last thread in the system, set things up so that unload code
// can wait on the pointer and know when this thread has really died and not just
// when KeSetEvent is called
if (Release)
{
AfpThreadPtrsW[ThreadNum] = PsGetCurrentThread();
ObReferenceObject(AfpThreadPtrsW[ThreadNum]);
KeSetEvent(&AfpStopConfirmEvent, IO_NETWORK_INCREMENT, False);
}
}
/*** AfpInitStrings
*
* Initializes all the strings
*/
VOID FASTCALL
AfpInitStrings(
IN VOID
)
{
// Initialize UAM Strings
RtlInitString(&AfpUamGuest, NO_USER_AUTHENT_NAME);
RtlInitString(&AfpUamClearText, CLEAR_TEXT_AUTHENT_NAME);
RtlInitString(&AfpUamCustomV1, CUSTOM_UAM_NAME_V1);
RtlInitString(&AfpUamCustomV2, CUSTOM_UAM_NAME_V2);
RtlInitString(&AfpUamCustomV3, CUSTOM_UAM_NAME_V3);
RtlInitString(&AfpUamApple, RANDNUM_EXCHANGE_NAME);
RtlInitString(&AfpUamApple2Way, TWOWAY_EXCHANGE_NAME);
// Initialize AFP Versions
RtlInitString(&AfpVersion20, AFP_VER_20_NAME);
RtlInitString(&AfpVersion21, AFP_VER_21_NAME);
RtlInitString(&AfpVersion22, AFP_VER_22_NAME);
// Default Workstation name
RtlInitUnicodeString(&AfpDefaultWksta, AFP_DEFAULT_WORKSTATION);
RtlInitUnicodeString(&AfpNetworkTrashNameU, AFP_NWTRASH_NAME_U);
}
/*** AfpAdmSystemShutdown
*
* Called during system shutdown. Simply close all active sessions and stop the volumes.
*/
AFPSTATUS
AfpAdmSystemShutdown(
IN OUT PVOID Inbuf OPTIONAL,
IN LONG OutBufLen OPTIONAL,
OUT PVOID Outbuf OPTIONAL
)
{
AFP_SESSION_INFO SessInfo;
NTSTATUS Status;
if ((AfpServerState & ( AFP_STATE_STOPPED |
AFP_STATE_STOP_PENDING |
AFP_STATE_SHUTTINGDOWN)) == 0)
{
AfpServerState = AFP_STATE_SHUTTINGDOWN;
DBGPRINT(DBG_COMP_ADMINAPI_SC, DBG_LEVEL_ERR,
("AfpAdmSystemShutdown: Shutting down server\n"));
// Disable listens now that we are about to stop
AfpSpDisableListens();
SessInfo.afpsess_id = 0; // Shutdown all sessions
AfpAdmWSessionClose(&SessInfo, 0, NULL);
// Wait for the sessions to complete, if there were active sessions
if (AfpNumSessions > 0) do
{
Status = AfpIoWait(&AfpStopConfirmEvent, &FiveSecTimeOut);
if (Status == STATUS_TIMEOUT)
{
DBGPRINT(DBG_COMP_ADMINAPI_SC, DBG_LEVEL_ERR,
("AfpAdmSystemShutdown: Timeout Waiting for %ld sessions to die, re-waiting\n",
AfpNumSessions));
}
} while (Status == STATUS_TIMEOUT);
// bring down the DSI-TCP interface
DsiDestroyAdapter();
// wait until DSI cleans up its interface with TCP
AfpIoWait(&DsiShutdownEvent, NULL);
// Set the flag to indicate that server is shutting down
fAfpServerShutdownEvent = TRUE;
// Now tell each of the volume scavengers to shut-down
AfpVolumeStopAllVolumes();
}
return AFP_ERR_NONE;
}