|
|
/********************************************************************/ /** Microsoft LAN Manager **/ /** Copyright(c) Microsoft Corp., 1990-1993 **/ /********************************************************************/ /* :ts=4 */
//** ADDR.C - TDI address object procedures
//
// This file contains the TDI address object related procedures,
// including TDI open address, TDI close address, etc.
//
// The local address objects are stored in a hash table, protected
// by the AddrObjTableLock. In order to insert or delete from the
// hash table this lock must be held, as well as the address object
// lock. The table lock must always be taken before the object lock.
//
#include "precomp.h"
#include "tdint.h"
#include "addr.h"
#include "udp.h"
#include "raw.h"
#include "tcp.h"
#include "tcpconn.h"
#include "info.h"
#include "tcpinfo.h"
#include "tcpcfg.h"
#include "bitmap.h"
#include "tlcommon.h"
#include "pplasl.h"
#include "tcpdeliv.h"
extern ReservedPortListEntry *PortRangeList; extern ReservedPortListEntry *BlockedPortList;
extern IPInfo LocalNetInfo; // Information about the local nets.
extern void FreeAORequest(AORequest * Request); extern NTSTATUS TCPDisconnect(PIRP Irp, PIO_STACK_LOCATION IrpSp); extern NTSTATUS TCPConnect(PIRP Irp, PIO_STACK_LOCATION IrpSp);
uint AddrObjTableSize; AddrObj **AddrObjTable; CACHE_LINE_KSPIN_LOCK AddrObjTableLock; KMUTEX AddrSDMutex;
ushort NextUserPort = MIN_USER_PORT;
RTL_BITMAP PortBitmapTcp; RTL_BITMAP PortBitmapUdp; ulong PortBitmapBufferTcp[(1 << 16) / (sizeof(ulong) * 8)]; ulong PortBitmapBufferUdp[(1 << 16) / (sizeof(ulong) * 8)];
ulong DisableUserTOSSetting = TRUE; ulong DefaultTOSValue = 0;
#if ACC
extern BOOLEAN AccessCheck(PTDI_REQUEST Request, AddrObj * NewAO, uchar Reuse, void *status); #endif
// Forward declaration
AORequest *GetAORequest(uint Type);
//
// All of the init code can be discarded.
//
#ifdef ALLOC_PRAGMA
int InitAddr(); #pragma alloc_text(INIT, InitAddr)
#endif
//* ComputeAddrObjTableIndex - Compute the hash value for an address object.
// This is used as an index into the AddrObj table corresponding to the
// specified tuple.
//
// Input: Address - IP address
// Port - Port number
// Protocol - Protocol number
//
// Returns: Index into the AddrObj table corresponding to the tuple.
//
__inline uint ComputeAddrObjTableIndex(IPAddr Address, ushort Port, uchar Protocol) { return (Address + ((Protocol << 16) | Port)) % AddrObjTableSize; }
//* ReadNextAO - Read the next AddrObj in the table.
//
// Called to read the next AddrObj in the table. The needed information
// is derived from the incoming context, which is assumed to be valid.
// We'll copy the information, and then update the context value with
// the next AddrObj to be read.
//
// Input: Context - Poiner to a UDPContext.
// Buffer - Pointer to a UDPEntry structure.
//
// Returns: TRUE if more data is available to be read, FALSE is not.
//
uint ReadNextAO(void *Context, void *Buffer) { UDPContext *UContext = (UDPContext *) Context; UDPEntry *UEntry = (UDPEntry *) Buffer; AddrObj *CurrentAO; uint i;
CurrentAO = UContext->uc_ao; CTEStructAssert(CurrentAO, ao);
UEntry->ue_localaddr = CurrentAO->ao_addr; UEntry->ue_localport = CurrentAO->ao_port;
if (UContext->uc_infosize > sizeof(UDPEntry)) { ((UDPEntryEx*)UEntry)->uee_owningpid = CurrentAO->ao_owningpid; }
// We've filled it in. Now update the context.
CurrentAO = CurrentAO->ao_next; if (CurrentAO != NULL && CurrentAO->ao_prot == PROTOCOL_UDP) { UContext->uc_ao = CurrentAO; return TRUE; } else { // The next AO is NULL, or not a UDP AO. Loop through the AddrObjTable
// looking for a new one.
i = UContext->uc_index;
for (;;) { while (CurrentAO != NULL) { if (CurrentAO->ao_prot == PROTOCOL_UDP) break; else CurrentAO = CurrentAO->ao_next; }
if (CurrentAO != NULL) break; // Get out of for (;;) loop.
ASSERT(CurrentAO == NULL);
// Didn't find one on this chain. Walk down the table, looking
// for the next one.
while (++i < AddrObjTableSize) { if (AddrObjTable[i] != NULL) { CurrentAO = AddrObjTable[i]; break; // Out of while loop.
} }
if (i == AddrObjTableSize) break; // Out of for (;;) loop.
}
// If we found one, return it.
if (CurrentAO != NULL) { UContext->uc_ao = CurrentAO; UContext->uc_index = i; return TRUE; } else { UContext->uc_index = 0; UContext->uc_ao = NULL; return FALSE; } }
}
//* ValidateAOContext - Validate the context for reading the AddrObj table.
//
// Called to start reading the AddrObj table sequentially. We take in
// a context, and if the values are 0 we return information about the
// first AddrObj in the table. Otherwise we make sure that the context value
// is valid, and if it is we return TRUE.
// We assume the caller holds the AddrObjTable lock.
//
// Input: Context - Pointer to a UDPContext.
// Valid - Where to return information about context being
// valid.
//
// Returns: TRUE if data in table, FALSE if not. *Valid set to true if the
// context is valid.
//
uint ValidateAOContext(void *Context, uint * Valid) { UDPContext *UContext = (UDPContext *) Context; uint i; AddrObj *TargetAO; AddrObj *CurrentAO;
i = UContext->uc_index; TargetAO = UContext->uc_ao;
// If the context values are 0 and NULL, we're starting from the beginning.
if (i == 0 && TargetAO == NULL) { *Valid = TRUE; do { if ((CurrentAO = AddrObjTable[i]) != NULL) { CTEStructAssert(CurrentAO, ao); while (CurrentAO != NULL && CurrentAO->ao_prot != PROTOCOL_UDP) CurrentAO = CurrentAO->ao_next;
if (CurrentAO != NULL) break; } i++; } while (i < AddrObjTableSize);
if (CurrentAO != NULL) { UContext->uc_index = i; UContext->uc_ao = CurrentAO; return TRUE; } else return FALSE;
} else {
// We've been given a context. We just need to make sure that it's
// valid.
if (i < AddrObjTableSize) { CurrentAO = AddrObjTable[i]; while (CurrentAO != NULL) { if (CurrentAO == TargetAO) { if (CurrentAO->ao_prot == PROTOCOL_UDP) { *Valid = TRUE; return TRUE; } break; } else { CurrentAO = CurrentAO->ao_next; } }
} // If we get here, we didn't find the matching AddrObj.
*Valid = FALSE; return FALSE;
}
}
//** FindIfIndexOnAO - Find an interface index in an address-object's list.
//
// This routine is called to determine the interface index for a given
// IP address, and to determine whether that index appears in the list of
// interfaces with which the given address-object is associated.
//
// The routine is called from 'GetAddrObj' and 'GetNextBestAddrObj'
// with the table lock held but with the object lock not held. We take the
// object lock to look at its interface list, and release the lock before
// returning control.
uint FindIfIndexOnAO(AddrObj * AO, IPAddr LocalAddr) { uint *IfList; uint IfIndex = (*LocalNetInfo.ipi_getifindexfromaddr) (LocalAddr,IF_CHECK_NONE); if (!IfIndex) { return 0; } CTEGetLockAtDPC(&AO->ao_lock); IfList = AO->ao_iflist; if (IfList) { while (*IfList) { if (*IfList == IfIndex) { CTEFreeLockFromDPC(&AO->ao_lock); return IfIndex; } IfList++; } } CTEFreeLockFromDPC(&AO->ao_lock);
// If an interface list was present and the interface was not found,
// return zero. Otherwise, if no interface list was present there is no
// restriction on the object, so return the interface index as though the
// interface appeared in the list.
return IfList ? 0 : IfIndex; }
//NTQFE 68201
//** GetNextBestAddrObj - Find a local address object.
//
// This is the local address object lookup routine. We take as input the local
// address and port and a pointer to a 'previous' address object. The hash
// table entries in each bucket are sorted in order of increasing address, and
// we skip over any object that has an address lower than the 'previous'
// address. To get the first address object, pass in a previous value of NULL.
//
// We assume that the table lock is held while we're in this routine. We don't
// take each object lock, since the local address and port can't change while
// the entry is in the table and the table lock is held so nothing can be
// inserted or deleted.
//
// Input: LocalAddr - Local IP address of object to find (may be NULL);
// LocalPort - Local port of object to find.
// Protocol - Protocol to find.
// PreviousAO - Pointer to last address object found.
// Flags - flags controlling the lookup to be performed.
//
// Returns: A pointer to the Address object, or NULL if none.
// NOTE : This routine is called by TCP only
//
//
AddrObj * GetNextBestAddrObj(IPAddr LocalAddr, ushort LocalPort, uchar Protocol, AddrObj * PreviousAO, uint Flags) { AddrObj *CurrentAO; // Current address object we're examining.
AddrObj *TmpAO = NULL;
#if DBG
if (PreviousAO != NULL) CTEStructAssert(PreviousAO, ao); #endif
CurrentAO = PreviousAO->ao_next;
while (CurrentAO != NULL) {
CTEStructAssert(CurrentAO, ao);
// If the current one is greater than one we were given, check it.
if ((CurrentAO > PreviousAO) && ((Flags & GAO_FLAG_INCLUDE_ALL) || AO_VALID(CurrentAO))) { if (!(CurrentAO->ao_flags & AO_RAW_FLAG)) { if ((IP_ADDR_EQUAL(CurrentAO->ao_addr, LocalAddr) || IP_ADDR_EQUAL(CurrentAO->ao_addr, NULL_IP_ADDR)) && (CurrentAO->ao_prot == Protocol) && (CurrentAO->ao_port == LocalPort) && (((CurrentAO->ao_prot == PROTOCOL_TCP) && (CurrentAO->ao_connect)) || ((CurrentAO->ao_prot == PROTOCOL_UDP) && (CurrentAO->ao_rcvdg)))) { if (!CurrentAO->ao_iflist || !(Flags & GAO_FLAG_CHECK_IF_LIST) || !IP_ADDR_EQUAL(CurrentAO->ao_addr, NULL_IP_ADDR) || FindIfIndexOnAO(CurrentAO, LocalAddr)) { if (!IP_ADDR_EQUAL(CurrentAO->ao_addr, LocalAddr)) { TmpAO = CurrentAO; } else { return CurrentAO; } } } } } // Either it was less than the previous one, or they didn't match.
CurrentAO = CurrentAO->ao_next; }
return TmpAO;
}
//* FindAddrObjWithPort - Find an AO with matching port.
//
// Called while block ports for block port range IOCTL.
// We go through the entire addrobj table, and see if anyone has the specified port.
// We assume that the lock is already held on the table.
//
// Input: Port - Port to be looked for.
//
// Returns: Pointer to AO found, or NULL if no one has it.
//
AddrObj * FindAddrObjWithPort(ushort Port) { uint i; // Index variable.
AddrObj *CurrentAO; // Current AddrObj being examined.
for (i = 0; i < AddrObjTableSize; i++) { CurrentAO = AddrObjTable[i]; while (CurrentAO != NULL) { CTEStructAssert(CurrentAO, ao);
if (CurrentAO->ao_port == Port) return CurrentAO; else CurrentAO = CurrentAO->ao_next; } }
return NULL;
}
//** GetAddrObj - Find a local address object.
//
// This is the local address object lookup routine. We take as input the local
// address and port and a pointer to a 'previous' address object. The hash
// table entries in each bucket are sorted in order of increasing address, and
// we skip over any object that has an address lower than the 'previous'
// address. To get the first address object, pass in a previous value of NULL.
//
// We assume that the table lock is held while we're in this routine. We don't
// take each object lock, since the local address and port can't change while
// the entry is in the table and the table lock is held so nothing can be
// inserted or deleted.
//
// Input: LocalAddr - Local IP address of object to find (may be NULL);
// LocalPort - Local port of object to find.
// Protocol - Protocol to find.
// PreviousAO - Pointer to last address object found.
// Flags - flags controlling the lookup to be performed.
// GAO_FLAG_INCLUDE_ALL causes all AOs to be considered,
// including those marked invalid and those that have
// no receive/connect-handler.
// GAO_FLAG_CHECK_IF_LIST causes the interface-list
// of any matching AO to be applied before the AO is
// considered to be a match.
//
// Returns: A pointer to the Address object, or NULL if none.
//
AddrObj * GetAddrObj(IPAddr LocalAddr, ushort LocalPort, uchar Protocol, PVOID PreviousAO, uint Flags) { AddrObj *CurrentAO; // Current address object we're examining.
IPAddr ActualLocalAddr = LocalAddr; uint Index;
// NOTE:
// PreviousAO should not be dereferenced since it might have been deleted.
// E.g. UDPRcv in udp.c, where we release and reacquire AddrObjTableLock
// while still using the "Search" object that has a pointer to an AO.
// Find the appropriate bucket in the hash table, and search for a match.
// If we don't find one the first time through, we'll try again with a
// wildcard local address.
for (;;) { Index = ComputeAddrObjTableIndex(LocalAddr, LocalPort, Protocol); CurrentAO = AddrObjTable[Index];
// While we haven't hit the end of the list, examine each element.
while (CurrentAO != NULL) { CTEStructAssert(CurrentAO, ao);
// If the current one is greater than one we were given, check it.
if ((((PVOID) CurrentAO) > PreviousAO) && ((Flags & GAO_FLAG_INCLUDE_ALL) || AO_VALID(CurrentAO))) { if (!(CurrentAO->ao_flags & AO_RAW_FLAG)) { if (IP_ADDR_EQUAL(CurrentAO->ao_addr, LocalAddr) && (CurrentAO->ao_port == LocalPort) && (CurrentAO->ao_prot == Protocol)) { if (!CurrentAO->ao_iflist || !(Flags & GAO_FLAG_CHECK_IF_LIST) || !IP_ADDR_EQUAL(CurrentAO->ao_addr, NULL_IP_ADDR) || FindIfIndexOnAO(CurrentAO, ActualLocalAddr)) { return CurrentAO; } } } else { if (Protocol != PROTOCOL_UDP && Protocol != PROTOCOL_TCP) { IF_TCPDBG(TCP_DEBUG_RAW) { TCPTRACE(( "matching <p, a> <%u, %lx> ao %lx <%u, %lx>\n", Protocol, LocalAddr, CurrentAO, CurrentAO->ao_prot, CurrentAO->ao_addr )); }
if (IP_ADDR_EQUAL(CurrentAO->ao_addr, LocalAddr) && ((CurrentAO->ao_prot == Protocol) || (CurrentAO->ao_prot == 0))) { if (!CurrentAO->ao_iflist || !(Flags & GAO_FLAG_CHECK_IF_LIST) || !IP_ADDR_EQUAL(CurrentAO->ao_addr, NULL_IP_ADDR) || FindIfIndexOnAO(CurrentAO, ActualLocalAddr)) { return CurrentAO; } } } } } // Either it was less than the previous one, or they didn't match.
CurrentAO = CurrentAO->ao_next; } // while
// When we get here, we've hit the end of the list we were examining.
// If we weren't examining a wildcard address, look for a wild card
// address.
if (!IP_ADDR_EQUAL(LocalAddr, NULL_IP_ADDR)) { LocalAddr = NULL_IP_ADDR; PreviousAO = NULL; } else { return NULL; // We looked for a wildcard and couldn't find one, so fail.
} } // for
}
//* GetNextAddrObj - Get the next address object in a sequential search.
//
// This is the 'get next' routine, called when we are reading the address
// object table sequentially. We pull the appropriate parameters from the
// search context, call GetAddrObj, and update the search context with what
// we find. This routine assumes the AddrObjTableLock is held by the caller.
//
// Input: SearchContext - Pointer to seach context for search taking place.
//
// Returns: Pointer to AddrObj, or NULL if search failed.
//
AddrObj * GetNextAddrObj(AOSearchContext * SearchContext) { AddrObj *FoundAO; // Pointer to the address object we found.
ASSERT(SearchContext != NULL);
// Try and find a match.
FoundAO = GetAddrObj(SearchContext->asc_addr, SearchContext->asc_port, SearchContext->asc_prot, SearchContext->asc_previous, 0);
// Found a match. Update the search context for next time.
if (FoundAO != NULL) { SearchContext->asc_previous = FoundAO; SearchContext->asc_addr = FoundAO->ao_addr; // Don't bother to update port or protocol, they don't change.
} return FoundAO; }
//* GetFirstAddrObj - Get the first matching address object.
//
// The routine called to start a sequential read of the AddrObj table. We
// initialize the provided search context and then call GetNextAddrObj to do
// the actual read. We assume that the AddrObjTableLock is held by the caller.
//
// Input: LocalAddr - Local IP address of object to be found.
// LocalPort - Local port of AO to be found.
// Protocol - Protocol to be found.
// SearchContext - Pointer to search context to be used during
// search.
//
// Returns: Pointer to AO found, or NULL if we couldn't find any.
//
AddrObj * GetFirstAddrObj(IPAddr LocalAddr, ushort LocalPort, uchar Protocol, AOSearchContext * SearchContext) { ASSERT(SearchContext != NULL);
// Fill in the search context.
SearchContext->asc_previous = NULL; // Haven't found one yet.
SearchContext->asc_addr = LocalAddr; SearchContext->asc_port = LocalPort; SearchContext->asc_prot = Protocol; return GetNextAddrObj(SearchContext); }
//** GetAddrObjEx - Overloaded routine called by RAW when there are any promiscuous sockets
//
// This is the local address object lookup routine. We take as input the local
// address and port and a pointer to a 'previous' address object. The hash
// table entries in each bucket are sorted in order of increasing address, and
// we skip over any object that has an address lower than the 'previous'
// address. To get the first address object, pass in a previous value of NULL.
//
// We assume that the table lock is held while we're in this routine. We don't
// take each object lock, since the local address and port can't change while
// the entry is in the table and the table lock is held so nothing can be
// inserted or deleted.
//
// Input: LocalAddr - Local IP address of object to find (may be NULL);
// LocalPort - Local port of object to find.
// Protocol - Protocol to find.
// PreviousAO - Pointer to last address object found.
//
// Returns: A pointer to the Address object, or NULL if none.
//
AddrObj * GetAddrObjEx(IPAddr LocalAddr, ushort LocalPort, uchar Protocol, uint LocalIfIndex, AddrObj * PreviousAO, uint PreviousIndex, uint * CurrentIndex) { AddrObj *CurrentAO; // Current address object we're examining.
uint i;
#if DBG
if (PreviousAO != NULL) CTEStructAssert(PreviousAO, ao); #endif
// Find the appropriate bucket in the hash table, and search for a match.
// If we don't find one the first time through, we'll try again with a
// wildcard local address.
for (i = PreviousIndex; i < AddrObjTableSize; i++) { CurrentAO = AddrObjTable[i]; // While we haven't hit the end of the list, examine each element.
while (CurrentAO != NULL) {
CTEStructAssert(CurrentAO, ao);
// If the current one is greater than one we were given, check it.
//
// #62710: Return only valid AO's since we might have stale AO's lying
// around.
//
// we should return only raw AO's from this routine
if ((((i == PreviousIndex) && (CurrentAO > PreviousAO)) || (i != PreviousIndex)) && (AO_VALID(CurrentAO)) && (CurrentAO->ao_flags & AO_RAW_FLAG)) {
// Matching AO:
// 1. addr / index match / addr NULL && index is 0 AND prot match / prot is 0
// 2. Promiscuous socket
if ( ( (IP_ADDR_EQUAL(CurrentAO->ao_addr, LocalAddr) || (CurrentAO->ao_bindindex == LocalIfIndex) || (IP_ADDR_EQUAL(CurrentAO->ao_addr, NULL_IP_ADDR) && (CurrentAO->ao_bindindex == 0))) && ((CurrentAO->ao_prot == Protocol) || (CurrentAO->ao_prot == 0)) ) || (IS_PROMIS_AO(CurrentAO)) ) { *CurrentIndex = i; return CurrentAO; } } // Either it was less than the previous one, or they didn't match.
CurrentAO = CurrentAO->ao_next; } }
// When we get here, we've hit the end of the table and couldn't find a matching one,
// fail the request
return NULL; }
//* GetNextAddrObjEx - Overloaded routine called by RAW.
// Get the next address object in a sequential search.
//
// This is the 'get next' routine, called when we are reading the address
// object table sequentially. We pull the appropriate parameters from the
// search context, call GetAddrObj, and update the search context with what
// we find. This routine assumes the AddrObjTableLock is held by the caller.
//
// Input: SearchContext - Pointer to seach context for search taking place.
//
// Returns: Pointer to AddrObj, or NULL if search failed.
//
AddrObj * GetNextAddrObjEx(AOSearchContextEx * SearchContext) { AddrObj *FoundAO; // Pointer to the address object we found.
uint FoundIndex;
ASSERT(SearchContext != NULL);
// Try and find a match.
FoundAO = GetAddrObjEx(SearchContext->asc_addr, SearchContext->asc_port, SearchContext->asc_prot, SearchContext->asc_ifindex, SearchContext->asc_previous, SearchContext->asc_previousindex, &FoundIndex);
// Found a match. Update the search context for next time.
if (FoundAO != NULL) { ASSERT(FoundAO->ao_flags & AO_RAW_FLAG); SearchContext->asc_previous = FoundAO; SearchContext->asc_previousindex = FoundIndex; // SearchContext->asc_addr = FoundAO->ao_addr;
// Don't bother to update port or protocol, they don't change.
} return FoundAO; }
//* GetFirstAddrObjEx - Overloaded routine called by RAW.
// Get the first matching address object.
//
// The routine called to start a sequential read of the AddrObj table. We
// initialize the provided search context and then call GetNextAddrObj to do
// the actual read. We assume that the AddrObjTableLock is held by the caller.
//
// Input: LocalAddr - Local IP address of object to be found.
// LocalPort - Local port of AO to be found.
// Protocol - Protocol to be found.
// SearchContext - Pointer to search context to be used during
// search.
//
// Returns: Pointer to AO found, or NULL if we couldn't find any.
//
AddrObj * GetFirstAddrObjEx(IPAddr LocalAddr, ushort LocalPort, uchar Protocol, uint IfIndex, AOSearchContextEx * SearchContext) { ASSERT(SearchContext != NULL);
// Fill in the search context.
SearchContext->asc_previous = NULL; // Haven't found one yet.
SearchContext->asc_addr = LocalAddr; SearchContext->asc_port = LocalPort; SearchContext->asc_ifindex = IfIndex; SearchContext->asc_prot = Protocol; SearchContext->asc_previousindex = 0; return GetNextAddrObjEx(SearchContext); }
//* InsertAddrObj - Insert an address object into the AddrObj table.
//
// Called to insert an AO into the table, assuming the table lock is held. We
// hash on the addr and port, and then insert in into the correct place
// (sorted by address of the objects).
//
// Input: NewAO - Pointer to AddrObj to be inserted.
//
// Returns: Nothing.
//
void InsertAddrObj(AddrObj * NewAO) { AddrObj *PrevAO; // Pointer to previous address object in hash chain.
AddrObj *CurrentAO; // Pointer to current AO in table.
uint Index;
CTEStructAssert(NewAO, ao);
Index = ComputeAddrObjTableIndex(NewAO->ao_addr, NewAO->ao_port, NewAO->ao_prot); PrevAO = STRUCT_OF(AddrObj, &AddrObjTable[Index], ao_next); CurrentAO = PrevAO->ao_next;
// Loop through the chain until we hit the end or until we find an entry
// whose address is greater than ours.
while (CurrentAO != NULL) {
CTEStructAssert(CurrentAO, ao); ASSERT(CurrentAO != NewAO); // Debug check to make sure we aren't
// inserting the same entry.
if (NewAO < CurrentAO) break; PrevAO = CurrentAO; CurrentAO = CurrentAO->ao_next; }
// At this point, PrevAO points to the AO before the new one. Insert it
// there.
ASSERT(PrevAO != NULL); ASSERT(PrevAO->ao_next == CurrentAO);
NewAO->ao_next = CurrentAO; PrevAO->ao_next = NewAO; if (NewAO->ao_prot == PROTOCOL_UDP) UStats.us_numaddrs++; }
//* RemoveAddrObj - Remove an address object from the table.
//
// Called when we need to remove an address object from the table. We hash on
// the addr and port, then walk the table looking for the object. We assume
// that the table lock is held.
//
// The AddrObj may have already been removed from the table if it was
// invalidated for some reason, so we need to check for the case of not
// finding it.
//
// Input: DeletedAO - AddrObj to delete.
//
// Returns: Nothing.
//
void RemoveAddrObj(AddrObj * RemovedAO) { AddrObj *PrevAO; // Pointer to previous address object in hash chain.
AddrObj *CurrentAO; // Pointer to current AO in table.
uint Index;
CTEStructAssert(RemovedAO, ao);
Index = ComputeAddrObjTableIndex(RemovedAO->ao_addr, RemovedAO->ao_port, RemovedAO->ao_prot); PrevAO = STRUCT_OF(AddrObj, &AddrObjTable[Index], ao_next); CurrentAO = PrevAO->ao_next;
// Walk the table, looking for a match.
while (CurrentAO != NULL) { CTEStructAssert(CurrentAO, ao);
if (CurrentAO == RemovedAO) { PrevAO->ao_next = CurrentAO->ao_next; if (CurrentAO->ao_prot == PROTOCOL_UDP) { UStats.us_numaddrs--; } return; } else { PrevAO = CurrentAO; CurrentAO = CurrentAO->ao_next; } } }
//* FindAnyAddrObj - Find an AO with matching port on any local address.
//
// Called for wildcard address opens. We go through the entire addrobj table,
// and see if anyone has the specified port. We assume that the lock is
// already held on the table.
//
// Input: Port - Port to be looked for.
// Protocol - Protocol on which to look.
//
// Returns: Pointer to AO found, or NULL is noone has it.
//
AddrObj * FindAnyAddrObj(ushort Port, uchar Protocol) { uint i; // Index variable.
AddrObj *CurrentAO; // Current AddrObj being examined.
for (i = 0; i < AddrObjTableSize; i++) { CurrentAO = AddrObjTable[i]; while (CurrentAO != NULL) { CTEStructAssert(CurrentAO, ao);
if (CurrentAO->ao_port == Port && CurrentAO->ao_prot == Protocol) return CurrentAO; else CurrentAO = CurrentAO->ao_next; } }
return NULL;
}
//* RebuildAddrObjBitmap - reconstruct the address-object bitmap from scratch.
//
// Called when we need to reconcile the contents of our lookaside bitmap
// with the actual contents of the address-object table. We clear the bitmap,
// then scan the address-object table and mark each entry's bit as 'in-use'.
// Assumes the caller holds the AddrObjTableLock.
//
// Input: nothing.
//
// Return: nothing.
//
void RebuildAddrObjBitmap(void) { uint i; AddrObj* CurrentAO;
RtlClearAllBits(&PortBitmapTcp); RtlClearAllBits(&PortBitmapUdp);
for (i = 0; i < AddrObjTableSize; i++) { CurrentAO = AddrObjTable[i]; while (CurrentAO != NULL) { CTEStructAssert(CurrentAO, ao);
if (CurrentAO->ao_prot == PROTOCOL_TCP) { RtlSetBit(&PortBitmapTcp, net_short(CurrentAO->ao_port)); } else if (CurrentAO->ao_prot == PROTOCOL_UDP) { RtlSetBit(&PortBitmapUdp, net_short(CurrentAO->ao_port)); } CurrentAO = CurrentAO->ao_next; } } }
//* GetAddress - Get an IP address and port from a TDI address structure.
//
// Called when we need to get our addressing information from a TDI
// address structure. We go through the structure, and return what we
// find.
//
// Input: AddrList - Pointer to TRANSPORT_ADDRESS structure to search.
// Addr - Pointer to where to return IP address.
// Port - Pointer to where to return Port.
//
// Return: TRUE if we find an address, FALSE if we don't.
//
uchar GetAddress(TRANSPORT_ADDRESS UNALIGNED * AddrList, IPAddr * Addr, ushort * Port) { int i; // Index variable.
TA_ADDRESS *CurrentAddr; // Address we're examining and may use.
// First, verify that someplace in Address is an address we can use.
CurrentAddr = (PTA_ADDRESS) AddrList->Address;
for (i = 0; i < AddrList->TAAddressCount; i++) { if (CurrentAddr->AddressType == TDI_ADDRESS_TYPE_IP) { if (CurrentAddr->AddressLength >= TDI_ADDRESS_LENGTH_IP) { TDI_ADDRESS_IP UNALIGNED *ValidAddr = (TDI_ADDRESS_IP UNALIGNED *) CurrentAddr->Address;
*Port = ValidAddr->sin_port; *Addr = ValidAddr->in_addr; return TRUE;
} else return FALSE; // Wrong length for address.
} else CurrentAddr = (PTA_ADDRESS) (CurrentAddr->Address + CurrentAddr->AddressLength); }
return FALSE; // Didn't find a match.
}
//* GetSourceArray - Convert a source list to a source array
//
// Called when we're about to delete a group entry (AOMCastAddr)
// and we need to call down to IP with a source array. We walk
// the source list, deleting entries and adding entries to the array
// as we go. Once done, the arguments are ready to be passed to
// ipi_setmcastaddr(). If a SourceList array is returned, the caller
// is responsible for freeing the array.
//
// Input: AMA - Pointer to AOMCastAddr structure to search.
// pFilterMode - Pointer to where to return filter mode.
// pNumSources - Pointer to where to return number of sources.
// pSourceList - Pointer to where to return array pointer.
// DeleteAMA - Delete AMA after creating SourceList
//
TDI_STATUS GetSourceArray(AOMCastAddr * AMA, uint * pFilterMode, uint * pNumSources, IPAddr ** pSourceList, BOOLEAN DeleteAMA) { AOMCastSrcAddr *ASA; uint i;
// Compose source array as we delete sources.
*pFilterMode = (AMA->ama_inclusion)? MCAST_INCLUDE:MCAST_EXCLUDE; *pNumSources = AMA->ama_srccount; *pSourceList = NULL; if (AMA->ama_srccount > 0) { *pSourceList = CTEAllocMemN(AMA->ama_srccount * sizeof(IPAddr), 'amCT'); if (*pSourceList == NULL) return TDI_NO_RESOURCES; }
i=0;
ASA = AMA->ama_srclist;
while (ASA) {
(*pSourceList)[i++] = ASA->asa_addr;
if (DeleteAMA) {
AMA->ama_srclist = ASA->asa_next; AMA->ama_srccount--; CTEFreeMem(ASA); ASA = AMA->ama_srclist;
} else {
ASA = ASA->asa_next; }
}
return TDI_SUCCESS; }
//* FreeAllSources - delete and free all source state on an AMA
VOID FreeAllSources(AOMCastAddr * AMA) { AOMCastSrcAddr *ASA;
while ((ASA = AMA->ama_srclist) != NULL) { AMA->ama_srclist = ASA->asa_next; AMA->ama_srccount--; CTEFreeMem(ASA); } }
TDI_STATUS AddAOMSource(AOMCastAddr *AMA, ulong SourceAddr);
//* DuplicateAMA - create a duplicate AMA with its own source list
AOMCastAddr * DuplicateAMA( IN AOMCastAddr *OldAMA) { AOMCastAddr *NewAMA; AOMCastSrcAddr *OldASA; TDI_STATUS TdiStatus = TDI_SUCCESS;
NewAMA = CTEAllocMemN(sizeof(AOMCastAddr), 'aPCT'); if (!NewAMA) return NULL;
*NewAMA = *OldAMA; // struct copy
NewAMA->ama_srccount = 0; NewAMA->ama_srclist = 0;
// Make a copy of the source list
for (OldASA = OldAMA->ama_srclist; OldASA; OldASA = OldASA->asa_next) { TdiStatus = AddAOMSource(NewAMA, OldASA->asa_addr); if (TdiStatus != TDI_SUCCESS) break; } if (TdiStatus != TDI_SUCCESS) { FreeAllSources(NewAMA); CTEFreeMem(NewAMA); return NULL; }
return NewAMA; }
//* SetIPMcastAddr - Set mcast filters
//
// Called by ProcessAORequests, with no lock held but the AO must be BUSY,
// to reinstall all multicast addresses on a revalidated interface address.
//
// Input: AO - A "busy" AO on which to check for groups needing rejoining.
// Addr - Interface address being revalidated
//
// Returns: IP_SUCCESS if all revalidates succeeded
//
IP_STATUS SetIPMCastAddr(AddrObj *AO, IPAddr Addr) { TDI_STATUS TdiStatus; IP_STATUS IpStatus; AOMCastAddr *MA; uint FilterMode, NumSources; IPAddr *SourceList;
ASSERT(AO_BUSY(AO));
// Walk the list of multicast addresses and reinstall each invalid one
// on the indicated interface address.
for (MA = AO->ao_mcastlist; MA; MA = MA->ama_next) { if (AMA_VALID(MA) || (MA->ama_if_used != Addr)) { continue; }
// Compose source array and delete sources from MA
TdiStatus = GetSourceArray(MA, &FilterMode, &NumSources, &SourceList, FALSE);
if (TdiStatus != TDI_SUCCESS) { // Treat as if IP returned error
IpStatus = IP_NO_RESOURCES; } else { if (FilterMode == MCAST_EXCLUDE) { IpStatus = (*LocalNetInfo.ipi_setmcastaddr) (MA->ama_addr, MA->ama_if_used, TRUE, NumSources, SourceList, 0, NULL); } else { IpStatus = (*LocalNetInfo.ipi_setmcastinclude) (MA->ama_addr, MA->ama_if_used, NumSources, SourceList, 0, NULL); } }
if (SourceList) { CTEFreeMem(SourceList); SourceList = NULL; }
if (IpStatus != IP_SUCCESS) { //There is nothing much that can be done to handle resource failures
//just bail out
//
// When this happens, the multicast join will be left in an
// invalid state until the group is left, or until the address
// is invalidated and revalidated again.
return IpStatus; }
MA->ama_flags |= AMA_VALID_FLAG; }
return IP_SUCCESS; }
// Must be called with the AO lock held
TDI_STATUS RequestSetIPMCastAddr(AddrObj *OptionAO, IPAddr Addr) { AORequest *NewRequest, *OldRequest;
// Note that the same code path gets followed here regardless
// of whether the AO is valid or not. We will rejoin groups
// no matter what, as long as the interface joined on is being
// revalidated.
//
// Also note that we cannot set the multicast addresses
// from here because we are already at dispatch level,
// and also because the AO might be busy.
NewRequest = GetAORequest(AOR_TYPE_REVALIDATE_MCAST); if (NewRequest == NULL) { return TDI_NO_RESOURCES; }
NewRequest->aor_rtn = NULL; NewRequest->aor_context = NULL; NewRequest->aor_id = Addr; NewRequest->aor_length = 0; NewRequest->aor_buffer = NULL; NewRequest->aor_next = NULL; SET_AO_REQUEST(OptionAO, AO_OPTIONS); // Set the option request.
OldRequest = STRUCT_OF(AORequest, &OptionAO->ao_request, aor_next);
while (OldRequest->aor_next != NULL) OldRequest = OldRequest->aor_next;
OldRequest->aor_next = NewRequest;
return TDI_SUCCESS; }
//* RevalidateAddrs - Revalidate all AOs for a specific address.
//
// Called when we're notified that an IP address is available.
// Walk down the table with the lock held, and take the lock on each AddrObj.
// If the address matches, mark it as valid and reinstall all multicast
// addresses.
//
// Input: Addr - Address to be revalidated.
//
// Returns: Nothing.
//
void RevalidateAddrs(IPAddr Addr) { CTELockHandle TableHandle; AddrObj *AO, *tmpAO; uint i; TDI_STATUS TdiStatus;
// Traverse the address-object hash-table, and revalidate all entries
// matching this IP address. In the process, build a list of multicast
// addresses that we need to reenable at the IP layer once we're done.
CTEGetLock(&AddrObjTableLock.Lock, &TableHandle); for (i = 0; i < AddrObjTableSize; i++) { AO = AddrObjTable[i]; while (AO != NULL) {
CTEStructAssert(AO, ao);
CTEGetLockAtDPC(&AO->ao_lock);
if (!AO_REQUEST(AO, AO_DELETE)) {
// Revalidate the address object, if it matches.
if (IP_ADDR_EQUAL(AO->ao_addr, Addr) && !AO_VALID(AO)) { AO->ao_flags |= AO_VALID_FLAG; }
// Revalidate the multicast addresses, if any.
if (AO->ao_mcastlist) {
TdiStatus = RequestSetIPMCastAddr(AO, Addr); if (TdiStatus != TDI_SUCCESS) {
// There is nothing much that can be done to handle
// resource failures. Just bail out.
//
// When this happens, the multicast join will be left
// in an invalid state until the group is left,
// or until the address is invalidated and revalidated
// again.
KdPrintEx((DPFLTR_TCPIP_ID, DPFLTR_INFO_LEVEL, "SetIPMcastAddr: resource failures\n")); } else if (!AO_BUSY(AO) && AO->ao_usecnt == 0 && !AO_DEFERRED(AO)) { SET_AO_BUSY(AO); SET_AO_DEFERRED(AO);
// Schedule processing the revalidation request
// at passive IRQL.
if (!CTEScheduleEvent(&AO->ao_event, AO)) { CLEAR_AO_DEFERRED(AO); CLEAR_AO_BUSY(AO);
KdPrintEx((DPFLTR_TCPIP_ID, DPFLTR_INFO_LEVEL, "SetIPMcastAddr: resource failures\n")); } } } }
tmpAO = AO->ao_next; CTEFreeLockFromDPC(&AO->ao_lock);
AO = tmpAO; } //while
} //for
CTEFreeLock(&AddrObjTableLock.Lock, TableHandle);
}
//* InvalidateAddrs - Invalidate all AOs for a specific address.
//
// Called when we need to invalidate all AOs for a specific address. Walk
// down the table with the lock held, and take the lock on each AddrObj.
// If the address matches, mark it as invalid, pull off all requests,
// and continue. At the end we'll complete all requests with an error.
//
// Input: Addr - Addr to be invalidated.
//
// Returns: Nothing.
//
void InvalidateAddrs(IPAddr Addr) { Queue SendQ; Queue RcvQ; AORequest *ReqList; CTELockHandle TableHandle, AOHandle; uint i; AddrObj *AO; AOMCastAddr *AMA; DGSendReq *SendReq; DGRcvReq *RcvReq;
INITQ(&SendQ); INITQ(&RcvQ); ReqList = NULL;
CTEGetLock(&AddrObjTableLock.Lock, &TableHandle); for (i = 0; i < AddrObjTableSize; i++) { // Walk down each hash bucket, looking for a match.
AO = AddrObjTable[i]; while (AO != NULL) { CTEStructAssert(AO, ao);
CTEGetLock(&AO->ao_lock, &AOHandle); if (IP_ADDR_EQUAL(AO->ao_addr, Addr) && AO_VALID(AO)) { // This one matches. Mark as invalid, then pull his requests.
SET_AO_INVALID(AO);
// Free any IP options we have.
(*LocalNetInfo.ipi_freeopts) (&AO->ao_opt);
// If he has a request on him, pull him off.
if (AO->ao_request != NULL) { AORequest *Temp;
Temp = STRUCT_OF(AORequest, &AO->ao_request, aor_next); do { Temp = Temp->aor_next; } while (Temp->aor_next != NULL);
Temp->aor_next = ReqList; ReqList = AO->ao_request;
AO->ao_request = NULL; CLEAR_AO_REQUEST(AO, AO_OPTIONS); } // Go down his send list, pulling things off the send q and
// putting them on our local queue.
while (!EMPTYQ(&AO->ao_sendq)) { DEQUEUE(&AO->ao_sendq, SendReq, DGSendReq, dsr_q); CTEStructAssert(SendReq, dsr); ENQUEUE(&SendQ, &SendReq->dsr_q); }
CLEAR_AO_REQUEST(AO, AO_SEND);
// Do the same for the receive queue.
while (!EMPTYQ(&AO->ao_rcvq)) { DEQUEUE(&AO->ao_rcvq, RcvReq, DGRcvReq, drr_q); CTEStructAssert(RcvReq, drr); ENQUEUE(&RcvQ, &RcvReq->drr_q); } }
// Now look for AOMCastAddr structures that need to be invalidated
for (AMA=AO->ao_mcastlist; AMA; AMA=AMA->ama_next) { if (IP_ADDR_EQUAL(AMA->ama_if_used, Addr) && AMA_VALID(AMA)) { SET_AMA_INVALID(AMA); } }
CTEFreeLock(&AO->ao_lock, AOHandle); AO = AO->ao_next; // Go to the next one.
} } CTEFreeLock(&AddrObjTableLock.Lock, TableHandle);
// OK, now walk what we've collected, complete it, and free it.
while (ReqList != NULL) { AORequest *Req;
Req = ReqList; ReqList = Req->aor_next;
// Take care of new setIPMcastAddr code that sets aor_rtn to NULL
if (Req->aor_rtn) { (*Req->aor_rtn) (Req->aor_context, (uint) TDI_ADDR_INVALID, 0); }
FreeAORequest(Req); }
// Walk down the rcv. q, completing and freeing requests.
while (!EMPTYQ(&RcvQ)) {
DEQUEUE(&RcvQ, RcvReq, DGRcvReq, drr_q); CTEStructAssert(RcvReq, drr);
(*RcvReq->drr_rtn) (RcvReq->drr_context, (uint) TDI_ADDR_INVALID, 0);
FreeDGRcvReq(RcvReq);
}
// Now do the same for sends.
while (!EMPTYQ(&SendQ)) {
DEQUEUE(&SendQ, SendReq, DGSendReq, dsr_q); CTEStructAssert(SendReq, dsr);
(*SendReq->dsr_rtn) (SendReq->dsr_context, (uint) TDI_ADDR_INVALID, 0);
if (SendReq->dsr_header != NULL) { FreeDGHeader(SendReq->dsr_header); } FreeDGSendReq(SendReq); } }
//* RequestEventProc - Handle a deferred request event.
//
// Called when the event scheduled by DelayDerefAO is called.
// We just call ProcessAORequest.
//
// Input: Event - Event that fired.
// Context - Pointer to AddrObj.
//
// Returns: Nothing.
//
void RequestEventProc(CTEEvent * Event, void *Context) { AddrObj *AO = (AddrObj *) Context; CTELockHandle AOHandle;
CTEStructAssert(AO, ao); CTEGetLock(&AO->ao_lock, &AOHandle); CLEAR_AO_DEFERRED(AO); CTEFreeLock(&AO->ao_lock, AOHandle);
ProcessAORequests(AO); }
//* GetAddrOptions - Get the address options.
//
// Called when we're opening an address. We take in a pointer, and walk
// down it looking for address options we know about.
//
// Input: Ptr - Ptr to search.
// Reuse - Pointer to reuse variable.
// DHCPAddr - Pointer to DHCP addr.
//
// Returns: Nothing.
//
void GetAddrOptions(void *Ptr, uchar * Reuse, uchar * DHCPAddr) { uchar *OptPtr;
*Reuse = 0; *DHCPAddr = 0;
DEBUGMSG(DBG_TRACE && DBG_DHCP, (DTEXT("+GetAddrOptions(%x, %x, %x)\n"), Ptr, Reuse, DHCPAddr));
if (Ptr == NULL) { DEBUGMSG(DBG_TRACE && DBG_DHCP, (DTEXT("-GetAddrOptions {NULL Ptr}.\n"))); return; }
OptPtr = (uchar *) Ptr;
while (*OptPtr != TDI_OPTION_EOL) { if (*OptPtr == TDI_ADDRESS_OPTION_REUSE) *Reuse = 1; else if (*OptPtr == TDI_ADDRESS_OPTION_DHCP) *DHCPAddr = 1;
OptPtr++; }
DEBUGMSG(DBG_TRACE && DBG_DHCP, (DTEXT("-GetAddrOptions {Reuse=%d, DHCPAddr=%d}\n"), *Reuse, *DHCPAddr));
}
//* CheckAddrReuse - enforce port-sharing rules for a new TDI address object.
//
// Called when opening an address, to determine whether the open should
// succeed in the presence of previous binds to the same port.
//
// N.B. Assumes the caller holds both AddrSDMutex and AddrObjTableLock.
// The latter is freed and reacquired in this routine.
//
// Input: Request - Pointer to a TDI request structure for this request.
// Protocol - Protocol on which to open the address.
// Addr - Local IP address to open.
// Port - Local port number to open.
// NewReuse - indicates if reuse requested for the open.
// NewSD - captured security-descriptor for the open.
// TableHandle - lock handle for AO table.
//
// Returns: TDI_STATUS code of attempt.
//
TDI_STATUS CheckAddrReuse(PTDI_REQUEST Request, uint Protocol, IPAddr Addr, ushort Port, BOOLEAN NewReuse, PSECURITY_DESCRIPTOR NewSD, CTELockHandle* TableHandle) { PACCESS_STATE AccessState; BOOLEAN AllowReuse; AddrObj* ExistingAO; BOOLEAN ExistingReuse; PSECURITY_DESCRIPTOR ExistingSD; PIRP Irp; PIO_STACK_LOCATION IrpSp; ACCESS_MASK GrantedAccess; NTSTATUS status;
// Look for an existing AO and succeed if none.
// Otherwise, capture its reuse flag and security-descriptor.
ExistingAO = GetBestAddrObj(Addr, Port, (uchar)Protocol, GAO_FLAG_INCLUDE_ALL); if (ExistingAO == NULL && IP_ADDR_EQUAL(Addr, NULL_IP_ADDR) && NewSD == NULL) { ExistingAO = FindAnyAddrObj(Port, (uchar)Protocol); }
if (ExistingAO == NULL) { return TDI_SUCCESS; }
do { // We've got at least one AO, so see if it allows reuse.
// Note that we may need to repeat this for every AO on this port
// in the case where we have multiple AOs sharing the port already,
// since each AO has its own security descriptor. In that event,
// we look at the AOs until one denies access or we've seen them all.
ExistingReuse = !!AO_SHARE(ExistingAO); ExistingSD = ExistingAO->ao_sd; // Succeed immediately if reuse enabled on both instances.
// Otherwise, fail if the two instances have the exact same address
// (whether it's wildcard or specific).
if (ExistingReuse && NewReuse) { return TDI_SUCCESS; } if (IP_ADDR_EQUAL(ExistingAO->ao_addr, Addr)) { return TDI_ADDR_IN_USE; } // The two instances have different addresses, and at least one of them
// doesn't have reuse enabled. If the new instance is on the wildcard
// address, the old instance must be on a specific address.
// Allow the bind unless the new instance wants exclusive access
// (i.e. NewSD == NULL).
if (IP_ADDR_EQUAL(Addr, NULL_IP_ADDR)) { if (NewSD == NULL) { return TDI_ADDR_IN_USE; } return TDI_SUCCESS; } // The two instances have different addresses, and the new instance is
// on a specific address. If the old instance is on a specific address
// too, the two are disjoint and can peacefully coexist.
if (!IP_ADDR_EQUAL(ExistingAO->ao_addr, NULL_IP_ADDR)) { return TDI_SUCCESS; } // The new instance is on a specific address and the old instance is on
// the wildcard address. If the old instance wanted exclusive access
// (i.e. ExistingSD == NULL) fail the new instance right away.
// Otherwise, drop the AO table lock and perform an access check
// to see if it's OK for the new instance to steal some traffic from
// the old instance.
//
// N.B. Even though we've dropped the AO table lock, ExistingSD is safe
// since we still have the AO SD mutex.
if (ExistingSD == NULL) { return STATUS_ACCESS_DENIED; } ASSERT(*TableHandle <= PASSIVE_LEVEL); CTEFreeLock(&AddrObjTableLock.Lock, *TableHandle); Irp = (PIRP)Request->RequestContext; IrpSp = IoGetCurrentIrpStackLocation(Irp); AccessState = IrpSp->Parameters.Create.SecurityContext->AccessState; SeLockSubjectContext(&AccessState->SubjectSecurityContext); AllowReuse = SeAccessCheck(ExistingSD, &AccessState->SubjectSecurityContext, TRUE, FILE_READ_DATA|FILE_WRITE_DATA, 0, NULL, IoGetFileObjectGenericMapping(), (IrpSp->Flags & SL_FORCE_ACCESS_CHECK) ? UserMode : Irp->RequestorMode, &GrantedAccess, &status); SeUnlockSubjectContext(&AccessState->SubjectSecurityContext); CTEGetLock(&AddrObjTableLock.Lock, TableHandle); if (!AllowReuse) { return status; }
// The existing wildcard AO doesn't mind if the new instance takes
// some of its traffic. If the existing AO has reuse enabled, there
// might be others too on the port, so we'll look for them and do an
// access check against their security-descriptors too.
} while(ExistingReuse && (ExistingAO = GetAddrObj(NULL_IP_ADDR, Port, (uchar)Protocol, ExistingAO, GAO_FLAG_INCLUDE_ALL)) != NULL);
return TDI_SUCCESS; }
//* TdiOpenAddress - Open a TDI address object.
//
// This is the external interface to open an address. The caller provides a
// TDI_REQUEST structure and a TRANSPORT_ADDRESS structure, as well a pointer
// to a variable identifying whether or not we are to allow reuse of an
// address while it's still open.
//
// Input: Request - Pointer to a TDI request structure for this request.
// AddrList - Pointer to TRANSPORT_ADDRESS structure describing
// address to be opened.
// Protocol - Protocol on which to open the address. Only the
// least significant byte is used.
// Ptr - Pointer to option buffer.
// IsRawOpen - If this is a RAW address object open.
//
// Returns: TDI_STATUS code of attempt.
//
TDI_STATUS TdiOpenAddress(PTDI_REQUEST Request, TRANSPORT_ADDRESS UNALIGNED * AddrList, uint Protocol, void *Ptr, PSECURITY_DESCRIPTOR AddrSD, BOOLEAN IsRawOpen) { uint i; // Index variable
ushort Port; // Local Port we'll use.
IPAddr LocalAddr; // Actual address we'll use.
AddrObj *NewAO; // New AO we'll use.
AddrObj *ExistingAO; // Pointer to existing AO, if any.
CTELockHandle Handle; uchar Reuse, DHCPAddr;
PRTL_BITMAP PortBitmap;
if (!GetAddress(AddrList, &LocalAddr, &Port)) { return TDI_BAD_ADDR; }
// Find the address options we might need.
GetAddrOptions(Ptr, &Reuse, &DHCPAddr);
// Allocate the new addr obj now, assuming that
// we need it, so we don't have to do it with locks held later.
NewAO = CTEAllocMemN(sizeof(AddrObj), 'APCT'); if (NewAO == NULL) { return TDI_NO_RESOURCES; }
NdisZeroMemory(NewAO, sizeof(AddrObj));
// Check to make sure IP address is one of our local addresses. This
// is protected with the address table lock, so we can interlock an IP
// address going away through DHCP.
KeWaitForSingleObject(&AddrSDMutex, Executive, KernelMode, FALSE, NULL); CTEGetLock(&AddrObjTableLock.Lock, &Handle);
if (!IP_ADDR_EQUAL(LocalAddr, NULL_IP_ADDR)) { // Not a wildcard.
// Call IP to find out if this is a local address.
if ((*LocalNetInfo.ipi_getaddrtype) (LocalAddr) != DEST_LOCAL) { // Not a local address. Fail the request.
CTEFreeLock(&AddrObjTableLock.Lock, Handle); KeReleaseMutex(&AddrSDMutex, FALSE); CTEFreeMem(NewAO); return TDI_BAD_ADDR; } } // The specified IP address is a valid local address. Now we do
// protocol-specific processing.
if (Protocol == PROTOCOL_TCP) { PortBitmap = &PortBitmapTcp; } else if ((Protocol == PROTOCOL_UDP) && !IsRawOpen) { PortBitmap = &PortBitmapUdp; } else { PortBitmap = NULL; }
if (PortBitmap) {
// If no port is specified we have to assign one. If there is a
// port specified, we need to make sure that the IPAddress/Port
// combo isn't already open (unless Reuse is specified). If the
// input address is a wildcard, we need to make sure the address
// isn't open on any local ip address.
if (Port == WILDCARD_PORT) { // Have a wildcard port, need to assign an
// address.
Port = NextUserPort; ExistingAO = NULL; for (i = 0; i < NUM_USER_PORTS; i++, Port++) { ushort NetPort; // Port in net byte order.
if (Port > MaxUserPort) { Port = MIN_USER_PORT; RebuildAddrObjBitmap(); }
if (PortRangeList) { ReservedPortListEntry *tmpEntry = PortRangeList; while (tmpEntry) { if ((Port <= tmpEntry->UpperRange) && (Port >= tmpEntry->LowerRange)) { Port = tmpEntry->UpperRange + 1; if (Port > MaxUserPort) { Port = MIN_USER_PORT; RebuildAddrObjBitmap(); } } tmpEntry = tmpEntry->next; } } NetPort = net_short(Port);
if (IP_ADDR_EQUAL(LocalAddr, NULL_IP_ADDR)) { // Wildcard IP
// address.
if (!RtlCheckBit(PortBitmap, Port)) break; else continue; } else { ExistingAO = GetBestAddrObj(LocalAddr, NetPort, (uchar)Protocol, GAO_FLAG_INCLUDE_ALL); }
if (ExistingAO == NULL) break; // Found an unused port.
} //for loop
if (i == NUM_USER_PORTS) { // Couldn't find a free port.
CTEFreeLock(&AddrObjTableLock.Lock, Handle); KeReleaseMutex(&AddrSDMutex, FALSE); CTEFreeMem(NewAO); return TDI_NO_FREE_ADDR; } NextUserPort = Port + 1; Port = net_short(Port);
} else { // Port was specificed
// Don't check if a DHCP address is specified.
if (!DHCPAddr) { ReservedPortListEntry *CurrEntry = BlockedPortList; ushort HostPort = net_short(Port); TDI_STATUS status;
// Check whether the port specified lies in the BlockedPortList
// if yes, fail the request
while (CurrEntry) { if ((HostPort >= CurrEntry->LowerRange) && (HostPort <= CurrEntry->UpperRange)) { // Port lies in the blocked port list
CTEFreeLock(&AddrObjTableLock.Lock, Handle); KeReleaseMutex(&AddrSDMutex, FALSE); CTEFreeMem(NewAO); return TDI_ADDR_IN_USE; } else if (HostPort > CurrEntry->UpperRange) { CurrEntry = CurrEntry->next; } else { // the list is sorted; Port is not in the list
break; } }
// See if we already have this address open and, if so,
// decide whether this request should succeed.
//
status = CheckAddrReuse(Request, Protocol, LocalAddr, Port, Reuse, AddrSD, &Handle); if (status != TDI_SUCCESS) { CTEFreeLock(&AddrObjTableLock.Lock, Handle); KeReleaseMutex(&AddrSDMutex, FALSE); CTEFreeMem(NewAO); return status; } } }
//
// We have a new AO. Set up the protocol specific portions
//
if (Protocol == PROTOCOL_UDP) { NewAO->ao_dgsend = UDPSend; NewAO->ao_maxdgsize = 0xFFFF - sizeof(UDPHeader); }
SET_AO_XSUM(NewAO); // Checksumming defaults to on.
SET_AO_BROADCAST(NewAO); //Set Broadcast on by default
} else {
//
// All other protocols are opened over Raw IP. For now we don't
// do any duplicate checks.
//
ASSERT(!DHCPAddr);
//
// We must set the port to zero. This puts all the raw sockets
// in one hash bucket, which is necessary for GetAddrObj to
// work correctly. It wouldn't be a bad idea to come up with
// a better scheme...
//
Port = 0; NewAO->ao_dgsend = RawSend; NewAO->ao_maxdgsize = 0xFFFF; NewAO->ao_flags |= AO_RAW_FLAG;
IF_TCPDBG(TCP_DEBUG_RAW) { TCPTRACE(("raw open protocol %u AO %lx\n", Protocol, NewAO)); } }
// When we get here, we know we're creating a brand new address object.
// Port contains the port in question, and NewAO points to the newly
// created AO.
(*LocalNetInfo.ipi_initopts) (&NewAO->ao_opt);
(*LocalNetInfo.ipi_initopts) (&NewAO->ao_mcastopt);
NewAO->ao_mcastopt.ioi_ttl = 1; NewAO->ao_opt.ioi_tos = (uchar) DefaultTOSValue; NewAO->ao_mcastopt.ioi_tos = (uchar) DefaultTOSValue;
NewAO->ao_bindindex = 0; NewAO->ao_mcast_loop = 1; //Enable mcast loopback by default
NewAO->ao_rcvall = RCVALL_OFF; //Disable receipt of promis pkts
NewAO->ao_rcvall_mcast = RCVALL_OFF; //Disable receipt of promis mcast pkts
NewAO->ao_absorb_rtralert = 0; // Disable receipt of absorbed rtralert pkts
CTEInitLock(&NewAO->ao_lock); CTEInitEvent(&NewAO->ao_event, RequestEventProc); INITQ(&NewAO->ao_sendq); INITQ(&NewAO->ao_pendq); INITQ(&NewAO->ao_rcvq); INITQ(&NewAO->ao_activeq); INITQ(&NewAO->ao_idleq); INITQ(&NewAO->ao_listenq); NewAO->ao_port = Port; NewAO->ao_addr = LocalAddr; NewAO->ao_prot = (uchar) Protocol; #if DBG
NewAO->ao_sig = ao_signature; #endif
NewAO->ao_flags |= AO_VALID_FLAG; // AO is valid.
NewAO->ao_sd = AddrSD;
if (DHCPAddr) { NewAO->ao_flags |= AO_DHCP_FLAG; }
if (Reuse) { SET_AO_SHARE(NewAO); }
#if !MILLEN
NewAO->ao_owningpid = HandleToUlong(PsGetCurrentProcessId()); #endif
InsertAddrObj(NewAO);
if (PortBitmap) { RtlSetBit(PortBitmap, net_short(Port)); }
CTEFreeLock(&AddrObjTableLock.Lock, Handle); KeReleaseMutex(&AddrSDMutex, FALSE);
Request->Handle.AddressHandle = NewAO; return TDI_SUCCESS; }
//* DeleteAO - Delete an address object.
//
// The internal routine to delete an address object. We complete any pending
// requests with errors, and remove and free the address object.
//
// Input: DeletedAO - AddrObj to be deleted.
//
// Returns: Nothing.
//
void DeleteAO(AddrObj * DeletedAO) { CTELockHandle TableHandle; // Lock handles we'll use here.
#ifndef UDP_ONLY
CTELockHandle TCBHandle; TCB *TCBHead = NULL, *CurrentTCB; TCPConn *Conn; Queue *Temp; Queue *CurrentQ; CTEReqCmpltRtn Rtn; // Completion routine.
PVOID Context; // User context for completion routine.
#endif
AOMCastAddr *AMA; PSECURITY_DESCRIPTOR AddrSD;
CTEStructAssert(DeletedAO, ao); ASSERT(!AO_VALID(DeletedAO)); ASSERT(DeletedAO->ao_usecnt == 0);
CTEGetLock(&AddrObjTableLock.Lock, &TableHandle); CTEGetLockAtDPC(&DeletedAO->ao_lock);
// If he's on an oor queue, remove him.
if (AO_OOR(DeletedAO)) { InterlockedRemoveQueueItemAtDpcLevel(&DeletedAO->ao_pendq, &DGQueueLock.Lock); }
RemoveAddrObj(DeletedAO);
// Walk down the list of associated connections and zap their AO pointers.
// For each connection, we need to shut down the connection if it's active.
// If the connection isn't already closing, we'll put a reference on it
// so that it can't go away while we're dealing with the AO, and put it
// on a list. On our way out we'll walk down that list and zap each
// connection.
CurrentQ = &DeletedAO->ao_activeq;
DeletedAO->ao_usecnt++; CTEFreeLockFromDPC(&DeletedAO->ao_lock);
for (;;) { Temp = QHEAD(CurrentQ); while (Temp != QEND(CurrentQ)) { Conn = QSTRUCT(TCPConn, Temp, tc_q);
CTEGetLockAtDPC(&(Conn->tc_ConnBlock->cb_lock)); #if DBG
Conn->tc_ConnBlock->line = (uint) __LINE__; Conn->tc_ConnBlock->module = (uchar *) __FILE__; #endif
//
// Move our temp pointer to the next connection now,
// since we may free this connection below.
//
Temp = QNEXT(Temp);
CTEStructAssert(Conn, tc); CurrentTCB = Conn->tc_tcb; if (CurrentTCB != NULL) { // We have a TCB.
CTEStructAssert(CurrentTCB, tcb); CTEGetLock(&CurrentTCB->tcb_lock, &TCBHandle); if (CurrentTCB->tcb_state != TCB_CLOSED && !CLOSING(CurrentTCB)) { // It's not closing. Put a reference on it and save it on the
// list.
REFERENCE_TCB(CurrentTCB); CurrentTCB->tcb_aonext = TCBHead; TCBHead = CurrentTCB; } CurrentTCB->tcb_conn = NULL; CurrentTCB->tcb_rcvind = NULL;
if ((CurrentTCB->tcb_rcvhndlr == IndicateData) && (CurrentTCB->tcb_indicated == 0)) { if (CurrentTCB->tcb_currcv != NULL) { CurrentTCB->tcb_rcvhndlr = BufferData; } else { CurrentTCB->tcb_rcvhndlr = PendData; } }
CTEFreeLock(&CurrentTCB->tcb_lock, TCBHandle);
//
// Subtract one from the connection's ref count, since we
// are about to remove this TCB from the connection.
//
if (--(Conn->tc_refcnt) == 0) {
//
// We need to execute the code for the done
// routine. There are only three done routines that can
// be called. CloseDone(), DisassocDone(), and DummyDone().
// We execute the respective code here to avoid freeing locks.
// Note: DummyDone() does nothing.
//
if (Conn->tc_flags & CONN_CLOSING) {
//
// This is the relevant CloseDone() code.
//
CTEFreeLockFromDPC(&(Conn->tc_ConnBlock->cb_lock)); Rtn = Conn->tc_rtn; Context = Conn->tc_rtncontext; FreeConn(Conn); (*Rtn) (Context, TDI_SUCCESS, 0);
} else if (Conn->tc_flags & CONN_DISACC) {
//
// This is the relevant DisassocDone() code.
//
Rtn = Conn->tc_rtn; Context = Conn->tc_rtncontext; Conn->tc_flags &= ~CONN_DISACC; Conn->tc_ao = NULL; Conn->tc_tcb = NULL; CTEFreeLockFromDPC(&(Conn->tc_ConnBlock->cb_lock)); (*Rtn) (Context, TDI_SUCCESS, 0);
} else { Conn->tc_ao = NULL; Conn->tc_tcb = NULL; CTEFreeLockFromDPC(&(Conn->tc_ConnBlock->cb_lock)); } } else { Conn->tc_ao = NULL; Conn->tc_tcb = NULL; CTEFreeLockFromDPC(&(Conn->tc_ConnBlock->cb_lock)); } } else { Conn->tc_ao = NULL; CTEFreeLockFromDPC(&(Conn->tc_ConnBlock->cb_lock)); }
}
if (CurrentQ == &DeletedAO->ao_activeq) { CurrentQ = &DeletedAO->ao_idleq; } else if (CurrentQ == &DeletedAO->ao_idleq) { CurrentQ = &DeletedAO->ao_listenq; } else { ASSERT(CurrentQ == &DeletedAO->ao_listenq); break; } }
//get the aolock again
CTEGetLockAtDPC(&DeletedAO->ao_lock); DeletedAO->ao_usecnt--;
// We've removed him from the queues, and he's marked as invalid. Return
// pending requests with errors.
CTEFreeLockFromDPC(&AddrObjTableLock.Lock);
// We still hold the lock on the AddrObj, although this may not be
// neccessary.
if (DeletedAO->ao_rce) {
IF_TCPDBG(TCP_DEBUG_CONUDP) {
KdPrintEx((DPFLTR_TCPIP_ID, DPFLTR_INFO_LEVEL, "Deleteao: deleting rce %x %x\n", DeletedAO, DeletedAO->ao_rce)); }
(*LocalNetInfo.ipi_closerce) (DeletedAO->ao_rce); DeletedAO->ao_rce = NULL; }
while (!EMPTYQ(&DeletedAO->ao_rcvq)) { DGRcvReq *Rcv;
DEQUEUE(&DeletedAO->ao_rcvq, Rcv, DGRcvReq, drr_q); CTEStructAssert(Rcv, drr);
CTEFreeLock(&DeletedAO->ao_lock, TableHandle); (*Rcv->drr_rtn) (Rcv->drr_context, (uint) TDI_ADDR_DELETED, 0);
FreeDGRcvReq(Rcv);
CTEGetLock(&DeletedAO->ao_lock, &TableHandle); }
// Now destroy any sends.
while (!EMPTYQ(&DeletedAO->ao_sendq)) { DGSendReq *Send;
DEQUEUE(&DeletedAO->ao_sendq, Send, DGSendReq, dsr_q); CTEStructAssert(Send, dsr);
CTEFreeLock(&DeletedAO->ao_lock, TableHandle); (*Send->dsr_rtn) (Send->dsr_context, (uint) TDI_ADDR_DELETED, 0);
if (Send->dsr_header != NULL) { FreeDGHeader(Send->dsr_header); } FreeDGSendReq(Send);
CTEGetLock(&DeletedAO->ao_lock, &TableHandle); }
AddrSD = DeletedAO->ao_sd;
CTEFreeLock(&DeletedAO->ao_lock, TableHandle);
// Free any IP options we have.
(*LocalNetInfo.ipi_freeopts) (&DeletedAO->ao_opt);
// Free any associated multicast addresses.
AMA = DeletedAO->ao_mcastlist; while (AMA != NULL) { AOMCastAddr *Temp; uint FilterMode, NumSources; IPAddr *SourceList = NULL; TDI_STATUS TdiStatus;
// Compose source array as we delete sources.
TdiStatus = GetSourceArray(AMA, &FilterMode, &NumSources, &SourceList, TRUE); if (TdiStatus == TDI_SUCCESS) {
// Since the following calls down to IP always delete state, never
// add state, they should always succeed.
if (AMA_VALID(AMA)) { if (FilterMode == MCAST_EXCLUDE) { (*LocalNetInfo.ipi_setmcastaddr) (AMA->ama_addr, AMA->ama_if_used, FALSE, NumSources, SourceList, 0, NULL); } else { (*LocalNetInfo.ipi_setmcastinclude) (AMA->ama_addr, AMA->ama_if_used, 0, NULL, NumSources, SourceList); } } } else { AOMCastSrcAddr *ASA;
//
// We now need to delete all sources in a way that doesn't require
// allocating any memory. This method is much less efficient
// since it may cause lots of IGMP messages to be sent
//
while ((ASA = AMA->ama_srclist) != NULL) { if (AMA_VALID(AMA)) { if (FilterMode == MCAST_EXCLUDE) { (*LocalNetInfo.ipi_setmcastexclude) (AMA->ama_addr, AMA->ama_if_used, 0, NULL, 1, &ASA->asa_addr); } else { (*LocalNetInfo.ipi_setmcastinclude) (AMA->ama_addr, AMA->ama_if_used, 0, NULL, 1, &ASA->asa_addr); } }
AMA->ama_srclist = ASA->asa_next; CTEFreeMem(ASA); } }
Temp = AMA; AMA = AMA->ama_next; CTEFreeMem(Temp);
if (SourceList) { CTEFreeMem(SourceList); SourceList = NULL; } }
if (DeletedAO->ao_RemoteAddress) { CTEFreeMem(DeletedAO->ao_RemoteAddress); } if (DeletedAO->ao_Options) { CTEFreeMem(DeletedAO->ao_Options); }
if (DeletedAO->ao_iflist) { CTEFreeMem(DeletedAO->ao_iflist); }
if (AddrSD != NULL) { KeWaitForSingleObject(&AddrSDMutex, Executive, KernelMode, FALSE, NULL); ObDereferenceSecurityDescriptor(AddrSD, 1); KeReleaseMutex(&AddrSDMutex, FALSE); } CTEFreeMem(DeletedAO);
// Now go down the TCB list, and destroy any we need to.
CurrentTCB = TCBHead; while (CurrentTCB != NULL) { TCB *NextTCB; CTEGetLock(&CurrentTCB->tcb_lock, &TCBHandle); CurrentTCB->tcb_flags |= NEED_RST; // Make sure we send a RST.
NextTCB = CurrentTCB->tcb_aonext; TryToCloseTCB(CurrentTCB, TCB_CLOSE_ABORTED, TCBHandle); CTEGetLock(&CurrentTCB->tcb_lock, &TCBHandle); DerefTCB(CurrentTCB, TCBHandle); CurrentTCB = NextTCB; }
}
//* GetAORequest - Get an AO request structure.
//
// A routine to allocate a request structure from our free list.
//
// Input: Nothing.
//
// Returns: Pointer to request structure, or NULL if we couldn't get one.
//
AORequest * GetAORequest(uint Type) { AORequest *NewRequest; NewRequest = (AORequest *)CTEAllocMemN(sizeof(AORequest), 'R1CT');
if (NewRequest) { #if DBG
NewRequest->aor_sig = aor_signature; #endif
NewRequest->aor_type = Type; }
return NewRequest; }
//* FreeAORequest - Free an AO request structure.
//
// Called to free an AORequest structure. N.B. Delete requests are always
// allocated as part of the IRP and should never be freed.
//
// Input: Request - AORequest structure to be freed.
//
// Returns: Nothing.
//
void FreeAORequest(AORequest * Request) { CTEStructAssert(Request, aor); ASSERT(Request->aor_type != AOR_TYPE_DELETE); CTEFreeMem(Request); }
//* TDICloseAddress - Close an address.
//
// The user API to delete an address. Basically, we destroy the local address
// object if we can.
//
// This routine is interlocked with the AO busy bit - if the busy bit is set,
// we'll just flag the AO for later deletion.
//
// Input: Request - TDI_REQUEST structure for this request.
//
// Returns: Status of attempt to delete the address - either pending or
// success.
//
TDI_STATUS TdiCloseAddress(PTDI_REQUEST Request) { AddrObj *DeletingAO; CTELockHandle AOHandle; AddrObj *CurrentAO = NULL; uint i; CTELockHandle TableHandle;
PIO_STACK_LOCATION irpSp;
irpSp = IoGetCurrentIrpStackLocation((PIRP) Request->RequestContext);
DeletingAO = Request->Handle.AddressHandle;
CTEStructAssert(DeletingAO, ao);
if (DeletingAO->ao_rcvall == RCVALL_ON) { uint On = CLEAR_IF;
CTEGetLock(&AddrObjTableLock.Lock, &TableHandle); DeletingAO->ao_rcvall = RCVALL_OFF;
for (i = 0; i < AddrObjTableSize; i++) { CurrentAO = AddrObjTable[i]; while (CurrentAO != NULL) { CTEStructAssert(CurrentAO, ao); if (CurrentAO->ao_rcvall == RCVALL_ON && CurrentAO->ao_promis_ifindex == DeletingAO->ao_promis_ifindex) { // there is another AO on same interface with RCVALL option,
// break don't do anything
On = SET_IF; i = AddrObjTableSize; break; } if (CurrentAO->ao_rcvall_mcast == RCVALL_ON && CurrentAO->ao_promis_ifindex == DeletingAO->ao_promis_ifindex) { // there is another AO with MCAST option,
// continue to find any RCVALL AO
On = CLEAR_CARD; } CurrentAO = CurrentAO->ao_next; } } CTEFreeLock(&AddrObjTableLock.Lock, TableHandle);
if (On != SET_IF) { // DeletingAO was the last object in all promiscuous mode
(*LocalNetInfo.ipi_setndisrequest)(DeletingAO->ao_addr, NDIS_PACKET_TYPE_PROMISCUOUS, On, DeletingAO->ao_bindindex); } } if (DeletingAO->ao_rcvall_mcast == RCVALL_ON) { uint On = CLEAR_IF;
CTEGetLock(&AddrObjTableLock.Lock, &TableHandle); DeletingAO->ao_rcvall_mcast = RCVALL_OFF;
for (i = 0; i < AddrObjTableSize; i++) { CurrentAO = AddrObjTable[i]; while (CurrentAO != NULL) { if (CurrentAO->ao_rcvall_mcast == RCVALL_ON && CurrentAO->ao_promis_ifindex == DeletingAO->ao_promis_ifindex) { // there is another AO with MCAST option,
// break don't do anything
On = SET_IF; i = AddrObjTableSize; break; } if (CurrentAO->ao_rcvall == RCVALL_ON && CurrentAO->ao_promis_ifindex == DeletingAO->ao_promis_ifindex) { // there is another AO with RCVALL option,
// continue to find any MCAST AO
On = CLEAR_CARD; } CurrentAO = CurrentAO->ao_next; } } CTEFreeLock(&AddrObjTableLock.Lock, TableHandle);
if (On != SET_IF) { // DeletingAO was the last object in all mcast mode
(*LocalNetInfo.ipi_setndisrequest)(DeletingAO->ao_addr, NDIS_PACKET_TYPE_ALL_MULTICAST, On, DeletingAO->ao_bindindex); } } if (DeletingAO->ao_absorb_rtralert) {
CTEGetLock(&AddrObjTableLock.Lock, &TableHandle); DeletingAO->ao_absorb_rtralert = 0;
for (i = 0; i < AddrObjTableSize; i++) { CurrentAO = AddrObjTable[i]; while (CurrentAO != NULL) { if (CurrentAO->ao_absorb_rtralert && (IP_ADDR_EQUAL(CurrentAO->ao_addr, DeletingAO->ao_addr) || CurrentAO->ao_bindindex == DeletingAO->ao_bindindex)) { break; } CurrentAO = CurrentAO->ao_next; } } CTEFreeLock(&AddrObjTableLock.Lock, TableHandle);
if (CurrentAO == NULL) { // this was the last socket like this on this interface
(*LocalNetInfo.ipi_absorbrtralert)(DeletingAO->ao_addr, 0, DeletingAO->ao_bindindex); } }
CTEGetLock(&DeletingAO->ao_lock, &AOHandle);
if (!AO_BUSY(DeletingAO) && !(DeletingAO->ao_usecnt)) { SET_AO_BUSY(DeletingAO); SET_AO_INVALID(DeletingAO); // This address object is
// deleting.
CTEFreeLock(&DeletingAO->ao_lock, AOHandle); DeleteAO(DeletingAO); return TDI_SUCCESS; } else {
AORequest *OldRequest; struct AODeleteRequest *DeleteRequest; CTEReqCmpltRtn CmpltRtn; PVOID ReqContext; TDI_STATUS Status;
// Check and see if we already have a delete in progress. If we don't
// allocate and link up a delete request structure.
if (!AO_REQUEST(DeletingAO, AO_DELETE)) {
OldRequest = DeletingAO->ao_request;
DeleteRequest = (struct AODeleteRequest*)&((PIRP)Request-> RequestContext)->Tail.Overlay.DriverContext[0]; #if DBG
DeleteRequest->aor_sig = aor_signature; #endif
DeleteRequest->aor_type = AOR_TYPE_DELETE; DeleteRequest->aor_rtn = Request->RequestNotifyObject; DeleteRequest->aor_context = Request->RequestContext;
// Clear the option requests, if there are any.
CLEAR_AO_REQUEST(DeletingAO, AO_OPTIONS);
// This address object is being deleted.
SET_AO_REQUEST(DeletingAO, AO_DELETE); SET_AO_INVALID(DeletingAO);
DeletingAO->ao_request = (AORequest*)DeleteRequest; CTEFreeLock(&DeletingAO->ao_lock, AOHandle);
while (OldRequest != NULL) { AORequest *Temp;
CmpltRtn = OldRequest->aor_rtn; ReqContext = OldRequest->aor_context;
//
// Invoke the completion routine, if one exists
// (eg. AOR_TYPE_REVALIDATE_MCAST won't have any).
//
if (CmpltRtn) { (*CmpltRtn) (ReqContext, (uint) TDI_ADDR_DELETED, 0); } Temp = OldRequest; OldRequest = OldRequest->aor_next; FreeAORequest(Temp); }
return TDI_PENDING;
} else // Delete already in progress.
Status = TDI_ADDR_INVALID;
CTEFreeLock(&DeletingAO->ao_lock, AOHandle); return Status; }
}
//* FindAOMCastAddr - Find a multicast address on an AddrObj.
//
// A utility routine to find a multicast address on an AddrObj. We also return
// a pointer to it's predecessor, for use in deleting.
//
// Input: AO - AddrObj to search.
// Addr - MCast address to search for.
// IF - IPAddress of interface
// PrevAMA - Pointer to where to return predecessor.
//
// Returns: Pointer to matching AMA structure, or NULL if there is none.
//
AOMCastAddr * FindAOMCastAddr(AddrObj * AO, IPAddr Addr, IPAddr IF, AOMCastAddr ** PrevAMA) { AOMCastAddr *FoundAMA, *Temp;
Temp = STRUCT_OF(AOMCastAddr, &AO->ao_mcastlist, ama_next); FoundAMA = AO->ao_mcastlist;
while (FoundAMA != NULL) { if (IP_ADDR_EQUAL(Addr, FoundAMA->ama_addr) && IP_ADDR_EQUAL(IF, FoundAMA->ama_if)) break; Temp = FoundAMA; FoundAMA = FoundAMA->ama_next; }
*PrevAMA = Temp; return FoundAMA; }
//* FindAOMCastSrcAddr - find a source entry for a given source address
// off a given group entry
//
// Returns: pointer to source entry found, or NULL if not found.
//
AOMCastSrcAddr * FindAOMCastSrcAddr(AOMCastAddr *AMA, IPAddr Addr, AOMCastSrcAddr **PrevASA) { AOMCastSrcAddr *FoundASA, *Temp;
Temp = STRUCT_OF(AOMCastSrcAddr, &AMA->ama_srclist, asa_next); FoundASA = AMA->ama_srclist;
while (FoundASA != NULL) { if (IP_ADDR_EQUAL(Addr, FoundASA->asa_addr)) break; Temp = FoundASA; FoundASA = FoundASA->asa_next; }
*PrevASA = Temp; return FoundASA; }
//* MCastAddrOnAO - Test to see if a multicast address on an AddrObj.
//
// A utility routine to test to see if a multicast address is on an AddrObj.
//
// Input: AO - AddrObj to search.
// Dest - MCast address to search for.
// Src - Source address to search for.
// IfIndex - Interface index of the interface which the packet arrived.
// LocalAddr - Local Address of interface on which the packet arrived.
//
// Returns: TRUE is Addr is on AO.
//
uint MCastAddrOnAO(AddrObj * AO, IPAddr Dest, IPAddr Src, uint IfIndex, IPAddr LocalAddr) { AOMCastAddr *AMA; AOMCastSrcAddr *ASA;
// Find AOMCastAddr entry for the group on the socket
for (AMA=AO->ao_mcastlist; AMA; AMA=AMA->ama_next) { if (IP_ADDR_EQUAL(Dest, AMA->ama_addr)) { //
// if this multicast is joined on a specific interface,
// we need to compare the interface index as well.
//
if (AMA->ama_if && !IP_ADDR_EQUAL(AMA->ama_if, LocalAddr) && IfIndex != net_long(AMA->ama_if)) { continue; } // Find AOMCastSrcAddr entry for the source
for (ASA=AMA->ama_srclist; ASA; ASA=ASA->asa_next) { if (IP_ADDR_EQUAL(Src, ASA->asa_addr)) { break; } } //
// Deliver if inclusion mode and found,
// or if exclusion mode and not found.
//
if ((AMA->ama_inclusion==TRUE) ^ (ASA==NULL)) { return TRUE; } else { continue; } } } //
// We did not find the matching mcast group, return false.
//
return FALSE; }
//** AddGroup - Add a group entry (AOMCastAddr) to an address-object's list.
//
// Input: OptionAO - address object to add group on
// GroupAddr - IP address of group to add
// InterfaceAddr - IP address of interface
//
// Output: pAMA - group entry added
//
// Returns: TDI status code
TDI_STATUS AddGroup(AddrObj * OptionAO, ulong GroupAddr, ulong InterfaceAddr, IPAddr IfAddrUsed, AOMCastAddr ** pAMA) { AOMCastAddr *AMA;
*pAMA = AMA = CTEAllocMemN(sizeof(AOMCastAddr), 'aPCT');
if (AMA == NULL) { // Couldn't get the resource we need.
return TDI_NO_RESOURCES; } RtlZeroMemory(AMA, sizeof(AOMCastAddr));
AMA->ama_next = OptionAO->ao_mcastlist; OptionAO->ao_mcastlist = AMA;
AMA->ama_addr = GroupAddr; AMA->ama_if = InterfaceAddr; AMA->ama_if_used = IfAddrUsed; AMA->ama_flags = AMA_VALID_FLAG;
return TDI_SUCCESS; }
//** RemoveGroup - Remove a group entry (AOMCastAddr) from an address-object
//
// Input: PrevAMA - previous AOMCastAddr entry
// pAMA - group entry to remove
//
// Output: pAMA - zeroed since group entry will be freed
void RemoveGroup(AOMCastAddr * PrevAMA, AOMCastAddr ** pAMA) { AOMCastAddr *AMA = *pAMA; if (AMA) { PrevAMA->ama_next = AMA->ama_next; CTEFreeMem(AMA); *pAMA = NULL; } }
//** AddAOMSource - Add a source entry (AOMCastSrcAddr) to a group entry
//
// Input: AMA - group entry to add source to
// SourceAddr - source IP address to add
//
TDI_STATUS AddAOMSource(AOMCastAddr * AMA, ulong SourceAddr) { AOMCastSrcAddr *ASA;
ASA = CTEAllocMemN(sizeof(AOMCastSrcAddr), 'smCT');
if (ASA == NULL) { // Couldn't get the resource we need.
return TDI_NO_RESOURCES; }
// Insert in source list
ASA->asa_next = AMA->ama_srclist; AMA->ama_srclist = ASA; AMA->ama_srccount++;
ASA->asa_addr = SourceAddr;
return TDI_SUCCESS; }
//** RemoveAOMSource - Remove a source entry (AOMCastSrcAddr) from a group entry
//
// Input: PrevAMA - previous AOMCastAddr in case we need to free group
// pAMA - group entry to remove the source from
// PrevASA - previous AOMCastSrcAddr
// pASA - source entry to remove
//
// Output: pASA - zeroed since source entry will be freed
// pAMA - zeroed if group entry is also freed
void RemoveAOMSource(AOMCastAddr * PrevAMA, AOMCastAddr ** pAMA, AOMCastSrcAddr * PrevASA, AOMCastSrcAddr ** pASA) { AOMCastSrcAddr *ASA = *pASA; AOMCastAddr *AMA = *pAMA;
if (!AMA) return;
if (ASA) { PrevASA->asa_next = ASA->asa_next; AMA->ama_srccount--;
CTEFreeMem(ASA); *pASA = NULL; }
// See if we need to remove the group entry too
if ((AMA->ama_srclist == NULL) && (AMA->ama_inclusion == TRUE)) RemoveGroup(PrevAMA, pAMA); }
//** LeaveGroup - Remove a group entry (AOMCastAddr) from an address object
//
// Input: OptionAO - address object on which to leave group
// pHandle - handle to lock held
// PrevAMA - previous AOMCastAddr in case we need to delete current one
// pAMA - group entry to leave
//
// Output: pAMA - zeroed if AOMCastAddr is freed
//
TDI_STATUS LeaveGroup(AddrObj * OptionAO, CTELockHandle * pHandle, AOMCastAddr * PrevAMA, AOMCastAddr ** pAMA) { uint FilterMode, NumSources; IPAddr *SourceList = NULL; IPAddr gaddr, ifaddr; IP_STATUS IPStatus = IP_SUCCESS; // Status of IP option set request.
TDI_STATUS TdiStatus; BOOLEAN InformIP;
// This is a delete request. Fail it if it's not there.
if (*pAMA == NULL) { return TDI_ADDR_INVALID; }
// Cache values we'll need after we delete the AMA entry
gaddr = (*pAMA)->ama_addr; ifaddr = (*pAMA)->ama_if_used; InformIP = AMA_VALID(*pAMA);
// Delete the AOMCastAddr entry (and any entries in the source list)
TdiStatus = GetSourceArray(*pAMA, &FilterMode, &NumSources, &SourceList, TRUE); if (TdiStatus != TDI_SUCCESS) return TdiStatus; RemoveGroup(PrevAMA, pAMA);
// Inform IP
if (InformIP) { CTEFreeLock(&OptionAO->ao_lock, *pHandle); if (FilterMode == MCAST_INCLUDE) { IPStatus = (*LocalNetInfo.ipi_setmcastinclude) ( gaddr, ifaddr, 0, NULL, NumSources, SourceList); } else { IPStatus = (*LocalNetInfo.ipi_setmcastaddr) (gaddr, ifaddr, FALSE, NumSources, SourceList, 0, NULL); } CTEGetLock(&OptionAO->ao_lock, pHandle); }
if (SourceList) { CTEFreeMem(SourceList); SourceList = NULL; }
switch(IPStatus) { case IP_SUCCESS : return TDI_SUCCESS; case IP_NO_RESOURCES: return TDI_NO_RESOURCES; default : return TDI_ADDR_INVALID; } }
//* GetAOOptions - Retrieve information about an address object
//
// The get options worker routine, called when we've validated the buffer
// and know that the AddrObj isn't busy.
//
// Input: OptionAO - AddrObj for which options are being retrieved.
// ID - ID of information to get.
// Context - Arguments to ID.
// Length - Length of buffer available.
//
// Output: Buffer - Buffer of options to fill in.
// InfoSize - Number of bytes returned.
//
// Returns: TDI_STATUS of attempt.
//
TDI_STATUS GetAOOptions(AddrObj * OptionAO, uint ID, uint Length, PNDIS_BUFFER Buffer, uint * InfoSize, void * Context) { CTELockHandle Handle; TDI_STATUS Status; AOMCastAddr *AMA, *PrevAMA; AOMCastSrcAddr *ASA; uchar *TmpBuff = NULL; uint Offset, BytesCopied;
ASSERT(AO_BUSY(OptionAO));
// First, see if there are IP options.
// These are UDP/TCP options.
Status = TDI_SUCCESS; CTEGetLock(&OptionAO->ao_lock, &Handle);
switch (ID) {
case AO_OPTION_MCAST_FILTER: { UDPMCastFilter *In = (UDPMCastFilter *) Context; UDPMCastFilter *Out; uint NumSrc; uint NumAddSources, i;
if (Length < UDPMCAST_FILTER_SIZE(0)) { DEBUGMSG(DBG_WARN && DBG_IGMP, (DTEXT("Get AO OPT: Buffer too small, need %d\n"), UDPMCAST_FILTER_SIZE(0)));
Status = TDI_BUFFER_TOO_SMALL; break; }
AMA = FindAOMCastAddr(OptionAO, In->umf_addr, In->umf_if, &PrevAMA);
NumSrc = (AMA)? AMA->ama_srccount : 0; TmpBuff = CTEAllocMemN(UDPMCAST_FILTER_SIZE(NumSrc), 'bmCT'); if (!TmpBuff) { Status = TDI_NO_RESOURCES; break; } Out = (UDPMCastFilter *) TmpBuff; Out->umf_addr = In->umf_addr; Out->umf_if = In->umf_if;
if (!AMA) { DEBUGMSG(DBG_TRACE && DBG_IGMP, (DTEXT("Get AO OPT: No AMA found for addr %x if %x\n"), In->umf_addr, In->umf_if));
Out->umf_fmode = MCAST_INCLUDE; Out->umf_numsrc = 0;
*InfoSize = UDPMCAST_FILTER_SIZE(0);
// Copy to NDIS buffer
Offset = 0; (void)CopyFlatToNdis(Buffer, TmpBuff, *InfoSize, &Offset, &BytesCopied); Status = TDI_SUCCESS; break; }
Out->umf_fmode = (AMA->ama_inclusion)? MCAST_INCLUDE : MCAST_EXCLUDE; Out->umf_numsrc = AMA->ama_srccount;
DEBUGMSG(DBG_TRACE && DBG_IGMP, (DTEXT("Get AO OPT: Found fmode=%d numsrc=%d\n"), Out->umf_fmode, Out->umf_numsrc));
NumAddSources = ((Length - sizeof(UDPMCastFilter)) / sizeof(ulong)) + 1; if (NumAddSources > AMA->ama_srccount) { NumAddSources = AMA->ama_srccount; } *InfoSize = UDPMCAST_FILTER_SIZE(NumAddSources);
DEBUGMSG(DBG_TRACE && DBG_IGMP, (DTEXT("Get AO OPT: Mcast Filter ID=%x G=%x IF=%x srccount=%d srcfits=%d\n"), ID, Out->umf_addr, Out->umf_if, AMA->ama_srccount, NumAddSources));
for (i=0,ASA=AMA->ama_srclist; i<NumAddSources; i++,ASA=ASA->asa_next) { Out->umf_srclist[i] = ASA->asa_addr; }
// Copy to NDIS buffer
Offset = 0; (void)CopyFlatToNdis(Buffer, TmpBuff, *InfoSize, &Offset, &BytesCopied); Status = TDI_SUCCESS; } break;
default: Status = TDI_BAD_OPTION; break; }
CTEFreeLock(&OptionAO->ao_lock, Handle);
if (TmpBuff) { CTEFreeMem(TmpBuff); }
return Status; }
//** DeleteSources - Delete all sources from an AMA which appear in a given
// array
//
// Assumes caller holds lock
//
// Input: PrevAMA - pointer to previous AOMCastAddr in case we need to
// delete the current one
// pAMA - pointer to the current AOMCastAddr
// NumSources - number of sources to delete
// sourcelist - array of IP addresses of sources to delete
//
// Output: pAMA - zeroed if current AMA is freed
//
VOID DeleteSources(AOMCastAddr *PrevAMA, AOMCastAddr **pAMA, uint NumSources, IPAddr *SourceList) { AOMCastSrcAddr *ASA, *PrevASA, *NextASA; uint i;
if (!*pAMA) return;
PrevASA = STRUCT_OF(AOMCastSrcAddr, &(*pAMA)->ama_srclist, asa_next); for (ASA=(*pAMA)->ama_srclist; ASA; ASA=NextASA) { NextASA = ASA->asa_next;
// See if address is in source list
for (i=0; i<NumSources; i++) { if (IP_ADDR_EQUAL(SourceList[i], ASA->asa_addr)) break; }
if (i == NumSources) { PrevASA = ASA; continue; }
RemoveAOMSource(PrevAMA, pAMA, PrevASA, &ASA); } }
//* SetMulticastFilter - replace the source filter for a group
//
// Input: OptionAO - AddrObj for which options are being set.
// Length - Length of information.
// Req - Buffer of information.
// pHandle - Handle of lock held.
//
// Returns: TDI_STATUS of attempt.
//
TDI_STATUS SetMulticastFilter(AddrObj * OptionAO, uint Length, UDPMCastFilter * Req, CTELockHandle * pHandle) { uint FilterMode, NumDelSources, NumAddSources, i; IPAddr ifaddr; IPAddr *DelSourceList, *AddSourceList = NULL; AOMCastSrcAddr *NextASA, *PrevASA, *ASA; AOMCastAddr *AMA, *PrevAMA; TDI_STATUS TdiStatus = TDI_SUCCESS; IP_STATUS IPStatus;
ASSERT(AO_BUSY(OptionAO));
// Make sure we even have the umf_numsrc field at all
if (Length < UDPMCAST_FILTER_SIZE(0)) return TDI_BAD_OPTION;
// Make sure the length is long enough to fit the number of sources given
if (Length < UDPMCAST_FILTER_SIZE(Req->umf_numsrc)) return TDI_BAD_OPTION;
AMA = FindAOMCastAddr(OptionAO, Req->umf_addr, Req->umf_if, &PrevAMA);
DEBUGMSG(DBG_TRACE && DBG_IGMP, (DTEXT("Set AO OPT: Mcast Filter G=%x IF=%x AMA=%x fmode=%d numsrc=%d\n"), Req->umf_addr, Req->umf_if, AMA, Req->umf_fmode, Req->umf_numsrc));
for (; ;) {
if (Req->umf_fmode == MCAST_EXCLUDE) { //
// Set filter mode to exclusion with source list
//
// If no AOMCastAddr entry for the socket exists,
// create one in inclusion mode
if (AMA == NULL) { ifaddr = (Req->umf_if)? Req->umf_if : (*LocalNetInfo.ipi_getmcastifaddr)(); if (!ifaddr) { TdiStatus = TDI_ADDR_INVALID; break; }
TdiStatus = AddGroup(OptionAO, Req->umf_addr, Req->umf_if, ifaddr, &AMA); if (TdiStatus != TDI_SUCCESS) break; AMA->ama_inclusion = TRUE; }
// If AOMCastAddr entry exists in inclusion mode...
if (AMA->ama_inclusion == TRUE) { AOMCastAddr NewAMA;
//
// Create a new version of the AMA without changing
// the old one.
//
NewAMA = *AMA; // struct copy
NewAMA.ama_inclusion = FALSE; NewAMA.ama_srccount = 0; NewAMA.ama_srclist = NULL;
// Add sources to new exclusion list
for (i=0; i<Req->umf_numsrc; i++) { TdiStatus = AddAOMSource(&NewAMA, Req->umf_srclist[i]); if (TdiStatus != TDI_SUCCESS) { FreeAllSources(&NewAMA); break; } } if (TdiStatus != TDI_SUCCESS) { break; }
// Compose an array of sources to delete and
// set mode to exclusion.
TdiStatus = GetSourceArray(AMA, &FilterMode, &NumDelSources, &DelSourceList, TRUE); if (TdiStatus != TDI_SUCCESS) { FreeAllSources(&NewAMA); break; } *AMA = NewAMA; // struct copy
// Call [MOD_GRP(g,+,{xaddlist},{idellist}]
NumAddSources = Req->umf_numsrc; AddSourceList = Req->umf_srclist;
DEBUGMSG(DBG_TRACE && DBG_IGMP, (DTEXT("MOD_GRP: G=%x + delnum=%d addnum=%d\n"), AMA->ama_addr, NumDelSources, NumAddSources));
if (AMA_VALID(AMA)) { CTEFreeLock(&OptionAO->ao_lock, *pHandle); IPStatus = (*LocalNetInfo.ipi_setmcastaddr) ( AMA->ama_addr, AMA->ama_if_used, TRUE, // add
NumAddSources, AddSourceList, NumDelSources, DelSourceList); CTEGetLock(&OptionAO->ao_lock, pHandle); } else { IPStatus = IP_SUCCESS; }
TdiStatus = TDI_SUCCESS; if (IPStatus != IP_SUCCESS) { // Some problem, we need to update the one we just
// tried to change.
AMA = FindAOMCastAddr(OptionAO, Req->umf_addr, Req->umf_if, &PrevAMA); ASSERT(AMA);
// Change state to EXCLUDE(null) and try again.
// This should always succeed.
DeleteSources(PrevAMA, &AMA, NumAddSources, AddSourceList);
if (AMA_VALID(AMA)) { CTEFreeLock(&OptionAO->ao_lock, *pHandle); (*LocalNetInfo.ipi_setmcastaddr) ( AMA->ama_addr, AMA->ama_if_used, TRUE, // add
0, NULL, NumDelSources, DelSourceList); CTEGetLock(&OptionAO->ao_lock, pHandle); }
TdiStatus = (IPStatus == IP_NO_RESOURCES) ? TDI_NO_RESOURCES : TDI_ADDR_INVALID; }
if (DelSourceList) { CTEFreeMem(DelSourceList); DelSourceList = NULL; }
break; }
// Okay, we're just modifying the exclusion list
for (; ;) { // Get a big enough buffer for the DelSourceList
DelSourceList = NULL; if (AMA->ama_srccount > 0) { DelSourceList = CTEAllocMemN((AMA->ama_srccount) * sizeof(IPAddr), 'amCT'); if (DelSourceList == NULL) { TdiStatus = TDI_NO_RESOURCES; break; } } NumDelSources = 0;
// Make a copy of the new list which we can modify
AddSourceList = NULL; NumAddSources = Req->umf_numsrc; if (NumAddSources > 0) { AddSourceList = CTEAllocMemN(NumAddSources * sizeof(IPAddr), 'amCT'); if (AddSourceList == NULL) { TdiStatus = TDI_NO_RESOURCES; break; } CTEMemCopy(AddSourceList, Req->umf_srclist, NumAddSources * sizeof(IPAddr)); }
// For each existing AOMCastSrcAddr entry:
PrevASA = STRUCT_OF(AOMCastSrcAddr, &AMA->ama_srclist,asa_next); for (ASA=AMA->ama_srclist; ASA; ASA=NextASA) { NextASA = ASA->asa_next;
// See if entry is in new list
for (i=0; i<NumAddSources; i++) { if (IP_ADDR_EQUAL(AddSourceList[i], ASA->asa_addr)) break; }
// If entry IS in new list,
if (i<NumAddSources) { // Remove from new list
AddSourceList[i] = AddSourceList[--NumAddSources]; PrevASA = ASA; } else { // Put source in DelSourceList
DelSourceList[NumDelSources++] = ASA->asa_addr;
// Delete source
RemoveAOMSource(PrevAMA, &AMA, PrevASA, &ASA); } }
TdiStatus = TDI_SUCCESS;
// Add each entry left in new list
for (i=0; i<NumAddSources; i++) { TdiStatus = AddAOMSource(AMA, AddSourceList[i]); if (TdiStatus != TDI_SUCCESS) { // Truncate add list
NumAddSources = i; break; } }
// Don't do anything unless the filter has actually changed
if ((NumAddSources > 0) || (NumDelSources > 0)) { // Call [MOD_EXCL(g,{addlist},{dellist})]
DEBUGMSG(DBG_TRACE && DBG_IGMP, (DTEXT("MOD_EXCL: G=%x addnum=%d delnum=%d\n"), AMA->ama_addr, NumAddSources, NumDelSources));
if (AMA_VALID(AMA)) { CTEFreeLock(&OptionAO->ao_lock, *pHandle); IPStatus=(*LocalNetInfo.ipi_setmcastexclude)(Req->umf_addr, AMA->ama_if_used, NumAddSources, AddSourceList, NumDelSources, DelSourceList); CTEGetLock(&OptionAO->ao_lock, pHandle); } else { IPStatus = IP_SUCCESS; }
if (IPStatus != IP_SUCCESS) { // Some problem, we need to fix the one we just updated.
AMA = FindAOMCastAddr(OptionAO, Req->umf_addr, Req->umf_if, &PrevAMA); ASSERT(AMA);
// Delete sources added and try again. Should always
// succeed.
DeleteSources(PrevAMA, &AMA, NumAddSources, AddSourceList);
if (AMA_VALID(AMA)) { CTEFreeLock(&OptionAO->ao_lock, *pHandle); (*LocalNetInfo.ipi_setmcastexclude)(Req->umf_addr, AMA->ama_if_used, 0, NULL, NumDelSources, DelSourceList); CTEGetLock(&OptionAO->ao_lock, pHandle); }
if (TdiStatus == TDI_SUCCESS) { TdiStatus = (IPStatus == IP_NO_RESOURCES) ? TDI_NO_RESOURCES : TDI_ADDR_INVALID; } } } break; }
if (DelSourceList) { CTEFreeMem(DelSourceList); DelSourceList = NULL; }
if (AddSourceList) { CTEFreeMem(AddSourceList); AddSourceList = NULL; }
} else if (Req->umf_fmode == MCAST_INCLUDE) { //
// Set filter mode to inclusion with source list
//
// If source list is empty,
if (!Req->umf_numsrc) {
// If no AOMCastAddr entry exists, just return success.
// Nothing to do.
if (AMA == NULL) { TdiStatus = TDI_SUCCESS; break; }
// Delete group and stop
TdiStatus = LeaveGroup(OptionAO, pHandle, PrevAMA, &AMA); break; }
// If AOMCastAddr entry exists in exclusion mode,
if ((AMA != NULL) && (AMA->ama_inclusion == FALSE)) { // Delete all sources and set mode to inclusion
TdiStatus = GetSourceArray(AMA, &FilterMode, &NumDelSources, &DelSourceList, TRUE); if (TdiStatus != TDI_SUCCESS) break;
AMA->ama_inclusion = TRUE;
// Add sources to exclusion list
for (i=0; i<Req->umf_numsrc; i++) { TdiStatus = AddAOMSource(AMA, Req->umf_srclist[i]); }
// Call [MOD_GRP(g,-,{xdellist},{iaddlist}]
NumAddSources = Req->umf_numsrc; AddSourceList = Req->umf_srclist;
if (AMA_VALID(AMA)) { CTEFreeLock(&OptionAO->ao_lock, *pHandle); IPStatus = (*LocalNetInfo.ipi_setmcastaddr) ( AMA->ama_addr, AMA->ama_if_used, FALSE, // delete
NumDelSources, DelSourceList, NumAddSources, AddSourceList); CTEGetLock(&OptionAO->ao_lock, pHandle); } else { IPStatus = IP_SUCCESS; }
TdiStatus = TDI_SUCCESS; if (IPStatus != IP_SUCCESS) { // Some problem, we need to update the one we just
// tried to change.
AMA = FindAOMCastAddr(OptionAO, Req->umf_addr, Req->umf_if, &PrevAMA); ASSERT(AMA);
// Change state to INCLUDE(null) and try again.
// This should always succeed.
DeleteSources(PrevAMA, &AMA, NumAddSources, AddSourceList);
if (AMA_VALID(AMA)) { CTEFreeLock(&OptionAO->ao_lock, *pHandle); (*LocalNetInfo.ipi_setmcastaddr) ( AMA->ama_addr, AMA->ama_if_used, FALSE, // delete
NumDelSources, DelSourceList, 0, NULL); CTEGetLock(&OptionAO->ao_lock, pHandle); }
TdiStatus = (IPStatus == IP_NO_RESOURCES) ? TDI_NO_RESOURCES : TDI_ADDR_INVALID; }
if (DelSourceList) { CTEFreeMem(DelSourceList); DelSourceList = NULL; }
break; }
// If no AOMCastAddr entry for the socket exists,
// create one in inclusion mode
if (AMA == NULL) { ifaddr = (Req->umf_if)? Req->umf_if : (*LocalNetInfo.ipi_getmcastifaddr)(); if (!ifaddr) { TdiStatus = TDI_ADDR_INVALID; break; }
TdiStatus = AddGroup(OptionAO, Req->umf_addr, Req->umf_if, ifaddr, &AMA); if (TdiStatus != TDI_SUCCESS) break; AMA->ama_inclusion = TRUE; }
// Modify the source inclusion list
for (; ;) { // Get a big enough buffer for the DelSourceList
DelSourceList = NULL; if (AMA->ama_srccount > 0) { DelSourceList = CTEAllocMemN((AMA->ama_srccount) * sizeof(IPAddr), 'amCT'); if (DelSourceList == NULL) { TdiStatus = TDI_NO_RESOURCES; break; } } NumDelSources = 0;
// Make a copy of the new list which we can modify
AddSourceList = NULL; NumAddSources = Req->umf_numsrc; if (NumAddSources > 0) { AddSourceList = CTEAllocMemN(NumAddSources * sizeof(IPAddr), 'amCT'); if (AddSourceList == NULL) { TdiStatus = TDI_NO_RESOURCES; break; } CTEMemCopy(AddSourceList, Req->umf_srclist, NumAddSources * sizeof(IPAddr)); }
// For each existing AOMCastSrcAddr entry:
PrevASA = STRUCT_OF(AOMCastSrcAddr, &AMA->ama_srclist,asa_next);
for (ASA=AMA->ama_srclist; ASA; ASA=NextASA) { NextASA = ASA->asa_next;
// See if entry is in new list
for (i=0; i<NumAddSources; i++) { if (IP_ADDR_EQUAL(AddSourceList[i], ASA->asa_addr)) break; }
// If entry IS in new list,
if (i<NumAddSources) { // Remove from new list
AddSourceList[i] = AddSourceList[--NumAddSources]; PrevASA = ASA; } else { // Put source in DelSourceList
DelSourceList[NumDelSources++] = ASA->asa_addr;
// Delete source
RemoveAOMSource(PrevAMA, &AMA, PrevASA, &ASA); } }
// If AOMCastAddr entry went away (changing to a disjoint
// source list), recreate it
if (AMA == NULL) { ifaddr = (Req->umf_if)? Req->umf_if : (*LocalNetInfo.ipi_getmcastifaddr)(); if (!ifaddr) { TdiStatus = TDI_ADDR_INVALID; break; }
TdiStatus = AddGroup(OptionAO, Req->umf_addr, Req->umf_if, ifaddr, &AMA); if (TdiStatus != TDI_SUCCESS) break; AMA->ama_inclusion = TRUE; }
TdiStatus = TDI_SUCCESS;
// Add each entry left in new list
for (i=0; i<NumAddSources; i++) { TdiStatus = AddAOMSource(AMA, AddSourceList[i]); if (TdiStatus != TDI_SUCCESS) { // Truncate add list
NumAddSources = i; break; } }
// Don't do anything unless the filter has actually changed
if ((NumAddSources > 0) || (NumDelSources > 0)) { ifaddr = AMA->ama_if_used;
// Call [MOD_INCL(g,{addlist},{dellist})]
if (AMA_VALID(AMA)) { CTEFreeLock(&OptionAO->ao_lock, *pHandle); IPStatus=(*LocalNetInfo.ipi_setmcastinclude)(Req->umf_addr, ifaddr, NumAddSources, AddSourceList, NumDelSources, DelSourceList); CTEGetLock(&OptionAO->ao_lock, pHandle); } else { IPStatus = IP_SUCCESS; }
if (IPStatus != IP_SUCCESS) { BOOLEAN InformIP = AMA_VALID(AMA);
// Some problem, we need to update the one we just
// tried to change.
AMA = FindAOMCastAddr(OptionAO, Req->umf_addr, Req->umf_if, &PrevAMA); ASSERT(AMA);
ifaddr = AMA->ama_if_used;
// Change state and try again.
DeleteSources(PrevAMA, &AMA, NumAddSources, AddSourceList);
// This should always succeed.
if (InformIP) { CTEFreeLock(&OptionAO->ao_lock, *pHandle); (*LocalNetInfo.ipi_setmcastinclude)( Req->umf_addr, ifaddr, 0, NULL, NumDelSources, DelSourceList); CTEGetLock(&OptionAO->ao_lock, pHandle); }
if (TdiStatus == TDI_SUCCESS) { TdiStatus = (IPStatus == IP_NO_RESOURCES) ? TDI_NO_RESOURCES : TDI_ADDR_INVALID; } } } break; }
if (DelSourceList) { CTEFreeMem(DelSourceList); DelSourceList = NULL; }
if (AddSourceList) { CTEFreeMem(AddSourceList); AddSourceList = NULL; } } else TdiStatus = TDI_INVALID_PARAMETER;
break; }
return TdiStatus; }
//* IsBlockingAOOption - Determine if an AddrObj option requires blocking.
//
// Called to determine whether and AddrObj option can be processed completely
// at dispatch IRQL, or whether processing must be deferred.
//
// Input: ID - identifies the option.
// AOHandle - supplies the IRQL at which processing will occur.
//
// Returns: TRUE if blocking is required, FALSE otherwise.
//
BOOLEAN __inline IsBlockingAOOption(uint ID, CTELockHandle Handle) { return (Handle < DISPATCH_LEVEL || (ID != AO_OPTION_RCVALL && ID != AO_OPTION_RCVALL_MCAST && ID != AO_OPTION_ADD_MCAST && ID != AO_OPTION_DEL_MCAST && ID != AO_OPTION_INDEX_ADD_MCAST && ID != AO_OPTION_INDEX_DEL_MCAST && ID != AO_OPTION_RCVALL_IGMPMCAST)) ? FALSE : TRUE; }
//* SetAOOptions - Set AddrObj options.
//
// The set options worker routine, called when we've validated the buffer
// and know that the AddrObj isn't busy.
//
// Input: OptionAO - AddrObj for which options are being set.
// Options - AOOption buffer of options.
//
// Returns: TDI_STATUS of attempt.
//
TDI_STATUS SetAOOptions(AddrObj * OptionAO, uint ID, uint Length, uchar * Options) { IP_STATUS IPStatus; // Status of IP option set request.
CTELockHandle Handle; TDI_STATUS Status; AOMCastAddr *AMA, *PrevAMA; AOMCastSrcAddr *ASA, *PrevASA = NULL; IPAddr ifaddr = NULL_IP_ADDR;
ASSERT(AO_BUSY(OptionAO));
// First, see if there are IP options.
if (ID == AO_OPTION_IPOPTIONS) { IF_TCPDBG(TCP_DEBUG_OPTIONS) { TCPTRACE(("processing IP_IOTIONS on AO %lx\n", OptionAO)); } // These are IP options. Pass them down.
(*LocalNetInfo.ipi_freeopts) (&OptionAO->ao_opt);
IPStatus = (*LocalNetInfo.ipi_copyopts) (Options, Length, &OptionAO->ao_opt);
if (IPStatus == IP_SUCCESS) return TDI_SUCCESS; else if (IPStatus == IP_NO_RESOURCES) return TDI_NO_RESOURCES; else return TDI_BAD_OPTION; } // These are UDP/TCP options.
if (Length == 0) return TDI_BAD_OPTION;
if (ID == AO_OPTION_UNBIND) { CTEGetLock(&AddrObjTableLock.Lock, &Handle); RemoveAddrObj(OptionAO); CTEFreeLock(&AddrObjTableLock.Lock, Handle); return TDI_SUCCESS; }
Status = TDI_SUCCESS; CTEGetLock(&OptionAO->ao_lock, &Handle);
switch (ID) {
case AO_OPTION_XSUM: if (Options[0]) SET_AO_XSUM(OptionAO); else CLEAR_AO_XSUM(OptionAO); break;
case AO_OPTION_IP_DONTFRAGMENT: IF_TCPDBG(TCP_DEBUG_OPTIONS) { TCPTRACE(( "DF opt %u, initial flags %lx on AO %lx\n", (int)Options[0], OptionAO->ao_opt.ioi_flags, OptionAO )); }
if (Options[0]) OptionAO->ao_opt.ioi_flags |= IP_FLAG_DF; else OptionAO->ao_opt.ioi_flags &= ~IP_FLAG_DF;
IF_TCPDBG(TCP_DEBUG_OPTIONS) { TCPTRACE(( "New flags %lx on AO %lx\n", OptionAO->ao_opt.ioi_flags, OptionAO )); }
break;
case AO_OPTION_TTL: IF_TCPDBG(TCP_DEBUG_OPTIONS) { TCPTRACE(( "setting TTL to %d on AO %lx\n", Options[0], OptionAO )); } OptionAO->ao_opt.ioi_ttl = Options[0]; break;
case AO_OPTION_TOS: IF_TCPDBG(TCP_DEBUG_OPTIONS) { TCPTRACE(( "setting TOS to %d on AO %lx\n", Options[0], OptionAO )); }
//Validate TOS
if (!DisableUserTOSSetting) { OptionAO->ao_opt.ioi_tos = Options[0];
//This should work for multicast too.
OptionAO->ao_mcastopt.ioi_tos = Options[0]; } break;
case AO_OPTION_MCASTTTL: OptionAO->ao_mcastopt.ioi_ttl = Options[0]; break;
case AO_OPTION_MCASTLOOP: OptionAO->ao_mcast_loop = Options[0]; break;
case AO_OPTION_RCVALL: { uchar newvalue;
// set the interface to promiscuous mode
KdPrintEx((DPFLTR_TCPIP_ID, DPFLTR_INFO_LEVEL, "OptionAO %x Local Interface %x Option %d\n", OptionAO, OptionAO->ao_addr, Options[0])); KdPrintEx((DPFLTR_TCPIP_ID, DPFLTR_INFO_LEVEL, "Protocol %d port %d \n", OptionAO->ao_prot, OptionAO->ao_port));
// By default, treat non-zero values as RCVALL_ON
newvalue = Options[0]; if (newvalue && (newvalue != RCVALL_SOCKETLEVELONLY)) { newvalue = RCVALL_ON; }
// See if there's any change
if (newvalue == OptionAO->ao_rcvall) { break; }
if (!OptionAO->ao_promis_ifindex) { OptionAO->ao_promis_ifindex = OptionAO->ao_bindindex; }
CTEFreeLock(&OptionAO->ao_lock, Handle);
// Turn adapter pmode on if needed
if (newvalue == RCVALL_ON) { OptionAO->ao_promis_ifindex = (*LocalNetInfo.ipi_setndisrequest)( OptionAO->ao_addr, NDIS_PACKET_TYPE_PROMISCUOUS, SET_IF, OptionAO->ao_bindindex); } else if (!OptionAO->ao_promis_ifindex) { // Locate ifindex if needed
OptionAO->ao_promis_ifindex = (*LocalNetInfo.ipi_getifindexfromaddr)(OptionAO->ao_addr,IF_CHECK_NONE); }
if (!OptionAO->ao_promis_ifindex) { Status = TDI_INVALID_PARAMETER; CTEGetLock(&OptionAO->ao_lock, &Handle); break; }
// Turn adapter pmode off if needed
if (OptionAO->ao_rcvall == RCVALL_ON) { AddrObj *CurrentAO; uint i; uint On = CLEAR_IF;
CTEGetLock(&AddrObjTableLock.Lock, &Handle); OptionAO->ao_rcvall = newvalue;
for (i = 0; i < AddrObjTableSize; i++) { CurrentAO = AddrObjTable[i]; while (CurrentAO != NULL) { CTEStructAssert(CurrentAO, ao); if (CurrentAO->ao_rcvall == RCVALL_ON && CurrentAO->ao_promis_ifindex == OptionAO->ao_promis_ifindex) { // there is another AO on same interface
// with RCVALL option, break don't do anything
On = SET_IF; i = AddrObjTableSize; break; } if (CurrentAO->ao_rcvall_mcast == RCVALL_ON && CurrentAO->ao_promis_ifindex == OptionAO->ao_promis_ifindex) { // there is another AO with MCAST option,
// continue to find any RCVALL AO
On = CLEAR_CARD; } CurrentAO = CurrentAO->ao_next; } } CTEFreeLock(&AddrObjTableLock.Lock, Handle);
if (On != SET_IF) { // OptionAO was the last object in all promiscuous
// mode
(*LocalNetInfo.ipi_setndisrequest)( OptionAO->ao_addr, NDIS_PACKET_TYPE_PROMISCUOUS, On, OptionAO->ao_bindindex); } }
CTEGetLock(&OptionAO->ao_lock, &Handle);
// Set the value on the AO if not already done
if (OptionAO->ao_rcvall != newvalue) { OptionAO->ao_rcvall = newvalue; }
break; }
case AO_OPTION_RCVALL_MCAST: case AO_OPTION_RCVALL_IGMPMCAST: { uchar newvalue;
// set the interface to promiscuous mcast mode
KdPrintEx((DPFLTR_TCPIP_ID, DPFLTR_INFO_LEVEL, "Local Interface %x\n", OptionAO->ao_addr));
// By default, treat non-zero values as RCVALL_ON
newvalue = Options[0]; if (newvalue && (newvalue != RCVALL_SOCKETLEVELONLY)) { newvalue = RCVALL_ON; }
// See if there's any change
if (newvalue == OptionAO->ao_rcvall_mcast) { break; }
if (!OptionAO->ao_promis_ifindex) { OptionAO->ao_promis_ifindex = OptionAO->ao_bindindex; }
CTEFreeLock(&OptionAO->ao_lock, Handle);
// Turn adapter pmode on if needed
if (newvalue == RCVALL_ON) { OptionAO->ao_promis_ifindex = (*LocalNetInfo.ipi_setndisrequest)( OptionAO->ao_addr, NDIS_PACKET_TYPE_ALL_MULTICAST, SET_IF, OptionAO->ao_bindindex); } else if (!OptionAO->ao_promis_ifindex) { // Locate ifindex if needed
OptionAO->ao_promis_ifindex = (*LocalNetInfo.ipi_getifindexfromaddr)(OptionAO->ao_addr,IF_CHECK_NONE); }
if (!OptionAO->ao_promis_ifindex) { Status = TDI_INVALID_PARAMETER; CTEGetLock(&OptionAO->ao_lock, &Handle); break; }
// Turn adapter pmode off if needed
if (OptionAO->ao_rcvall_mcast == RCVALL_ON) { AddrObj *CurrentAO; uint i; uint On = CLEAR_IF;
CTEGetLock(&AddrObjTableLock.Lock, &Handle); OptionAO->ao_rcvall_mcast = newvalue;
for (i = 0; i < AddrObjTableSize; i++) { CurrentAO = AddrObjTable[i]; while (CurrentAO != NULL) { CTEStructAssert(CurrentAO, ao); if (CurrentAO->ao_rcvall_mcast == RCVALL_ON && CurrentAO->ao_promis_ifindex == OptionAO->ao_promis_ifindex) { // there is another AO on same interface
// with MCAST option, break don't do anything
On = SET_IF; i = AddrObjTableSize; break; } if (CurrentAO->ao_rcvall == RCVALL_ON && CurrentAO->ao_promis_ifindex == OptionAO->ao_promis_ifindex) { // there is another AO with RCVALL option,
// continue to find any MCAST AO
On = CLEAR_CARD; } CurrentAO = CurrentAO->ao_next; } } CTEFreeLock(&AddrObjTableLock.Lock, Handle);
if (On != SET_IF) { // OptionAO was the last object in all promiscuous
// mode
(*LocalNetInfo.ipi_setndisrequest)( OptionAO->ao_addr, NDIS_PACKET_TYPE_ALL_MULTICAST, On, OptionAO->ao_bindindex); } } CTEGetLock(&OptionAO->ao_lock, &Handle);
// Set the value on the AO if not already done
if (OptionAO->ao_rcvall_mcast != newvalue) { OptionAO->ao_rcvall_mcast = newvalue; }
break; }
case AO_OPTION_ABSORB_RTRALERT: {
// set the interface to absorb forwarded rtralert packet
// currently this won't work if socket is opened as IP_PROTO_IP
KdPrintEx((DPFLTR_TCPIP_ID, DPFLTR_INFO_LEVEL, "Local Interface addr %x index %x \n", OptionAO->ao_addr, OptionAO->ao_bindindex));
if (Options[0]) {
CTEFreeLock(&OptionAO->ao_lock, Handle); OptionAO->ao_promis_ifindex = (*LocalNetInfo.ipi_absorbrtralert)( OptionAO->ao_addr, OptionAO->ao_prot, OptionAO->ao_bindindex); if (OptionAO->ao_promis_ifindex) { Status = TDI_SUCCESS;
CTEGetLock(&AddrObjTableLock.Lock, &Handle); OptionAO->ao_absorb_rtralert = OptionAO->ao_prot; CTEFreeLock(&AddrObjTableLock.Lock, Handle); } CTEGetLock(&OptionAO->ao_lock, &Handle); } else { Status = TDI_INVALID_PARAMETER; } break; }
case AO_OPTION_MCASTIF: if (Length >= sizeof(UDPMCastIFReq)) { UDPMCastIFReq *Req; IPAddr Addr;
Req = (UDPMCastIFReq *) Options; Addr = Req->umi_addr; if (!IP_ADDR_EQUAL(Addr, NULL_IP_ADDR)) {
OptionAO->ao_mcastopt.ioi_mcastif = (*LocalNetInfo.ipi_getifindexfromaddr) (Addr,(IF_CHECK_MCAST | IF_CHECK_SEND)); if (0 == OptionAO->ao_mcastopt.ioi_mcastif) { Status = TDI_ADDR_INVALID; } } } else Status = TDI_BAD_OPTION; break;
case AO_OPTION_INDEX_ADD_MCAST: case AO_OPTION_INDEX_DEL_MCAST: if (Length < sizeof(UDPMCastReq)) { Status = TDI_BAD_OPTION; break; } else { UDPMCastReq *Req = (UDPMCastReq *) Options;
if (IP_ADDR_EQUAL( (*LocalNetInfo.ipi_isvalidindex)((uint) Req->umr_if), NULL_IP_ADDR)) { Status = TDI_ADDR_INVALID; break; }
// Convert IfIndex to an IPAddr
ifaddr = net_long(Req->umr_if); }
// Convert to AO_OPTION_{ADD,DEL}_MCAST
ID = (ID == AO_OPTION_INDEX_ADD_MCAST)? AO_OPTION_ADD_MCAST : AO_OPTION_DEL_MCAST; // fallthrough
case AO_OPTION_ADD_MCAST: case AO_OPTION_DEL_MCAST: if (Length >= sizeof(UDPMCastReq)) { UDPMCastReq *Req = (UDPMCastReq *) Options;
AMA = FindAOMCastAddr(OptionAO, Req->umr_addr, Req->umr_if, &PrevAMA);
if (ID == AO_OPTION_ADD_MCAST) { // If an AOMCastAddr entry already exists for the socket, fail.
if (AMA != NULL) { Status = TDI_ADDR_INVALID; break; }
if (IP_ADDR_EQUAL(ifaddr, NULL_IP_ADDR)) { ifaddr = (Req->umr_if)? Req->umr_if : (*LocalNetInfo.ipi_getmcastifaddr)();
if (IP_ADDR_EQUAL(ifaddr, NULL_IP_ADDR)) { Status = TDI_ADDR_INVALID; break; } }
// Add an AOMCastAddr entry on the socket in exclusion mode
Status = AddGroup(OptionAO, Req->umr_addr, Req->umr_if, ifaddr, &AMA); if (Status != TDI_SUCCESS) break;
// Inform IP
CTEFreeLock(&OptionAO->ao_lock, Handle); IPStatus = (*LocalNetInfo.ipi_setmcastaddr) (Req->umr_addr, ifaddr, TRUE, 0, NULL, 0, NULL); CTEGetLock(&OptionAO->ao_lock, &Handle);
Status = TDI_SUCCESS; if (IPStatus != IP_SUCCESS) { // Some problem, we need to free the one we just added.
AMA = FindAOMCastAddr(OptionAO, Req->umr_addr, Req->umr_if, &PrevAMA); ASSERT(AMA); RemoveGroup(PrevAMA, &AMA);
Status = (IPStatus == IP_NO_RESOURCES ? TDI_NO_RESOURCES : TDI_ADDR_INVALID); }
} else { Status = LeaveGroup(OptionAO, &Handle, PrevAMA, &AMA); break; } } else Status = TDI_BAD_OPTION; break;
case AO_OPTION_BLOCK_MCAST_SRC: case AO_OPTION_UNBLOCK_MCAST_SRC: if (Length >= sizeof(UDPMCastSrcReq)) { UDPMCastSrcReq *Req = (UDPMCastSrcReq *) Options; uint Adding = FALSE;
AMA = FindAOMCastAddr(OptionAO, Req->umr_addr, Req->umr_if, &PrevAMA); ASA = (AMA)? FindAOMCastSrcAddr(AMA, Req->umr_src, &PrevASA) : NULL;
DEBUGMSG(DBG_TRACE && DBG_IGMP, (DTEXT("AO OPT: Mcast Src ID=%x G=%x IF=%x AMA=%x\n"), ID, Req->umr_addr, Req->umr_if, AMA));
if ((AMA == NULL) || (AMA->ama_inclusion == TRUE)) { Status = TDI_INVALID_PARAMETER; break; }
if (ID == AO_OPTION_UNBLOCK_MCAST_SRC) { //
// UNBLOCK
//
// Return an error if source is not in the exclusion list
if (ASA == NULL) { Status = TDI_ADDR_INVALID; break; }
// Remove the source from the exclusion list
RemoveAOMSource(PrevAMA, &AMA, PrevASA, &ASA);
// Inform IP
if (AMA_VALID(AMA)) { CTEFreeLock(&OptionAO->ao_lock, Handle); IPStatus = (*LocalNetInfo.ipi_setmcastexclude)(Req->umr_addr, AMA->ama_if_used, 0, NULL, 1, &Req->umr_src); CTEGetLock(&OptionAO->ao_lock, &Handle); } else { IPStatus = IP_SUCCESS; } } else { // AO_OPTION_BLOCK_MCAST_SRC
//
// BLOCK
//
// Return an error if source is in the exclusion list
if (ASA != NULL) { Status = TDI_ADDR_INVALID; break; }
// Add the source to the exclusion list
Status = AddAOMSource(AMA, Req->umr_src); Adding = TRUE;
// Inform IP
if (AMA_VALID(AMA)) { CTEFreeLock(&OptionAO->ao_lock, Handle); IPStatus = (*LocalNetInfo.ipi_setmcastexclude)(Req->umr_addr, AMA->ama_if_used, 1, &Req->umr_src, 0, NULL); CTEGetLock(&OptionAO->ao_lock, &Handle); } else { IPStatus = IP_SUCCESS; } }
if (IPStatus != IP_SUCCESS) { // Some problem adding or deleting. If we were adding, we
// need to free the one we just added.
if (Adding) { AMA = FindAOMCastAddr(OptionAO, Req->umr_addr, Req->umr_if, &PrevAMA); ASA = (AMA)? FindAOMCastSrcAddr(AMA, Req->umr_src, &PrevASA) : NULL; ASSERT(ASA); RemoveAOMSource(PrevAMA, &AMA, PrevASA, &ASA); } Status = (IPStatus == IP_NO_RESOURCES ? TDI_NO_RESOURCES : TDI_ADDR_INVALID); } } else Status = TDI_BAD_OPTION; break;
case AO_OPTION_ADD_MCAST_SRC: case AO_OPTION_DEL_MCAST_SRC: if (Length >= sizeof(UDPMCastSrcReq)) { UDPMCastSrcReq *Req = (UDPMCastSrcReq *) Options; uint Adding = FALSE; IPAddr ifaddr;
AMA = FindAOMCastAddr(OptionAO, Req->umr_addr, Req->umr_if, &PrevAMA); ASA = (AMA)? FindAOMCastSrcAddr(AMA, Req->umr_src, &PrevASA) : NULL;
DEBUGMSG(DBG_TRACE && DBG_IGMP, (DTEXT("AO OPT: Mcast Src ID=%x G=%x IF=%x AMA=%x\n"), ID, Req->umr_addr, Req->umr_if, AMA));
if ((AMA != NULL) && (AMA->ama_inclusion == FALSE)) { Status = TDI_INVALID_PARAMETER; break; }
if (ID == AO_OPTION_ADD_MCAST_SRC) { //
// JOIN
//
// Return an error if source is in the inclusion list
if (ASA != NULL) { Status = TDI_ADDR_INVALID; break; }
// If no AOMCastAddr entry exists, create one in inclusion mode
if (!AMA) { ifaddr = (Req->umr_if)? Req->umr_if : (*LocalNetInfo.ipi_getmcastifaddr)(); if (!ifaddr) { Status = TDI_ADDR_INVALID; break; }
Status = AddGroup(OptionAO, Req->umr_addr, Req->umr_if, ifaddr, &AMA); if (Status != TDI_SUCCESS) break; AMA->ama_inclusion = TRUE; }
// Add the source to the inclusion list
Status = AddAOMSource(AMA, Req->umr_src); Adding = TRUE;
// Inform IP
if (AMA_VALID(AMA)) { CTEFreeLock(&OptionAO->ao_lock, Handle); IPStatus = (*LocalNetInfo.ipi_setmcastinclude)(Req->umr_addr, AMA->ama_if_used, 1, &Req->umr_src, 0, NULL); CTEGetLock(&OptionAO->ao_lock, &Handle); } else { IPStatus = IP_SUCCESS; } } else { // AO_OPTION_DEL_MCAST_SRC
//
// PRUNE
//
BOOLEAN InformIP;
// Return an error if source is not in the inclusion list
if (ASA == NULL) { Status = TDI_ADDR_INVALID; break; }
InformIP = AMA_VALID(AMA); ifaddr = AMA->ama_if_used;
// Remove the source from the inclusion list, and
// remove the group if needed.
RemoveAOMSource(PrevAMA, &AMA, PrevASA, &ASA);
// Inform IP
if (InformIP) { CTEFreeLock(&OptionAO->ao_lock, Handle); IPStatus =(*LocalNetInfo.ipi_setmcastinclude)(Req->umr_addr, ifaddr, 0, NULL, 1, &Req->umr_src); CTEGetLock(&OptionAO->ao_lock, &Handle); } else { IPStatus = IP_SUCCESS; } }
if (IPStatus != IP_SUCCESS) { // Some problem adding or deleting. If we were adding, we
// need to free the one we just added.
if (Adding) { AMA = FindAOMCastAddr(OptionAO, Req->umr_addr, Req->umr_if, &PrevAMA); ASA = (AMA)? FindAOMCastSrcAddr(AMA, Req->umr_src, &PrevASA) : NULL; ASSERT(ASA); RemoveAOMSource(PrevAMA, &AMA, PrevASA, &ASA); } Status = (IPStatus == IP_NO_RESOURCES ? TDI_NO_RESOURCES : TDI_ADDR_INVALID); } } else Status = TDI_BAD_OPTION; break;
case AO_OPTION_MCAST_FILTER: Status = SetMulticastFilter(OptionAO, Length, (UDPMCastFilter *) Options, &Handle); break;
// Handle unnumbered interface index
// No validation other than a check for zero is made here.
case AO_OPTION_UNNUMBEREDIF:
KdPrintEx((DPFLTR_TCPIP_ID, DPFLTR_INFO_LEVEL, "AO OPT: UnNumberedIF %d\n", Options[0]));
if ((int)Options[0] > 0) { OptionAO->ao_opt.ioi_uni = Options[0]; } else Status = TDI_BAD_OPTION; break;
case AO_OPTION_INDEX_BIND: //
// If the AO is already bound to an interface, fail the request.
//
if (OptionAO->ao_bindindex) { if ((Length >= sizeof(uint)) && (*(uint *)Options == OptionAO->ao_bindindex)) { Status = TDI_ADDR_IN_USE; } else { Status = TDI_INVALID_REQUEST; } } else if (Length >= sizeof(uint)) { uint IfIndex; uint *Req;
Req = (uint *) Options;
IfIndex = *Req; if (!IP_ADDR_EQUAL( (*LocalNetInfo.ipi_isvalidindex)(IfIndex), NULL_IP_ADDR)) { OptionAO->ao_bindindex = IfIndex; // assert that socket is bound to IN_ADDR_ANY
ASSERT(IP_ADDR_EQUAL(OptionAO->ao_addr, NULL_IP_ADDR)); } else { Status = TDI_ADDR_INVALID; } } else Status = TDI_BAD_OPTION; break;
case AO_OPTION_INDEX_MCASTIF: if (Length >= sizeof(UDPMCastIFReq)) { UDPMCastIFReq *Req; uint IfIndex;
Req = (UDPMCastIFReq *) Options; IfIndex = (uint) Req->umi_addr; if (!IP_ADDR_EQUAL( (*LocalNetInfo.ipi_isvalidindex)(IfIndex), NULL_IP_ADDR)) { // OptionAO->ao_opt.ioi_mcastif = IfIndex;
OptionAO->ao_mcastopt.ioi_mcastif = IfIndex; } else { Status = TDI_ADDR_INVALID; } } else Status = TDI_BAD_OPTION; break;
case AO_OPTION_IP_HDRINCL:
if (Options[0]) { OptionAO->ao_opt.ioi_hdrincl = TRUE; OptionAO->ao_mcastopt.ioi_hdrincl = TRUE; } else { OptionAO->ao_opt.ioi_hdrincl = FALSE; OptionAO->ao_mcastopt.ioi_hdrincl = FALSE; }
break;
case AO_OPTION_IP_UCASTIF:
if (Length >= sizeof(uint)) { uint UnicastIf = *(uint*)Options; if (UnicastIf) { if (!IP_ADDR_EQUAL(OptionAO->ao_addr, NULL_IP_ADDR)) { UnicastIf = (*LocalNetInfo.ipi_getifindexfromaddr)( OptionAO->ao_addr,IF_CHECK_NONE); } OptionAO->ao_opt.ioi_ucastif = UnicastIf; OptionAO->ao_mcastopt.ioi_ucastif = UnicastIf;
IF_TCPDBG(TCP_DEBUG_OPTIONS) { KdPrintEx((DPFLTR_TCPIP_ID, DPFLTR_INFO_LEVEL, "SetAOOptions: setting ucastif %p to %d\n", OptionAO, UnicastIf)); }
} else { OptionAO->ao_opt.ioi_ucastif = 0; OptionAO->ao_mcastopt.ioi_ucastif = 0;
IF_TCPDBG(TCP_DEBUG_OPTIONS) { KdPrintEx((DPFLTR_TCPIP_ID, DPFLTR_INFO_LEVEL, "SetAOOptions: clearing ucastif %p\n", OptionAO)); } } } else Status = TDI_BAD_OPTION;
break;
case AO_OPTION_BROADCAST:
if (Options[0]) { SET_AO_BROADCAST(OptionAO); } else { CLEAR_AO_BROADCAST(OptionAO); }
break;
case AO_OPTION_LIMIT_BCASTS: if (Options[0]) { OptionAO->ao_opt.ioi_limitbcasts = (uchar) OnlySendOnSource; } else { OptionAO->ao_opt.ioi_limitbcasts = (uchar) EnableSendOnSource; } break;
case AO_OPTION_IFLIST:{ uint *IfList;
// Determine whether the interface-list is being enabled or cleared.
// When enabled, an empty zero-terminated interface-list is set.
// When disabled, any existing interface-list is freed.
//
// In both cases, the 'ao_iflist' pointer in the object is replaced
// using an interlocked operation to allow us to check the field
// in the receive-path without first locking the address-object.
if (Options[0]) { if (OptionAO->ao_iflist) { Status = TDI_SUCCESS; } else if (!IP_ADDR_EQUAL(OptionAO->ao_addr, NULL_IP_ADDR)) { Status = TDI_INVALID_PARAMETER; } else { IfList = CTEAllocMemN(sizeof(uint), 'r2CT'); if (!IfList) { Status = TDI_NO_RESOURCES; } else { *IfList = 0; InterlockedExchangePointer(&OptionAO->ao_iflist, IfList); Status = TDI_SUCCESS; } } } else { IfList = InterlockedExchangePointer(&OptionAO->ao_iflist, NULL); if (IfList) { CTEFreeMem(IfList); } Status = TDI_SUCCESS; } break; }
case AO_OPTION_ADD_IFLIST:
//
// An interface-index is being added to the object's interface-list
// so verify that an interface-list exists and, if not, fail.
// Otherwise, verify that the index specified is valid and, if so,
// verify that the index is not already in the interface list.
if (!OptionAO->ao_iflist) { Status = TDI_INVALID_PARAMETER; } else { uint IfIndex = *(uint *) Options; if (IfIndex == 0 || IP_ADDR_EQUAL((*LocalNetInfo.ipi_isvalidindex) (IfIndex), NULL_IP_ADDR)) { Status = TDI_ADDR_INVALID; } else { uint i = 0; while (OptionAO->ao_iflist[i] != 0 && OptionAO->ao_iflist[i] != IfIndex) { i++; } if (OptionAO->ao_iflist[i] == IfIndex) { Status = TDI_SUCCESS; } else {
// The index to be added is not already present.
// Allocate space for an expanded interface-list,
// copy the old interface-list, append the new index,
// and replace the old interface-list using an
// interlocked operation.
uint *IfList = CTEAllocMemN((i + 2) * sizeof(uint), 'r2CT'); if (!IfList) { Status = TDI_NO_RESOURCES; } else { RtlCopyMemory(IfList, OptionAO->ao_iflist, i * sizeof(uint)); IfList[i] = IfIndex; IfList[i + 1] = 0; IfList = InterlockedExchangePointer(&OptionAO->ao_iflist, IfList); CTEFreeMem(IfList); Status = TDI_SUCCESS; } } } } break;
case AO_OPTION_DEL_IFLIST:
// An index is being removed from the object's interface-list,
// so verify that an interface-list exists and, if not, fail.
// Otherwise, search the list for the index and, if not found, fail.
//
// N.B. We do not validate the index first in this case, to allow
// an index to be removed even after the corresponding interface
// is no longer present.
if (!OptionAO->ao_iflist) { Status = TDI_INVALID_PARAMETER; } else { uint IfIndex = *(uint *) Options; if (IfIndex == 0) { Status = TDI_ADDR_INVALID; } else { uint j = (uint) - 1; uint i = 0; while (OptionAO->ao_iflist[i] != 0) { if (OptionAO->ao_iflist[i] == IfIndex) { j = i; } i++; } if (j == (uint) - 1) { Status = TDI_ADDR_INVALID; } else {
// We've found the index to be removed.
// Allocate a truncated interface-list, copy the old
// interface-list excluding the removed index, and
// replace the old interface-list using an interlocked
// operation.
uint *IfList = CTEAllocMemN(i * sizeof(uint), 'r2CT'); if (!IfList) { Status = TDI_NO_RESOURCES; } else { i = 0; j = 0; while (OptionAO->ao_iflist[i] != 0) { if (OptionAO->ao_iflist[i] != IfIndex) { IfList[j++] = OptionAO->ao_iflist[i]; } i++; } IfList[j] = 0; IfList = InterlockedExchangePointer(&OptionAO->ao_iflist, IfList); CTEFreeMem(IfList); Status = TDI_SUCCESS; } } } } break;
case AO_OPTION_IP_PKTINFO: if (Options[0]) { SET_AO_PKTINFO(OptionAO); } else { CLEAR_AO_PKTINFO(OptionAO); }
break;
case AO_OPTION_WINDOW: if (Length >= sizeof(uint)) { uint Window = *(uint*)Options; if (Window >= DEFAULT_RCV_WIN && Window <= TCP_MAX_SCALED_WIN) { OptionAO->ao_window = Window; SET_AO_WINSET(OptionAO); } else if (Window == 0) { OptionAO->ao_window = 0; CLEAR_AO_WINSET(OptionAO); } else { Status = TDI_INVALID_PARAMETER; } } else { Status = TDI_BAD_OPTION; } break;
case AO_OPTION_SCALE_CWIN: if (Options[0]) { SET_AO_SCALE_CWIN(OptionAO); } else { CLEAR_AO_SCALE_CWIN(OptionAO); } break;
default: Status = TDI_BAD_OPTION; break; }
CTEFreeLock(&OptionAO->ao_lock, Handle);
return Status;
}
//* GetAddrOptionsEx - Get options on an address object.
//
// Called to get options on an address object. We validate the buffer,
// and if everything is OK we'll check the status of the AddrObj. If
// it's OK then we'll get them, otherwise we'll mark it for later use.
//
// Input: Request - Request describing AddrObj for option set.
// ID - ID for option to be set.
// OptLength - Length of options buffer.
// Context - Arguments to ID.
//
// Output: Options - Pointer to options.
// InfoSize - Number of bytes returned.
//
// Returns: TDI_STATUS of attempt.
//
TDI_STATUS GetAddrOptionsEx(PTDI_REQUEST Request, uint ID, uint OptLength, PNDIS_BUFFER Options, uint * InfoSize, void * Context) { AddrObj *OptionAO; TDI_STATUS Status;
CTELockHandle AOHandle;
OptionAO = Request->Handle.AddressHandle;
CTEStructAssert(OptionAO, ao);
CTEGetLock(&OptionAO->ao_lock, &AOHandle);
if (AO_VALID(OptionAO)) { if (!AO_BUSY(OptionAO) && OptionAO->ao_usecnt == 0) { SET_AO_BUSY(OptionAO); CTEFreeLock(&OptionAO->ao_lock, AOHandle);
Status = GetAOOptions(OptionAO, ID, OptLength, Options, InfoSize, Context);
CTEGetLock(&OptionAO->ao_lock, &AOHandle); if (!AO_PENDING(OptionAO)) { CLEAR_AO_BUSY(OptionAO); CTEFreeLock(&OptionAO->ao_lock, AOHandle); return Status; } else { CTEFreeLock(&OptionAO->ao_lock, AOHandle); ProcessAORequests(OptionAO); return Status; } } else { AORequest *NewRequest, *OldRequest;
// The AddrObj is busy somehow. We need to get a request, and link
// him on the request list.
NewRequest = GetAORequest(AOR_TYPE_GET_OPTIONS);
if (NewRequest != NULL) { // Got a request.
NewRequest->aor_rtn = Request->RequestNotifyObject; NewRequest->aor_context = Request->RequestContext; NewRequest->aor_id = ID; NewRequest->aor_length = OptLength; NewRequest->aor_buffer = Options; NewRequest->aor_next = NULL; SET_AO_REQUEST(OptionAO, AO_OPTIONS); // Set the
// option request,
OldRequest = STRUCT_OF(AORequest, &OptionAO->ao_request, aor_next);
while (OldRequest->aor_next != NULL) OldRequest = OldRequest->aor_next;
OldRequest->aor_next = NewRequest; CTEFreeLock(&OptionAO->ao_lock, AOHandle);
return TDI_PENDING; } else Status = TDI_NO_RESOURCES; } } else Status = TDI_ADDR_INVALID;
CTEFreeLock(&OptionAO->ao_lock, AOHandle); return Status; }
//* SetAddrOptions - Set options on an address object.
//
// Called to set options on an address object. We validate the buffer,
// and if everything is OK we'll check the status of the AddrObj. If
// it's OK then we'll set them, otherwise we'll mark it for later use.
//
// Input: Request - Request describing AddrObj for option set.
// ID - ID for option to be set.
// OptLength - Length of options.
// Options - Pointer to options.
//
// Returns: TDI_STATUS of attempt.
//
TDI_STATUS SetAddrOptions(PTDI_REQUEST Request, uint ID, uint OptLength, void *Options) { AddrObj *OptionAO; TDI_STATUS Status;
CTELockHandle AOHandle;
OptionAO = Request->Handle.AddressHandle;
CTEStructAssert(OptionAO, ao);
CTEGetLock(&OptionAO->ao_lock, &AOHandle);
if (AO_VALID(OptionAO)) { if (!AO_BUSY(OptionAO) && OptionAO->ao_usecnt == 0 && !IsBlockingAOOption(ID, AOHandle)) { SET_AO_BUSY(OptionAO); CTEFreeLock(&OptionAO->ao_lock, AOHandle);
Status = SetAOOptions(OptionAO, ID, OptLength, Options);
CTEGetLock(&OptionAO->ao_lock, &AOHandle); if (!AO_PENDING(OptionAO)) { CLEAR_AO_BUSY(OptionAO); CTEFreeLock(&OptionAO->ao_lock, AOHandle); return Status; } else { CTEFreeLock(&OptionAO->ao_lock, AOHandle); ProcessAORequests(OptionAO); return Status; } } else { AORequest *NewRequest, *OldRequest;
// The AddrObj is busy somehow, or we have a request that might
// require a blocking call. We need to get a request, and link
// him on the request list.
NewRequest = GetAORequest(AOR_TYPE_SET_OPTIONS);
if (NewRequest != NULL) { // Got a request.
NewRequest->aor_rtn = Request->RequestNotifyObject; NewRequest->aor_context = Request->RequestContext; NewRequest->aor_id = ID; NewRequest->aor_length = OptLength; NewRequest->aor_buffer = Options; NewRequest->aor_next = NULL; SET_AO_REQUEST(OptionAO, AO_OPTIONS); // Set the
// option request,
OldRequest = STRUCT_OF(AORequest, &OptionAO->ao_request, aor_next);
while (OldRequest->aor_next != NULL) OldRequest = OldRequest->aor_next;
OldRequest->aor_next = NewRequest;
// If we're deferring because this request requires a blocking
// call and we can't block in the current execution context,
// schedule an event to deal with it later on.
// Otherwise, the AddrObj is busy and the request
// will be processed whenever its operator is done.
if (!AO_BUSY(OptionAO) && OptionAO->ao_usecnt == 0 && !AO_DEFERRED(OptionAO)) { SET_AO_BUSY(OptionAO); SET_AO_DEFERRED(OptionAO); if (CTEScheduleEvent(&OptionAO->ao_event, OptionAO)) { Status = TDI_PENDING; } else { CLEAR_AO_DEFERRED(OptionAO); CLEAR_AO_BUSY(OptionAO); Status = TDI_NO_RESOURCES; } } else { Status = TDI_PENDING; } CTEFreeLock(&OptionAO->ao_lock, AOHandle);
return Status; } else { Status = TDI_NO_RESOURCES; } } } else Status = TDI_ADDR_INVALID;
CTEFreeLock(&OptionAO->ao_lock, AOHandle); return Status;
}
//* TDISetEvent - Set a handler for a particular event.
//
// This is the user API to set an event. It's pretty simple, we just
// grab the lock on the AddrObj and fill in the event.
//
//
// Input: Handle - Pointer to address object.
// Type - Event being set.
// Handler - Handler to call for event.
// Context - Context to pass to event.
//
// Returns: TDI_SUCCESS if it works, an error if it doesn't. This routine
// never pends.
//
TDI_STATUS TdiSetEvent(PVOID Handle, int Type, PVOID Handler, PVOID Context) { AddrObj *EventAO; CTELockHandle AOHandle; TDI_STATUS Status;
EventAO = (AddrObj *) Handle;
CTEStructAssert(EventAO, ao);
// Don't allow any new handlers to be installed on an invalid AddrObj.
// However, do allow pre-existing handlers to be cleared.
CTEGetLock(&EventAO->ao_lock, &AOHandle); if (!AO_VALID(EventAO) && Handler != NULL) { CTEFreeLock(&EventAO->ao_lock, AOHandle); return TDI_ADDR_INVALID; }
Status = TDI_SUCCESS; switch (Type) {
case TDI_EVENT_CONNECT: EventAO->ao_connect = Handler; EventAO->ao_conncontext = Context; break; case TDI_EVENT_DISCONNECT: EventAO->ao_disconnect = Handler; EventAO->ao_disconncontext = Context; break; case TDI_EVENT_ERROR: EventAO->ao_error = Handler; EventAO->ao_errcontext = Context; break; case TDI_EVENT_RECEIVE: EventAO->ao_rcv = Handler; EventAO->ao_rcvcontext = Context; break; case TDI_EVENT_RECEIVE_DATAGRAM: EventAO->ao_rcvdg = Handler; EventAO->ao_rcvdgcontext = Context; break; case TDI_EVENT_RECEIVE_EXPEDITED: EventAO->ao_exprcv = Handler; EventAO->ao_exprcvcontext = Context; break;
case TDI_EVENT_CHAINED_RECEIVE: #if MILLEN
// Chained receives are not supported on Millennium. This is because
// of the architecture to return chained packets, etc from the TDI
// client and the need to convert NDIS_BUFFERs to MDLs before passing
// the chain to the TDI clients.
Status = TDI_BAD_EVENT_TYPE; #else // MILLEN
EventAO->ao_chainedrcv = Handler; EventAO->ao_chainedrcvcontext = Context; #endif // !MILLEN
break;
case TDI_EVENT_ERROR_EX: EventAO->ao_errorex = Handler; EventAO->ao_errorexcontext = Context; break;
default: Status = TDI_BAD_EVENT_TYPE; break; }
CTEFreeLock(&EventAO->ao_lock, AOHandle); return Status;
}
//* UDPReConnectOrDisconnect - Processes pending connect/disconnect
// requests on an AddrObj.
//
// Re-issues connect/disconnect on AddrObj corresponding to queued up
// connect/disconnect request.
//
// Input: RequestAO - AddrObj to be processed.
// ao_lock is held.
// Request - Request struct.
//
// Returns: Nothing.
//
void UDPReConnectOrDisconnect(AddrObj *RequestAO, AORequest *Request, CTELockHandle AOHandle) { PTCP_CONTEXT tcpContext; PIO_STACK_LOCATION IrpSp; TDI_REQUEST TdiRequest; PTDI_REQUEST_KERNEL condisconnRequest; NTSTATUS Status; PTDI_CONNECTION_INFORMATION requestInformation, returnInformation; PIRP Irp = (PIRP)Request->aor_context;
IrpSp = IoGetCurrentIrpStackLocation(Irp); tcpContext = (PTCP_CONTEXT) IrpSp->FileObject->FsContext;
ASSERT((PtrToUlong(IrpSp->FileObject->FsContext2) == TDI_TRANSPORT_ADDRESS_FILE));
TdiRequest.Handle.ConnectionContext = tcpContext->Handle.ConnectionContext; TdiRequest.RequestNotifyObject = Request->aor_rtn; TdiRequest.RequestContext = Request->aor_context;
condisconnRequest = (PTDI_REQUEST_KERNEL_CONNECT) &(IrpSp->Parameters); requestInformation = condisconnRequest->RequestConnectionInformation; returnInformation = condisconnRequest->ReturnConnectionInformation;
if (Request->aor_type == AOR_TYPE_DISCONNECT) { CLEAR_AO_REQUEST(RequestAO, AO_DISCONNECT); CTEFreeLock(&RequestAO->ao_lock, AOHandle); Status = UDPDisconnect(&TdiRequest, NULL, requestInformation, returnInformation); } else { CLEAR_AO_REQUEST(RequestAO, AO_CONNECT); CTEFreeLock(&RequestAO->ao_lock, AOHandle); Status = UDPConnect(&TdiRequest, NULL, requestInformation, returnInformation); } if (Status != STATUS_PENDING) { (Request->aor_rtn)(Irp, Status, 0); }
}
//* ProcessAORequests - Process pending requests on an AddrObj.
//
// This is the delayed request processing routine, called when we've
// done something that used the busy bit. We examine the pending
// requests flags, and dispatch the requests appropriately.
//
// Input: RequestAO - AddrObj to be processed.
//
// Returns: Nothing.
//
void ProcessAORequests(AddrObj * RequestAO)
{ CTELockHandle AOHandle; AORequest *Request; IP_STATUS IpStatus; TDI_STATUS Status; uint LocalInfoSize;
CTEStructAssert(RequestAO, ao);
CTEGetLock(&RequestAO->ao_lock, &AOHandle);
ASSERT(AO_BUSY(RequestAO));
while (AO_PENDING(RequestAO)) {
while ((Request = RequestAO->ao_request) != NULL) { switch (Request->aor_type) { case AOR_TYPE_DELETE: ASSERT(!AO_REQUEST(RequestAO, AO_OPTIONS)); // usecnt has to be zero as this AO is
// deleted
ASSERT(RequestAO->ao_usecnt == 0); CTEFreeLock(&RequestAO->ao_lock, AOHandle); DeleteAO(RequestAO);
(*Request->aor_rtn) (Request->aor_context, TDI_SUCCESS, 0); return; // Deleted him, so get out.
case AOR_TYPE_REVALIDATE_MCAST:
// Handle multicast revalidation request.
// If we are at dispatch_level bail out for now.
if (IsBlockingAOOption(AO_OPTION_ADD_MCAST, AOHandle)) { CTEScheduleEvent(&RequestAO->ao_event, RequestAO); CTEFreeLock(&RequestAO->ao_lock, AOHandle); return; }
// Unchain the request while we attempt to call IP.
RequestAO->ao_request = Request->aor_next; if (RequestAO->ao_request == NULL) { CLEAR_AO_REQUEST(RequestAO, AO_OPTIONS); }
CTEFreeLock(&RequestAO->ao_lock, AOHandle); IpStatus = SetIPMCastAddr(RequestAO, Request->aor_id); if (IpStatus != IP_SUCCESS) { //
// When a failure occurs, the failure could be
// persistent, so we don't want to just reschedule
// an event. Instead, the multicast join will be left
// in an invalid state (AMA_VALID_FLAG off) until the
// group is left, or until the address is revalidated
// again. For example, the rejoin can fail if the
// address has just been invalidated again, in which case
// we just leave it until the address comes back again.
//
KdPrintEx((DPFLTR_TCPIP_ID, DPFLTR_INFO_LEVEL, "SetIPMcastAddr: failed with error %d\n", IpStatus)); }
FreeAORequest(Request);
CTEGetLock(&RequestAO->ao_lock, &AOHandle);
break;
case AOR_TYPE_SET_OPTIONS: // Now handle set options request.
// Have an option request.
// Look at the request to see if it can be processed here,
// and if not bail out; we'll have to wait for it to be
// pulled off by a scheduled event.
if (IsBlockingAOOption(Request->aor_id, AOHandle)) { CTEScheduleEvent(&RequestAO->ao_event, RequestAO); CTEFreeLock(&RequestAO->ao_lock, AOHandle); return; }
RequestAO->ao_request = Request->aor_next; if (RequestAO->ao_request == NULL) { CLEAR_AO_REQUEST(RequestAO, AO_OPTIONS); }
CTEFreeLock(&RequestAO->ao_lock, AOHandle);
Status = SetAOOptions(RequestAO, Request->aor_id, Request->aor_length, Request->aor_buffer); (*Request->aor_rtn) (Request->aor_context, Status, 0); FreeAORequest(Request);
CTEGetLock(&RequestAO->ao_lock, &AOHandle);
break;
case AOR_TYPE_GET_OPTIONS: // Have a get option request.
// Look at the request to see if it can be processed here,
// and if not bail out; we'll have to wait for it to be pulled off
// by a scheduled event.
RequestAO->ao_request = Request->aor_next; if (RequestAO->ao_request == NULL) { CLEAR_AO_REQUEST(RequestAO, AO_OPTIONS); }
CTEFreeLock(&RequestAO->ao_lock, AOHandle);
Status = GetAOOptions(RequestAO, Request->aor_id, Request->aor_length, Request->aor_buffer, &LocalInfoSize, Request->aor_context); (*Request->aor_rtn) (Request->aor_context, Status, LocalInfoSize); FreeAORequest(Request);
CTEGetLock(&RequestAO->ao_lock, &AOHandle);
break;
case AOR_TYPE_DISCONNECT: case AOR_TYPE_CONNECT: //
// Process pending disconnect/connect request.
//
{ RequestAO->ao_request = Request->aor_next; UDPReConnectOrDisconnect(RequestAO, Request, AOHandle); FreeAORequest(Request); CTEGetLock(&RequestAO->ao_lock, &AOHandle); }
break; } }
// We've done options, now try sends.
if (AO_REQUEST(RequestAO, AO_SEND)) { DGSendProc SendProc; DGSendReq *SendReq;
// Need to send. Clear the busy flag, bump the send count, and
// get the send request.
if (!EMPTYQ(&RequestAO->ao_sendq)) { DEQUEUE(&RequestAO->ao_sendq, SendReq, DGSendReq, dsr_q); CLEAR_AO_BUSY(RequestAO); RequestAO->ao_usecnt++; SendProc = RequestAO->ao_dgsend; CTEFreeLock(&RequestAO->ao_lock, AOHandle);
(*SendProc)(RequestAO, SendReq); CTEGetLock(&RequestAO->ao_lock, &AOHandle); // If there aren't any other pending sends, set the busy bit.
if (!(--RequestAO->ao_usecnt)) SET_AO_BUSY(RequestAO); else break; // Still sending, so get out.
} else { // It is possible to have an AO with AO_SEND flag set with no
// send requests queued up, as the invariant is not maintained
// in many places; so, we just clear the flag and move on.
CLEAR_AO_REQUEST(RequestAO, AO_SEND); } } }
// We're done here.
CLEAR_AO_BUSY(RequestAO); CTEFreeLock(&RequestAO->ao_lock, AOHandle); }
//* DelayDerefAO - Derefrence an AddrObj, and schedule an event.
//
// Called when we are done with an address object, and need to
// derefrence it. We dec the usecount, and if it goes to 0 and
// if there are pending actions we'll schedule an event to deal
// with them.
//
// Input: RequestAO - AddrObj to be processed.
//
// Returns: Nothing.
//
void DelayDerefAO(AddrObj * RequestAO) { CTELockHandle Handle;
CTEGetLock(&RequestAO->ao_lock, &Handle);
RequestAO->ao_usecnt--;
if (!RequestAO->ao_usecnt && !AO_BUSY(RequestAO)) { if (AO_PENDING(RequestAO)) { SET_AO_BUSY(RequestAO); CTEFreeLock(&RequestAO->ao_lock, Handle); CTEScheduleEvent(&RequestAO->ao_event, RequestAO); return; } } CTEFreeLock(&RequestAO->ao_lock, Handle);
}
//* DerefAO - Derefrence an AddrObj.
//
// Called when we are done with an address object, and need to
// derefrence it. We dec the usecount, and if it goes to 0 and
// if there are pending actions we'll call the process AO handler.
//
// Input: RequestAO - AddrObj to be processed.
//
// Returns: Nothing.
//
void DerefAO(AddrObj * RequestAO) { CTELockHandle Handle;
CTEGetLock(&RequestAO->ao_lock, &Handle);
RequestAO->ao_usecnt--;
if (!RequestAO->ao_usecnt && !AO_BUSY(RequestAO)) { if (AO_PENDING(RequestAO)) { SET_AO_BUSY(RequestAO); CTEFreeLock(&RequestAO->ao_lock, Handle); ProcessAORequests(RequestAO); return; } } CTEFreeLock(&RequestAO->ao_lock, Handle);
}
#pragma BEGIN_INIT
//* InitAddr - Initialize the address object stuff.
//
// Called during init time to initalize the address object stuff.
//
// Input: Nothing
//
// Returns: True if we succeed, False if we fail.
//
int InitAddr() { ulong Length;
CTEInitLock(&AddrObjTableLock.Lock); KeInitializeMutex(&AddrSDMutex, 0);
// Pick the number of elements in the address object hash table based
// on the product type. Servers use a larger hash table.
//
#if MILLEN
AddrObjTableSize = 31; #else // MILLEN
if (MmIsThisAnNtAsSystem()) { AddrObjTableSize = 257; } else { AddrObjTableSize = 31; } #endif // !MILLEN
// Allocate the address object hash table.
//
Length = sizeof(AddrObj*) * AddrObjTableSize; AddrObjTable = CTEAllocMemBoot(Length); if (AddrObjTable == NULL) { return FALSE; }
RtlZeroMemory(AddrObjTable, Length);
RtlInitializeBitMap(&PortBitmapTcp, PortBitmapBufferTcp, 1 << 16); RtlInitializeBitMap(&PortBitmapUdp, PortBitmapBufferUdp, 1 << 16); RtlClearAllBits(&PortBitmapTcp); RtlClearAllBits(&PortBitmapUdp);
return TRUE; } #pragma END_INIT
|