Leaked source code of windows server 2003
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

5071 lines
178 KiB

/********************************************************************/
/** Microsoft LAN Manager **/
/** Copyright(c) Microsoft Corp., 1990-1993 **/
/********************************************************************/
/* :ts=4 */
//** ADDR.C - TDI address object procedures
//
// This file contains the TDI address object related procedures,
// including TDI open address, TDI close address, etc.
//
// The local address objects are stored in a hash table, protected
// by the AddrObjTableLock. In order to insert or delete from the
// hash table this lock must be held, as well as the address object
// lock. The table lock must always be taken before the object lock.
//
#include "precomp.h"
#include "tdint.h"
#include "addr.h"
#include "udp.h"
#include "raw.h"
#include "tcp.h"
#include "tcpconn.h"
#include "info.h"
#include "tcpinfo.h"
#include "tcpcfg.h"
#include "bitmap.h"
#include "tlcommon.h"
#include "pplasl.h"
#include "tcpdeliv.h"
extern ReservedPortListEntry *PortRangeList;
extern ReservedPortListEntry *BlockedPortList;
extern IPInfo LocalNetInfo; // Information about the local nets.
extern void FreeAORequest(AORequest * Request);
extern NTSTATUS TCPDisconnect(PIRP Irp, PIO_STACK_LOCATION IrpSp);
extern NTSTATUS TCPConnect(PIRP Irp, PIO_STACK_LOCATION IrpSp);
uint AddrObjTableSize;
AddrObj **AddrObjTable;
CACHE_LINE_KSPIN_LOCK AddrObjTableLock;
KMUTEX AddrSDMutex;
ushort NextUserPort = MIN_USER_PORT;
RTL_BITMAP PortBitmapTcp;
RTL_BITMAP PortBitmapUdp;
ulong PortBitmapBufferTcp[(1 << 16) / (sizeof(ulong) * 8)];
ulong PortBitmapBufferUdp[(1 << 16) / (sizeof(ulong) * 8)];
ulong DisableUserTOSSetting = TRUE;
ulong DefaultTOSValue = 0;
#if ACC
extern BOOLEAN
AccessCheck(PTDI_REQUEST Request, AddrObj * NewAO, uchar Reuse, void *status);
#endif
// Forward declaration
AORequest *GetAORequest(uint Type);
//
// All of the init code can be discarded.
//
#ifdef ALLOC_PRAGMA
int InitAddr();
#pragma alloc_text(INIT, InitAddr)
#endif
//* ComputeAddrObjTableIndex - Compute the hash value for an address object.
// This is used as an index into the AddrObj table corresponding to the
// specified tuple.
//
// Input: Address - IP address
// Port - Port number
// Protocol - Protocol number
//
// Returns: Index into the AddrObj table corresponding to the tuple.
//
__inline
uint
ComputeAddrObjTableIndex(IPAddr Address, ushort Port, uchar Protocol)
{
return (Address + ((Protocol << 16) | Port)) % AddrObjTableSize;
}
//* ReadNextAO - Read the next AddrObj in the table.
//
// Called to read the next AddrObj in the table. The needed information
// is derived from the incoming context, which is assumed to be valid.
// We'll copy the information, and then update the context value with
// the next AddrObj to be read.
//
// Input: Context - Poiner to a UDPContext.
// Buffer - Pointer to a UDPEntry structure.
//
// Returns: TRUE if more data is available to be read, FALSE is not.
//
uint
ReadNextAO(void *Context, void *Buffer)
{
UDPContext *UContext = (UDPContext *) Context;
UDPEntry *UEntry = (UDPEntry *) Buffer;
AddrObj *CurrentAO;
uint i;
CurrentAO = UContext->uc_ao;
CTEStructAssert(CurrentAO, ao);
UEntry->ue_localaddr = CurrentAO->ao_addr;
UEntry->ue_localport = CurrentAO->ao_port;
if (UContext->uc_infosize > sizeof(UDPEntry)) {
((UDPEntryEx*)UEntry)->uee_owningpid = CurrentAO->ao_owningpid;
}
// We've filled it in. Now update the context.
CurrentAO = CurrentAO->ao_next;
if (CurrentAO != NULL && CurrentAO->ao_prot == PROTOCOL_UDP) {
UContext->uc_ao = CurrentAO;
return TRUE;
} else {
// The next AO is NULL, or not a UDP AO. Loop through the AddrObjTable
// looking for a new one.
i = UContext->uc_index;
for (;;) {
while (CurrentAO != NULL) {
if (CurrentAO->ao_prot == PROTOCOL_UDP)
break;
else
CurrentAO = CurrentAO->ao_next;
}
if (CurrentAO != NULL)
break; // Get out of for (;;) loop.
ASSERT(CurrentAO == NULL);
// Didn't find one on this chain. Walk down the table, looking
// for the next one.
while (++i < AddrObjTableSize) {
if (AddrObjTable[i] != NULL) {
CurrentAO = AddrObjTable[i];
break; // Out of while loop.
}
}
if (i == AddrObjTableSize)
break; // Out of for (;;) loop.
}
// If we found one, return it.
if (CurrentAO != NULL) {
UContext->uc_ao = CurrentAO;
UContext->uc_index = i;
return TRUE;
} else {
UContext->uc_index = 0;
UContext->uc_ao = NULL;
return FALSE;
}
}
}
//* ValidateAOContext - Validate the context for reading the AddrObj table.
//
// Called to start reading the AddrObj table sequentially. We take in
// a context, and if the values are 0 we return information about the
// first AddrObj in the table. Otherwise we make sure that the context value
// is valid, and if it is we return TRUE.
// We assume the caller holds the AddrObjTable lock.
//
// Input: Context - Pointer to a UDPContext.
// Valid - Where to return information about context being
// valid.
//
// Returns: TRUE if data in table, FALSE if not. *Valid set to true if the
// context is valid.
//
uint
ValidateAOContext(void *Context, uint * Valid)
{
UDPContext *UContext = (UDPContext *) Context;
uint i;
AddrObj *TargetAO;
AddrObj *CurrentAO;
i = UContext->uc_index;
TargetAO = UContext->uc_ao;
// If the context values are 0 and NULL, we're starting from the beginning.
if (i == 0 && TargetAO == NULL) {
*Valid = TRUE;
do {
if ((CurrentAO = AddrObjTable[i]) != NULL) {
CTEStructAssert(CurrentAO, ao);
while (CurrentAO != NULL && CurrentAO->ao_prot != PROTOCOL_UDP)
CurrentAO = CurrentAO->ao_next;
if (CurrentAO != NULL)
break;
}
i++;
} while (i < AddrObjTableSize);
if (CurrentAO != NULL) {
UContext->uc_index = i;
UContext->uc_ao = CurrentAO;
return TRUE;
} else
return FALSE;
} else {
// We've been given a context. We just need to make sure that it's
// valid.
if (i < AddrObjTableSize) {
CurrentAO = AddrObjTable[i];
while (CurrentAO != NULL) {
if (CurrentAO == TargetAO) {
if (CurrentAO->ao_prot == PROTOCOL_UDP) {
*Valid = TRUE;
return TRUE;
}
break;
} else {
CurrentAO = CurrentAO->ao_next;
}
}
}
// If we get here, we didn't find the matching AddrObj.
*Valid = FALSE;
return FALSE;
}
}
//** FindIfIndexOnAO - Find an interface index in an address-object's list.
//
// This routine is called to determine the interface index for a given
// IP address, and to determine whether that index appears in the list of
// interfaces with which the given address-object is associated.
//
// The routine is called from 'GetAddrObj' and 'GetNextBestAddrObj'
// with the table lock held but with the object lock not held. We take the
// object lock to look at its interface list, and release the lock before
// returning control.
uint
FindIfIndexOnAO(AddrObj * AO, IPAddr LocalAddr)
{
uint *IfList;
uint IfIndex = (*LocalNetInfo.ipi_getifindexfromaddr) (LocalAddr,IF_CHECK_NONE);
if (!IfIndex) {
return 0;
}
CTEGetLockAtDPC(&AO->ao_lock);
IfList = AO->ao_iflist;
if (IfList) {
while (*IfList) {
if (*IfList == IfIndex) {
CTEFreeLockFromDPC(&AO->ao_lock);
return IfIndex;
}
IfList++;
}
}
CTEFreeLockFromDPC(&AO->ao_lock);
// If an interface list was present and the interface was not found,
// return zero. Otherwise, if no interface list was present there is no
// restriction on the object, so return the interface index as though the
// interface appeared in the list.
return IfList ? 0 : IfIndex;
}
//NTQFE 68201
//** GetNextBestAddrObj - Find a local address object.
//
// This is the local address object lookup routine. We take as input the local
// address and port and a pointer to a 'previous' address object. The hash
// table entries in each bucket are sorted in order of increasing address, and
// we skip over any object that has an address lower than the 'previous'
// address. To get the first address object, pass in a previous value of NULL.
//
// We assume that the table lock is held while we're in this routine. We don't
// take each object lock, since the local address and port can't change while
// the entry is in the table and the table lock is held so nothing can be
// inserted or deleted.
//
// Input: LocalAddr - Local IP address of object to find (may be NULL);
// LocalPort - Local port of object to find.
// Protocol - Protocol to find.
// PreviousAO - Pointer to last address object found.
// Flags - flags controlling the lookup to be performed.
//
// Returns: A pointer to the Address object, or NULL if none.
// NOTE : This routine is called by TCP only
//
//
AddrObj *
GetNextBestAddrObj(IPAddr LocalAddr, ushort LocalPort, uchar Protocol,
AddrObj * PreviousAO, uint Flags)
{
AddrObj *CurrentAO; // Current address object we're examining.
AddrObj *TmpAO = NULL;
#if DBG
if (PreviousAO != NULL)
CTEStructAssert(PreviousAO, ao);
#endif
CurrentAO = PreviousAO->ao_next;
while (CurrentAO != NULL) {
CTEStructAssert(CurrentAO, ao);
// If the current one is greater than one we were given, check it.
if ((CurrentAO > PreviousAO) &&
((Flags & GAO_FLAG_INCLUDE_ALL) || AO_VALID(CurrentAO))) {
if (!(CurrentAO->ao_flags & AO_RAW_FLAG)) {
if ((IP_ADDR_EQUAL(CurrentAO->ao_addr, LocalAddr) ||
IP_ADDR_EQUAL(CurrentAO->ao_addr, NULL_IP_ADDR)) &&
(CurrentAO->ao_prot == Protocol) &&
(CurrentAO->ao_port == LocalPort) &&
(((CurrentAO->ao_prot == PROTOCOL_TCP) &&
(CurrentAO->ao_connect)) ||
((CurrentAO->ao_prot == PROTOCOL_UDP) &&
(CurrentAO->ao_rcvdg)))) {
if (!CurrentAO->ao_iflist ||
!(Flags & GAO_FLAG_CHECK_IF_LIST) ||
!IP_ADDR_EQUAL(CurrentAO->ao_addr, NULL_IP_ADDR) ||
FindIfIndexOnAO(CurrentAO, LocalAddr)) {
if (!IP_ADDR_EQUAL(CurrentAO->ao_addr, LocalAddr)) {
TmpAO = CurrentAO;
} else {
return CurrentAO;
}
}
}
}
}
// Either it was less than the previous one, or they didn't match.
CurrentAO = CurrentAO->ao_next;
}
return TmpAO;
}
//* FindAddrObjWithPort - Find an AO with matching port.
//
// Called while block ports for block port range IOCTL.
// We go through the entire addrobj table, and see if anyone has the specified port.
// We assume that the lock is already held on the table.
//
// Input: Port - Port to be looked for.
//
// Returns: Pointer to AO found, or NULL if no one has it.
//
AddrObj *
FindAddrObjWithPort(ushort Port)
{
uint i; // Index variable.
AddrObj *CurrentAO; // Current AddrObj being examined.
for (i = 0; i < AddrObjTableSize; i++) {
CurrentAO = AddrObjTable[i];
while (CurrentAO != NULL) {
CTEStructAssert(CurrentAO, ao);
if (CurrentAO->ao_port == Port)
return CurrentAO;
else
CurrentAO = CurrentAO->ao_next;
}
}
return NULL;
}
//** GetAddrObj - Find a local address object.
//
// This is the local address object lookup routine. We take as input the local
// address and port and a pointer to a 'previous' address object. The hash
// table entries in each bucket are sorted in order of increasing address, and
// we skip over any object that has an address lower than the 'previous'
// address. To get the first address object, pass in a previous value of NULL.
//
// We assume that the table lock is held while we're in this routine. We don't
// take each object lock, since the local address and port can't change while
// the entry is in the table and the table lock is held so nothing can be
// inserted or deleted.
//
// Input: LocalAddr - Local IP address of object to find (may be NULL);
// LocalPort - Local port of object to find.
// Protocol - Protocol to find.
// PreviousAO - Pointer to last address object found.
// Flags - flags controlling the lookup to be performed.
// GAO_FLAG_INCLUDE_ALL causes all AOs to be considered,
// including those marked invalid and those that have
// no receive/connect-handler.
// GAO_FLAG_CHECK_IF_LIST causes the interface-list
// of any matching AO to be applied before the AO is
// considered to be a match.
//
// Returns: A pointer to the Address object, or NULL if none.
//
AddrObj *
GetAddrObj(IPAddr LocalAddr, ushort LocalPort, uchar Protocol,
PVOID PreviousAO, uint Flags)
{
AddrObj *CurrentAO; // Current address object we're examining.
IPAddr ActualLocalAddr = LocalAddr;
uint Index;
// NOTE:
// PreviousAO should not be dereferenced since it might have been deleted.
// E.g. UDPRcv in udp.c, where we release and reacquire AddrObjTableLock
// while still using the "Search" object that has a pointer to an AO.
// Find the appropriate bucket in the hash table, and search for a match.
// If we don't find one the first time through, we'll try again with a
// wildcard local address.
for (;;) {
Index = ComputeAddrObjTableIndex(LocalAddr, LocalPort, Protocol);
CurrentAO = AddrObjTable[Index];
// While we haven't hit the end of the list, examine each element.
while (CurrentAO != NULL) {
CTEStructAssert(CurrentAO, ao);
// If the current one is greater than one we were given, check it.
if ((((PVOID) CurrentAO) > PreviousAO) &&
((Flags & GAO_FLAG_INCLUDE_ALL) || AO_VALID(CurrentAO))) {
if (!(CurrentAO->ao_flags & AO_RAW_FLAG)) {
if (IP_ADDR_EQUAL(CurrentAO->ao_addr, LocalAddr) &&
(CurrentAO->ao_port == LocalPort) &&
(CurrentAO->ao_prot == Protocol)) {
if (!CurrentAO->ao_iflist ||
!(Flags & GAO_FLAG_CHECK_IF_LIST) ||
!IP_ADDR_EQUAL(CurrentAO->ao_addr, NULL_IP_ADDR) ||
FindIfIndexOnAO(CurrentAO, ActualLocalAddr)) {
return CurrentAO;
}
}
} else {
if (Protocol != PROTOCOL_UDP && Protocol != PROTOCOL_TCP) {
IF_TCPDBG(TCP_DEBUG_RAW) {
TCPTRACE((
"matching <p, a> <%u, %lx> ao %lx <%u, %lx>\n",
Protocol, LocalAddr, CurrentAO,
CurrentAO->ao_prot, CurrentAO->ao_addr
));
}
if (IP_ADDR_EQUAL(CurrentAO->ao_addr, LocalAddr) &&
((CurrentAO->ao_prot == Protocol) ||
(CurrentAO->ao_prot == 0))) {
if (!CurrentAO->ao_iflist ||
!(Flags & GAO_FLAG_CHECK_IF_LIST) ||
!IP_ADDR_EQUAL(CurrentAO->ao_addr, NULL_IP_ADDR) ||
FindIfIndexOnAO(CurrentAO, ActualLocalAddr)) {
return CurrentAO;
}
}
}
}
}
// Either it was less than the previous one, or they didn't match.
CurrentAO = CurrentAO->ao_next;
} // while
// When we get here, we've hit the end of the list we were examining.
// If we weren't examining a wildcard address, look for a wild card
// address.
if (!IP_ADDR_EQUAL(LocalAddr, NULL_IP_ADDR)) {
LocalAddr = NULL_IP_ADDR;
PreviousAO = NULL;
} else {
return NULL; // We looked for a wildcard and couldn't find one, so fail.
}
} // for
}
//* GetNextAddrObj - Get the next address object in a sequential search.
//
// This is the 'get next' routine, called when we are reading the address
// object table sequentially. We pull the appropriate parameters from the
// search context, call GetAddrObj, and update the search context with what
// we find. This routine assumes the AddrObjTableLock is held by the caller.
//
// Input: SearchContext - Pointer to seach context for search taking place.
//
// Returns: Pointer to AddrObj, or NULL if search failed.
//
AddrObj *
GetNextAddrObj(AOSearchContext * SearchContext)
{
AddrObj *FoundAO; // Pointer to the address object we found.
ASSERT(SearchContext != NULL);
// Try and find a match.
FoundAO = GetAddrObj(SearchContext->asc_addr, SearchContext->asc_port,
SearchContext->asc_prot, SearchContext->asc_previous, 0);
// Found a match. Update the search context for next time.
if (FoundAO != NULL) {
SearchContext->asc_previous = FoundAO;
SearchContext->asc_addr = FoundAO->ao_addr;
// Don't bother to update port or protocol, they don't change.
}
return FoundAO;
}
//* GetFirstAddrObj - Get the first matching address object.
//
// The routine called to start a sequential read of the AddrObj table. We
// initialize the provided search context and then call GetNextAddrObj to do
// the actual read. We assume that the AddrObjTableLock is held by the caller.
//
// Input: LocalAddr - Local IP address of object to be found.
// LocalPort - Local port of AO to be found.
// Protocol - Protocol to be found.
// SearchContext - Pointer to search context to be used during
// search.
//
// Returns: Pointer to AO found, or NULL if we couldn't find any.
//
AddrObj *
GetFirstAddrObj(IPAddr LocalAddr, ushort LocalPort, uchar Protocol,
AOSearchContext * SearchContext)
{
ASSERT(SearchContext != NULL);
// Fill in the search context.
SearchContext->asc_previous = NULL; // Haven't found one yet.
SearchContext->asc_addr = LocalAddr;
SearchContext->asc_port = LocalPort;
SearchContext->asc_prot = Protocol;
return GetNextAddrObj(SearchContext);
}
//** GetAddrObjEx - Overloaded routine called by RAW when there are any promiscuous sockets
//
// This is the local address object lookup routine. We take as input the local
// address and port and a pointer to a 'previous' address object. The hash
// table entries in each bucket are sorted in order of increasing address, and
// we skip over any object that has an address lower than the 'previous'
// address. To get the first address object, pass in a previous value of NULL.
//
// We assume that the table lock is held while we're in this routine. We don't
// take each object lock, since the local address and port can't change while
// the entry is in the table and the table lock is held so nothing can be
// inserted or deleted.
//
// Input: LocalAddr - Local IP address of object to find (may be NULL);
// LocalPort - Local port of object to find.
// Protocol - Protocol to find.
// PreviousAO - Pointer to last address object found.
//
// Returns: A pointer to the Address object, or NULL if none.
//
AddrObj *
GetAddrObjEx(IPAddr LocalAddr, ushort LocalPort, uchar Protocol, uint LocalIfIndex,
AddrObj * PreviousAO, uint PreviousIndex, uint * CurrentIndex)
{
AddrObj *CurrentAO; // Current address object we're examining.
uint i;
#if DBG
if (PreviousAO != NULL)
CTEStructAssert(PreviousAO, ao);
#endif
// Find the appropriate bucket in the hash table, and search for a match.
// If we don't find one the first time through, we'll try again with a
// wildcard local address.
for (i = PreviousIndex; i < AddrObjTableSize; i++) {
CurrentAO = AddrObjTable[i];
// While we haven't hit the end of the list, examine each element.
while (CurrentAO != NULL) {
CTEStructAssert(CurrentAO, ao);
// If the current one is greater than one we were given, check it.
//
// #62710: Return only valid AO's since we might have stale AO's lying
// around.
//
// we should return only raw AO's from this routine
if ((((i == PreviousIndex) && (CurrentAO > PreviousAO)) || (i != PreviousIndex)) &&
(AO_VALID(CurrentAO)) &&
(CurrentAO->ao_flags & AO_RAW_FLAG)) {
// Matching AO:
// 1. addr / index match / addr NULL && index is 0 AND prot match / prot is 0
// 2. Promiscuous socket
if (
(
(IP_ADDR_EQUAL(CurrentAO->ao_addr, LocalAddr) || (CurrentAO->ao_bindindex == LocalIfIndex) || (IP_ADDR_EQUAL(CurrentAO->ao_addr, NULL_IP_ADDR) && (CurrentAO->ao_bindindex == 0)))
&& ((CurrentAO->ao_prot == Protocol) || (CurrentAO->ao_prot == 0))
) ||
(IS_PROMIS_AO(CurrentAO))
) {
*CurrentIndex = i;
return CurrentAO;
}
}
// Either it was less than the previous one, or they didn't match.
CurrentAO = CurrentAO->ao_next;
}
}
// When we get here, we've hit the end of the table and couldn't find a matching one,
// fail the request
return NULL;
}
//* GetNextAddrObjEx - Overloaded routine called by RAW.
// Get the next address object in a sequential search.
//
// This is the 'get next' routine, called when we are reading the address
// object table sequentially. We pull the appropriate parameters from the
// search context, call GetAddrObj, and update the search context with what
// we find. This routine assumes the AddrObjTableLock is held by the caller.
//
// Input: SearchContext - Pointer to seach context for search taking place.
//
// Returns: Pointer to AddrObj, or NULL if search failed.
//
AddrObj *
GetNextAddrObjEx(AOSearchContextEx * SearchContext)
{
AddrObj *FoundAO; // Pointer to the address object we found.
uint FoundIndex;
ASSERT(SearchContext != NULL);
// Try and find a match.
FoundAO = GetAddrObjEx(SearchContext->asc_addr, SearchContext->asc_port,
SearchContext->asc_prot, SearchContext->asc_ifindex, SearchContext->asc_previous, SearchContext->asc_previousindex, &FoundIndex);
// Found a match. Update the search context for next time.
if (FoundAO != NULL) {
ASSERT(FoundAO->ao_flags & AO_RAW_FLAG);
SearchContext->asc_previous = FoundAO;
SearchContext->asc_previousindex = FoundIndex;
// SearchContext->asc_addr = FoundAO->ao_addr;
// Don't bother to update port or protocol, they don't change.
}
return FoundAO;
}
//* GetFirstAddrObjEx - Overloaded routine called by RAW.
// Get the first matching address object.
//
// The routine called to start a sequential read of the AddrObj table. We
// initialize the provided search context and then call GetNextAddrObj to do
// the actual read. We assume that the AddrObjTableLock is held by the caller.
//
// Input: LocalAddr - Local IP address of object to be found.
// LocalPort - Local port of AO to be found.
// Protocol - Protocol to be found.
// SearchContext - Pointer to search context to be used during
// search.
//
// Returns: Pointer to AO found, or NULL if we couldn't find any.
//
AddrObj *
GetFirstAddrObjEx(IPAddr LocalAddr, ushort LocalPort, uchar Protocol, uint IfIndex,
AOSearchContextEx * SearchContext)
{
ASSERT(SearchContext != NULL);
// Fill in the search context.
SearchContext->asc_previous = NULL; // Haven't found one yet.
SearchContext->asc_addr = LocalAddr;
SearchContext->asc_port = LocalPort;
SearchContext->asc_ifindex = IfIndex;
SearchContext->asc_prot = Protocol;
SearchContext->asc_previousindex = 0;
return GetNextAddrObjEx(SearchContext);
}
//* InsertAddrObj - Insert an address object into the AddrObj table.
//
// Called to insert an AO into the table, assuming the table lock is held. We
// hash on the addr and port, and then insert in into the correct place
// (sorted by address of the objects).
//
// Input: NewAO - Pointer to AddrObj to be inserted.
//
// Returns: Nothing.
//
void
InsertAddrObj(AddrObj * NewAO)
{
AddrObj *PrevAO; // Pointer to previous address object in hash chain.
AddrObj *CurrentAO; // Pointer to current AO in table.
uint Index;
CTEStructAssert(NewAO, ao);
Index = ComputeAddrObjTableIndex(NewAO->ao_addr,
NewAO->ao_port,
NewAO->ao_prot);
PrevAO = STRUCT_OF(AddrObj, &AddrObjTable[Index], ao_next);
CurrentAO = PrevAO->ao_next;
// Loop through the chain until we hit the end or until we find an entry
// whose address is greater than ours.
while (CurrentAO != NULL) {
CTEStructAssert(CurrentAO, ao);
ASSERT(CurrentAO != NewAO); // Debug check to make sure we aren't
// inserting the same entry.
if (NewAO < CurrentAO)
break;
PrevAO = CurrentAO;
CurrentAO = CurrentAO->ao_next;
}
// At this point, PrevAO points to the AO before the new one. Insert it
// there.
ASSERT(PrevAO != NULL);
ASSERT(PrevAO->ao_next == CurrentAO);
NewAO->ao_next = CurrentAO;
PrevAO->ao_next = NewAO;
if (NewAO->ao_prot == PROTOCOL_UDP)
UStats.us_numaddrs++;
}
//* RemoveAddrObj - Remove an address object from the table.
//
// Called when we need to remove an address object from the table. We hash on
// the addr and port, then walk the table looking for the object. We assume
// that the table lock is held.
//
// The AddrObj may have already been removed from the table if it was
// invalidated for some reason, so we need to check for the case of not
// finding it.
//
// Input: DeletedAO - AddrObj to delete.
//
// Returns: Nothing.
//
void
RemoveAddrObj(AddrObj * RemovedAO)
{
AddrObj *PrevAO; // Pointer to previous address object in hash chain.
AddrObj *CurrentAO; // Pointer to current AO in table.
uint Index;
CTEStructAssert(RemovedAO, ao);
Index = ComputeAddrObjTableIndex(RemovedAO->ao_addr,
RemovedAO->ao_port,
RemovedAO->ao_prot);
PrevAO = STRUCT_OF(AddrObj, &AddrObjTable[Index], ao_next);
CurrentAO = PrevAO->ao_next;
// Walk the table, looking for a match.
while (CurrentAO != NULL) {
CTEStructAssert(CurrentAO, ao);
if (CurrentAO == RemovedAO) {
PrevAO->ao_next = CurrentAO->ao_next;
if (CurrentAO->ao_prot == PROTOCOL_UDP) {
UStats.us_numaddrs--;
}
return;
} else {
PrevAO = CurrentAO;
CurrentAO = CurrentAO->ao_next;
}
}
}
//* FindAnyAddrObj - Find an AO with matching port on any local address.
//
// Called for wildcard address opens. We go through the entire addrobj table,
// and see if anyone has the specified port. We assume that the lock is
// already held on the table.
//
// Input: Port - Port to be looked for.
// Protocol - Protocol on which to look.
//
// Returns: Pointer to AO found, or NULL is noone has it.
//
AddrObj *
FindAnyAddrObj(ushort Port, uchar Protocol)
{
uint i; // Index variable.
AddrObj *CurrentAO; // Current AddrObj being examined.
for (i = 0; i < AddrObjTableSize; i++) {
CurrentAO = AddrObjTable[i];
while (CurrentAO != NULL) {
CTEStructAssert(CurrentAO, ao);
if (CurrentAO->ao_port == Port && CurrentAO->ao_prot == Protocol)
return CurrentAO;
else
CurrentAO = CurrentAO->ao_next;
}
}
return NULL;
}
//* RebuildAddrObjBitmap - reconstruct the address-object bitmap from scratch.
//
// Called when we need to reconcile the contents of our lookaside bitmap
// with the actual contents of the address-object table. We clear the bitmap,
// then scan the address-object table and mark each entry's bit as 'in-use'.
// Assumes the caller holds the AddrObjTableLock.
//
// Input: nothing.
//
// Return: nothing.
//
void
RebuildAddrObjBitmap(void)
{
uint i;
AddrObj* CurrentAO;
RtlClearAllBits(&PortBitmapTcp);
RtlClearAllBits(&PortBitmapUdp);
for (i = 0; i < AddrObjTableSize; i++) {
CurrentAO = AddrObjTable[i];
while (CurrentAO != NULL) {
CTEStructAssert(CurrentAO, ao);
if (CurrentAO->ao_prot == PROTOCOL_TCP) {
RtlSetBit(&PortBitmapTcp, net_short(CurrentAO->ao_port));
} else if (CurrentAO->ao_prot == PROTOCOL_UDP) {
RtlSetBit(&PortBitmapUdp, net_short(CurrentAO->ao_port));
}
CurrentAO = CurrentAO->ao_next;
}
}
}
//* GetAddress - Get an IP address and port from a TDI address structure.
//
// Called when we need to get our addressing information from a TDI
// address structure. We go through the structure, and return what we
// find.
//
// Input: AddrList - Pointer to TRANSPORT_ADDRESS structure to search.
// Addr - Pointer to where to return IP address.
// Port - Pointer to where to return Port.
//
// Return: TRUE if we find an address, FALSE if we don't.
//
uchar
GetAddress(TRANSPORT_ADDRESS UNALIGNED * AddrList, IPAddr * Addr, ushort * Port)
{
int i; // Index variable.
TA_ADDRESS *CurrentAddr; // Address we're examining and may use.
// First, verify that someplace in Address is an address we can use.
CurrentAddr = (PTA_ADDRESS) AddrList->Address;
for (i = 0; i < AddrList->TAAddressCount; i++) {
if (CurrentAddr->AddressType == TDI_ADDRESS_TYPE_IP) {
if (CurrentAddr->AddressLength >= TDI_ADDRESS_LENGTH_IP) {
TDI_ADDRESS_IP UNALIGNED *ValidAddr =
(TDI_ADDRESS_IP UNALIGNED *) CurrentAddr->Address;
*Port = ValidAddr->sin_port;
*Addr = ValidAddr->in_addr;
return TRUE;
} else
return FALSE; // Wrong length for address.
} else
CurrentAddr = (PTA_ADDRESS) (CurrentAddr->Address +
CurrentAddr->AddressLength);
}
return FALSE; // Didn't find a match.
}
//* GetSourceArray - Convert a source list to a source array
//
// Called when we're about to delete a group entry (AOMCastAddr)
// and we need to call down to IP with a source array. We walk
// the source list, deleting entries and adding entries to the array
// as we go. Once done, the arguments are ready to be passed to
// ipi_setmcastaddr(). If a SourceList array is returned, the caller
// is responsible for freeing the array.
//
// Input: AMA - Pointer to AOMCastAddr structure to search.
// pFilterMode - Pointer to where to return filter mode.
// pNumSources - Pointer to where to return number of sources.
// pSourceList - Pointer to where to return array pointer.
// DeleteAMA - Delete AMA after creating SourceList
//
TDI_STATUS
GetSourceArray(AOMCastAddr * AMA, uint * pFilterMode, uint * pNumSources,
IPAddr ** pSourceList, BOOLEAN DeleteAMA)
{
AOMCastSrcAddr *ASA;
uint i;
// Compose source array as we delete sources.
*pFilterMode = (AMA->ama_inclusion)? MCAST_INCLUDE:MCAST_EXCLUDE;
*pNumSources = AMA->ama_srccount;
*pSourceList = NULL;
if (AMA->ama_srccount > 0) {
*pSourceList = CTEAllocMemN(AMA->ama_srccount * sizeof(IPAddr), 'amCT');
if (*pSourceList == NULL)
return TDI_NO_RESOURCES;
}
i=0;
ASA = AMA->ama_srclist;
while (ASA) {
(*pSourceList)[i++] = ASA->asa_addr;
if (DeleteAMA) {
AMA->ama_srclist = ASA->asa_next;
AMA->ama_srccount--;
CTEFreeMem(ASA);
ASA = AMA->ama_srclist;
} else {
ASA = ASA->asa_next;
}
}
return TDI_SUCCESS;
}
//* FreeAllSources - delete and free all source state on an AMA
VOID
FreeAllSources(AOMCastAddr * AMA)
{
AOMCastSrcAddr *ASA;
while ((ASA = AMA->ama_srclist) != NULL) {
AMA->ama_srclist = ASA->asa_next;
AMA->ama_srccount--;
CTEFreeMem(ASA);
}
}
TDI_STATUS
AddAOMSource(AOMCastAddr *AMA, ulong SourceAddr);
//* DuplicateAMA - create a duplicate AMA with its own source list
AOMCastAddr *
DuplicateAMA(
IN AOMCastAddr *OldAMA)
{
AOMCastAddr *NewAMA;
AOMCastSrcAddr *OldASA;
TDI_STATUS TdiStatus = TDI_SUCCESS;
NewAMA = CTEAllocMemN(sizeof(AOMCastAddr), 'aPCT');
if (!NewAMA)
return NULL;
*NewAMA = *OldAMA; // struct copy
NewAMA->ama_srccount = 0;
NewAMA->ama_srclist = 0;
// Make a copy of the source list
for (OldASA = OldAMA->ama_srclist; OldASA; OldASA = OldASA->asa_next) {
TdiStatus = AddAOMSource(NewAMA, OldASA->asa_addr);
if (TdiStatus != TDI_SUCCESS)
break;
}
if (TdiStatus != TDI_SUCCESS) {
FreeAllSources(NewAMA);
CTEFreeMem(NewAMA);
return NULL;
}
return NewAMA;
}
//* SetIPMcastAddr - Set mcast filters
//
// Called by ProcessAORequests, with no lock held but the AO must be BUSY,
// to reinstall all multicast addresses on a revalidated interface address.
//
// Input: AO - A "busy" AO on which to check for groups needing rejoining.
// Addr - Interface address being revalidated
//
// Returns: IP_SUCCESS if all revalidates succeeded
//
IP_STATUS
SetIPMCastAddr(AddrObj *AO, IPAddr Addr)
{
TDI_STATUS TdiStatus;
IP_STATUS IpStatus;
AOMCastAddr *MA;
uint FilterMode, NumSources;
IPAddr *SourceList;
ASSERT(AO_BUSY(AO));
// Walk the list of multicast addresses and reinstall each invalid one
// on the indicated interface address.
for (MA = AO->ao_mcastlist; MA; MA = MA->ama_next) {
if (AMA_VALID(MA) || (MA->ama_if_used != Addr)) {
continue;
}
// Compose source array and delete sources from MA
TdiStatus = GetSourceArray(MA, &FilterMode, &NumSources,
&SourceList, FALSE);
if (TdiStatus != TDI_SUCCESS) {
// Treat as if IP returned error
IpStatus = IP_NO_RESOURCES;
} else {
if (FilterMode == MCAST_EXCLUDE) {
IpStatus = (*LocalNetInfo.ipi_setmcastaddr) (MA->ama_addr,
MA->ama_if_used, TRUE, NumSources, SourceList, 0, NULL);
} else {
IpStatus = (*LocalNetInfo.ipi_setmcastinclude) (MA->ama_addr,
MA->ama_if_used, NumSources, SourceList, 0, NULL);
}
}
if (SourceList) {
CTEFreeMem(SourceList);
SourceList = NULL;
}
if (IpStatus != IP_SUCCESS) {
//There is nothing much that can be done to handle resource failures
//just bail out
//
// When this happens, the multicast join will be left in an
// invalid state until the group is left, or until the address
// is invalidated and revalidated again.
return IpStatus;
}
MA->ama_flags |= AMA_VALID_FLAG;
}
return IP_SUCCESS;
}
// Must be called with the AO lock held
TDI_STATUS
RequestSetIPMCastAddr(AddrObj *OptionAO, IPAddr Addr)
{
AORequest *NewRequest, *OldRequest;
// Note that the same code path gets followed here regardless
// of whether the AO is valid or not. We will rejoin groups
// no matter what, as long as the interface joined on is being
// revalidated.
//
// Also note that we cannot set the multicast addresses
// from here because we are already at dispatch level,
// and also because the AO might be busy.
NewRequest = GetAORequest(AOR_TYPE_REVALIDATE_MCAST);
if (NewRequest == NULL) {
return TDI_NO_RESOURCES;
}
NewRequest->aor_rtn = NULL;
NewRequest->aor_context = NULL;
NewRequest->aor_id = Addr;
NewRequest->aor_length = 0;
NewRequest->aor_buffer = NULL;
NewRequest->aor_next = NULL;
SET_AO_REQUEST(OptionAO, AO_OPTIONS); // Set the option request.
OldRequest = STRUCT_OF(AORequest, &OptionAO->ao_request, aor_next);
while (OldRequest->aor_next != NULL)
OldRequest = OldRequest->aor_next;
OldRequest->aor_next = NewRequest;
return TDI_SUCCESS;
}
//* RevalidateAddrs - Revalidate all AOs for a specific address.
//
// Called when we're notified that an IP address is available.
// Walk down the table with the lock held, and take the lock on each AddrObj.
// If the address matches, mark it as valid and reinstall all multicast
// addresses.
//
// Input: Addr - Address to be revalidated.
//
// Returns: Nothing.
//
void
RevalidateAddrs(IPAddr Addr)
{
CTELockHandle TableHandle;
AddrObj *AO, *tmpAO;
uint i;
TDI_STATUS TdiStatus;
// Traverse the address-object hash-table, and revalidate all entries
// matching this IP address. In the process, build a list of multicast
// addresses that we need to reenable at the IP layer once we're done.
CTEGetLock(&AddrObjTableLock.Lock, &TableHandle);
for (i = 0; i < AddrObjTableSize; i++) {
AO = AddrObjTable[i];
while (AO != NULL) {
CTEStructAssert(AO, ao);
CTEGetLockAtDPC(&AO->ao_lock);
if (!AO_REQUEST(AO, AO_DELETE)) {
// Revalidate the address object, if it matches.
if (IP_ADDR_EQUAL(AO->ao_addr, Addr) && !AO_VALID(AO)) {
AO->ao_flags |= AO_VALID_FLAG;
}
// Revalidate the multicast addresses, if any.
if (AO->ao_mcastlist) {
TdiStatus = RequestSetIPMCastAddr(AO, Addr);
if (TdiStatus != TDI_SUCCESS) {
// There is nothing much that can be done to handle
// resource failures. Just bail out.
//
// When this happens, the multicast join will be left
// in an invalid state until the group is left,
// or until the address is invalidated and revalidated
// again.
KdPrintEx((DPFLTR_TCPIP_ID, DPFLTR_INFO_LEVEL,
"SetIPMcastAddr: resource failures\n"));
} else if (!AO_BUSY(AO) && AO->ao_usecnt == 0 &&
!AO_DEFERRED(AO)) {
SET_AO_BUSY(AO);
SET_AO_DEFERRED(AO);
// Schedule processing the revalidation request
// at passive IRQL.
if (!CTEScheduleEvent(&AO->ao_event, AO)) {
CLEAR_AO_DEFERRED(AO);
CLEAR_AO_BUSY(AO);
KdPrintEx((DPFLTR_TCPIP_ID, DPFLTR_INFO_LEVEL,
"SetIPMcastAddr: resource failures\n"));
}
}
}
}
tmpAO = AO->ao_next;
CTEFreeLockFromDPC(&AO->ao_lock);
AO = tmpAO;
} //while
} //for
CTEFreeLock(&AddrObjTableLock.Lock, TableHandle);
}
//* InvalidateAddrs - Invalidate all AOs for a specific address.
//
// Called when we need to invalidate all AOs for a specific address. Walk
// down the table with the lock held, and take the lock on each AddrObj.
// If the address matches, mark it as invalid, pull off all requests,
// and continue. At the end we'll complete all requests with an error.
//
// Input: Addr - Addr to be invalidated.
//
// Returns: Nothing.
//
void
InvalidateAddrs(IPAddr Addr)
{
Queue SendQ;
Queue RcvQ;
AORequest *ReqList;
CTELockHandle TableHandle, AOHandle;
uint i;
AddrObj *AO;
AOMCastAddr *AMA;
DGSendReq *SendReq;
DGRcvReq *RcvReq;
INITQ(&SendQ);
INITQ(&RcvQ);
ReqList = NULL;
CTEGetLock(&AddrObjTableLock.Lock, &TableHandle);
for (i = 0; i < AddrObjTableSize; i++) {
// Walk down each hash bucket, looking for a match.
AO = AddrObjTable[i];
while (AO != NULL) {
CTEStructAssert(AO, ao);
CTEGetLock(&AO->ao_lock, &AOHandle);
if (IP_ADDR_EQUAL(AO->ao_addr, Addr) && AO_VALID(AO)) {
// This one matches. Mark as invalid, then pull his requests.
SET_AO_INVALID(AO);
// Free any IP options we have.
(*LocalNetInfo.ipi_freeopts) (&AO->ao_opt);
// If he has a request on him, pull him off.
if (AO->ao_request != NULL) {
AORequest *Temp;
Temp = STRUCT_OF(AORequest, &AO->ao_request, aor_next);
do {
Temp = Temp->aor_next;
} while (Temp->aor_next != NULL);
Temp->aor_next = ReqList;
ReqList = AO->ao_request;
AO->ao_request = NULL;
CLEAR_AO_REQUEST(AO, AO_OPTIONS);
}
// Go down his send list, pulling things off the send q and
// putting them on our local queue.
while (!EMPTYQ(&AO->ao_sendq)) {
DEQUEUE(&AO->ao_sendq, SendReq, DGSendReq, dsr_q);
CTEStructAssert(SendReq, dsr);
ENQUEUE(&SendQ, &SendReq->dsr_q);
}
CLEAR_AO_REQUEST(AO, AO_SEND);
// Do the same for the receive queue.
while (!EMPTYQ(&AO->ao_rcvq)) {
DEQUEUE(&AO->ao_rcvq, RcvReq, DGRcvReq, drr_q);
CTEStructAssert(RcvReq, drr);
ENQUEUE(&RcvQ, &RcvReq->drr_q);
}
}
// Now look for AOMCastAddr structures that need to be invalidated
for (AMA=AO->ao_mcastlist; AMA; AMA=AMA->ama_next) {
if (IP_ADDR_EQUAL(AMA->ama_if_used, Addr) && AMA_VALID(AMA)) {
SET_AMA_INVALID(AMA);
}
}
CTEFreeLock(&AO->ao_lock, AOHandle);
AO = AO->ao_next; // Go to the next one.
}
}
CTEFreeLock(&AddrObjTableLock.Lock, TableHandle);
// OK, now walk what we've collected, complete it, and free it.
while (ReqList != NULL) {
AORequest *Req;
Req = ReqList;
ReqList = Req->aor_next;
// Take care of new setIPMcastAddr code that sets aor_rtn to NULL
if (Req->aor_rtn) {
(*Req->aor_rtn) (Req->aor_context, (uint) TDI_ADDR_INVALID, 0);
}
FreeAORequest(Req);
}
// Walk down the rcv. q, completing and freeing requests.
while (!EMPTYQ(&RcvQ)) {
DEQUEUE(&RcvQ, RcvReq, DGRcvReq, drr_q);
CTEStructAssert(RcvReq, drr);
(*RcvReq->drr_rtn) (RcvReq->drr_context, (uint) TDI_ADDR_INVALID, 0);
FreeDGRcvReq(RcvReq);
}
// Now do the same for sends.
while (!EMPTYQ(&SendQ)) {
DEQUEUE(&SendQ, SendReq, DGSendReq, dsr_q);
CTEStructAssert(SendReq, dsr);
(*SendReq->dsr_rtn) (SendReq->dsr_context, (uint) TDI_ADDR_INVALID, 0);
if (SendReq->dsr_header != NULL) {
FreeDGHeader(SendReq->dsr_header);
}
FreeDGSendReq(SendReq);
}
}
//* RequestEventProc - Handle a deferred request event.
//
// Called when the event scheduled by DelayDerefAO is called.
// We just call ProcessAORequest.
//
// Input: Event - Event that fired.
// Context - Pointer to AddrObj.
//
// Returns: Nothing.
//
void
RequestEventProc(CTEEvent * Event, void *Context)
{
AddrObj *AO = (AddrObj *) Context;
CTELockHandle AOHandle;
CTEStructAssert(AO, ao);
CTEGetLock(&AO->ao_lock, &AOHandle);
CLEAR_AO_DEFERRED(AO);
CTEFreeLock(&AO->ao_lock, AOHandle);
ProcessAORequests(AO);
}
//* GetAddrOptions - Get the address options.
//
// Called when we're opening an address. We take in a pointer, and walk
// down it looking for address options we know about.
//
// Input: Ptr - Ptr to search.
// Reuse - Pointer to reuse variable.
// DHCPAddr - Pointer to DHCP addr.
//
// Returns: Nothing.
//
void
GetAddrOptions(void *Ptr, uchar * Reuse, uchar * DHCPAddr)
{
uchar *OptPtr;
*Reuse = 0;
*DHCPAddr = 0;
DEBUGMSG(DBG_TRACE && DBG_DHCP,
(DTEXT("+GetAddrOptions(%x, %x, %x)\n"), Ptr, Reuse, DHCPAddr));
if (Ptr == NULL) {
DEBUGMSG(DBG_TRACE && DBG_DHCP,
(DTEXT("-GetAddrOptions {NULL Ptr}.\n")));
return;
}
OptPtr = (uchar *) Ptr;
while (*OptPtr != TDI_OPTION_EOL) {
if (*OptPtr == TDI_ADDRESS_OPTION_REUSE)
*Reuse = 1;
else if (*OptPtr == TDI_ADDRESS_OPTION_DHCP)
*DHCPAddr = 1;
OptPtr++;
}
DEBUGMSG(DBG_TRACE && DBG_DHCP,
(DTEXT("-GetAddrOptions {Reuse=%d, DHCPAddr=%d}\n"), *Reuse, *DHCPAddr));
}
//* CheckAddrReuse - enforce port-sharing rules for a new TDI address object.
//
// Called when opening an address, to determine whether the open should
// succeed in the presence of previous binds to the same port.
//
// N.B. Assumes the caller holds both AddrSDMutex and AddrObjTableLock.
// The latter is freed and reacquired in this routine.
//
// Input: Request - Pointer to a TDI request structure for this request.
// Protocol - Protocol on which to open the address.
// Addr - Local IP address to open.
// Port - Local port number to open.
// NewReuse - indicates if reuse requested for the open.
// NewSD - captured security-descriptor for the open.
// TableHandle - lock handle for AO table.
//
// Returns: TDI_STATUS code of attempt.
//
TDI_STATUS
CheckAddrReuse(PTDI_REQUEST Request, uint Protocol, IPAddr Addr, ushort Port,
BOOLEAN NewReuse, PSECURITY_DESCRIPTOR NewSD,
CTELockHandle* TableHandle)
{
PACCESS_STATE AccessState;
BOOLEAN AllowReuse;
AddrObj* ExistingAO;
BOOLEAN ExistingReuse;
PSECURITY_DESCRIPTOR ExistingSD;
PIRP Irp;
PIO_STACK_LOCATION IrpSp;
ACCESS_MASK GrantedAccess;
NTSTATUS status;
// Look for an existing AO and succeed if none.
// Otherwise, capture its reuse flag and security-descriptor.
ExistingAO = GetBestAddrObj(Addr, Port, (uchar)Protocol,
GAO_FLAG_INCLUDE_ALL);
if (ExistingAO == NULL && IP_ADDR_EQUAL(Addr, NULL_IP_ADDR) &&
NewSD == NULL) {
ExistingAO = FindAnyAddrObj(Port, (uchar)Protocol);
}
if (ExistingAO == NULL) {
return TDI_SUCCESS;
}
do {
// We've got at least one AO, so see if it allows reuse.
// Note that we may need to repeat this for every AO on this port
// in the case where we have multiple AOs sharing the port already,
// since each AO has its own security descriptor. In that event,
// we look at the AOs until one denies access or we've seen them all.
ExistingReuse = !!AO_SHARE(ExistingAO);
ExistingSD = ExistingAO->ao_sd;
// Succeed immediately if reuse enabled on both instances.
// Otherwise, fail if the two instances have the exact same address
// (whether it's wildcard or specific).
if (ExistingReuse && NewReuse) {
return TDI_SUCCESS;
}
if (IP_ADDR_EQUAL(ExistingAO->ao_addr, Addr)) {
return TDI_ADDR_IN_USE;
}
// The two instances have different addresses, and at least one of them
// doesn't have reuse enabled. If the new instance is on the wildcard
// address, the old instance must be on a specific address.
// Allow the bind unless the new instance wants exclusive access
// (i.e. NewSD == NULL).
if (IP_ADDR_EQUAL(Addr, NULL_IP_ADDR)) {
if (NewSD == NULL) {
return TDI_ADDR_IN_USE;
}
return TDI_SUCCESS;
}
// The two instances have different addresses, and the new instance is
// on a specific address. If the old instance is on a specific address
// too, the two are disjoint and can peacefully coexist.
if (!IP_ADDR_EQUAL(ExistingAO->ao_addr, NULL_IP_ADDR)) {
return TDI_SUCCESS;
}
// The new instance is on a specific address and the old instance is on
// the wildcard address. If the old instance wanted exclusive access
// (i.e. ExistingSD == NULL) fail the new instance right away.
// Otherwise, drop the AO table lock and perform an access check
// to see if it's OK for the new instance to steal some traffic from
// the old instance.
//
// N.B. Even though we've dropped the AO table lock, ExistingSD is safe
// since we still have the AO SD mutex.
if (ExistingSD == NULL) {
return STATUS_ACCESS_DENIED;
}
ASSERT(*TableHandle <= PASSIVE_LEVEL);
CTEFreeLock(&AddrObjTableLock.Lock, *TableHandle);
Irp = (PIRP)Request->RequestContext;
IrpSp = IoGetCurrentIrpStackLocation(Irp);
AccessState = IrpSp->Parameters.Create.SecurityContext->AccessState;
SeLockSubjectContext(&AccessState->SubjectSecurityContext);
AllowReuse = SeAccessCheck(ExistingSD, &AccessState->SubjectSecurityContext,
TRUE, FILE_READ_DATA|FILE_WRITE_DATA, 0,
NULL, IoGetFileObjectGenericMapping(),
(IrpSp->Flags & SL_FORCE_ACCESS_CHECK)
? UserMode : Irp->RequestorMode,
&GrantedAccess, &status);
SeUnlockSubjectContext(&AccessState->SubjectSecurityContext);
CTEGetLock(&AddrObjTableLock.Lock, TableHandle);
if (!AllowReuse) {
return status;
}
// The existing wildcard AO doesn't mind if the new instance takes
// some of its traffic. If the existing AO has reuse enabled, there
// might be others too on the port, so we'll look for them and do an
// access check against their security-descriptors too.
} while(ExistingReuse &&
(ExistingAO = GetAddrObj(NULL_IP_ADDR, Port, (uchar)Protocol,
ExistingAO, GAO_FLAG_INCLUDE_ALL)) != NULL);
return TDI_SUCCESS;
}
//* TdiOpenAddress - Open a TDI address object.
//
// This is the external interface to open an address. The caller provides a
// TDI_REQUEST structure and a TRANSPORT_ADDRESS structure, as well a pointer
// to a variable identifying whether or not we are to allow reuse of an
// address while it's still open.
//
// Input: Request - Pointer to a TDI request structure for this request.
// AddrList - Pointer to TRANSPORT_ADDRESS structure describing
// address to be opened.
// Protocol - Protocol on which to open the address. Only the
// least significant byte is used.
// Ptr - Pointer to option buffer.
// IsRawOpen - If this is a RAW address object open.
//
// Returns: TDI_STATUS code of attempt.
//
TDI_STATUS
TdiOpenAddress(PTDI_REQUEST Request, TRANSPORT_ADDRESS UNALIGNED * AddrList,
uint Protocol, void *Ptr, PSECURITY_DESCRIPTOR AddrSD, BOOLEAN IsRawOpen)
{
uint i; // Index variable
ushort Port; // Local Port we'll use.
IPAddr LocalAddr; // Actual address we'll use.
AddrObj *NewAO; // New AO we'll use.
AddrObj *ExistingAO; // Pointer to existing AO, if any.
CTELockHandle Handle;
uchar Reuse, DHCPAddr;
PRTL_BITMAP PortBitmap;
if (!GetAddress(AddrList, &LocalAddr, &Port)) {
return TDI_BAD_ADDR;
}
// Find the address options we might need.
GetAddrOptions(Ptr, &Reuse, &DHCPAddr);
// Allocate the new addr obj now, assuming that
// we need it, so we don't have to do it with locks held later.
NewAO = CTEAllocMemN(sizeof(AddrObj), 'APCT');
if (NewAO == NULL) {
return TDI_NO_RESOURCES;
}
NdisZeroMemory(NewAO, sizeof(AddrObj));
// Check to make sure IP address is one of our local addresses. This
// is protected with the address table lock, so we can interlock an IP
// address going away through DHCP.
KeWaitForSingleObject(&AddrSDMutex, Executive, KernelMode, FALSE, NULL);
CTEGetLock(&AddrObjTableLock.Lock, &Handle);
if (!IP_ADDR_EQUAL(LocalAddr, NULL_IP_ADDR)) { // Not a wildcard.
// Call IP to find out if this is a local address.
if ((*LocalNetInfo.ipi_getaddrtype) (LocalAddr) != DEST_LOCAL) {
// Not a local address. Fail the request.
CTEFreeLock(&AddrObjTableLock.Lock, Handle);
KeReleaseMutex(&AddrSDMutex, FALSE);
CTEFreeMem(NewAO);
return TDI_BAD_ADDR;
}
}
// The specified IP address is a valid local address. Now we do
// protocol-specific processing.
if (Protocol == PROTOCOL_TCP) {
PortBitmap = &PortBitmapTcp;
} else if ((Protocol == PROTOCOL_UDP) && !IsRawOpen) {
PortBitmap = &PortBitmapUdp;
} else {
PortBitmap = NULL;
}
if (PortBitmap) {
// If no port is specified we have to assign one. If there is a
// port specified, we need to make sure that the IPAddress/Port
// combo isn't already open (unless Reuse is specified). If the
// input address is a wildcard, we need to make sure the address
// isn't open on any local ip address.
if (Port == WILDCARD_PORT) { // Have a wildcard port, need to assign an
// address.
Port = NextUserPort;
ExistingAO = NULL;
for (i = 0; i < NUM_USER_PORTS; i++, Port++) {
ushort NetPort; // Port in net byte order.
if (Port > MaxUserPort) {
Port = MIN_USER_PORT;
RebuildAddrObjBitmap();
}
if (PortRangeList) {
ReservedPortListEntry *tmpEntry = PortRangeList;
while (tmpEntry) {
if ((Port <= tmpEntry->UpperRange) && (Port >= tmpEntry->LowerRange)) {
Port = tmpEntry->UpperRange + 1;
if (Port > MaxUserPort) {
Port = MIN_USER_PORT;
RebuildAddrObjBitmap();
}
}
tmpEntry = tmpEntry->next;
}
}
NetPort = net_short(Port);
if (IP_ADDR_EQUAL(LocalAddr, NULL_IP_ADDR)) { // Wildcard IP
// address.
if (!RtlCheckBit(PortBitmap, Port))
break;
else
continue;
} else {
ExistingAO = GetBestAddrObj(LocalAddr, NetPort,
(uchar)Protocol,
GAO_FLAG_INCLUDE_ALL);
}
if (ExistingAO == NULL)
break; // Found an unused port.
} //for loop
if (i == NUM_USER_PORTS) { // Couldn't find a free port.
CTEFreeLock(&AddrObjTableLock.Lock, Handle);
KeReleaseMutex(&AddrSDMutex, FALSE);
CTEFreeMem(NewAO);
return TDI_NO_FREE_ADDR;
}
NextUserPort = Port + 1;
Port = net_short(Port);
} else { // Port was specificed
// Don't check if a DHCP address is specified.
if (!DHCPAddr) {
ReservedPortListEntry *CurrEntry = BlockedPortList;
ushort HostPort = net_short(Port);
TDI_STATUS status;
// Check whether the port specified lies in the BlockedPortList
// if yes, fail the request
while (CurrEntry) {
if ((HostPort >= CurrEntry->LowerRange) && (HostPort <= CurrEntry->UpperRange)) {
// Port lies in the blocked port list
CTEFreeLock(&AddrObjTableLock.Lock, Handle);
KeReleaseMutex(&AddrSDMutex, FALSE);
CTEFreeMem(NewAO);
return TDI_ADDR_IN_USE;
} else if (HostPort > CurrEntry->UpperRange) {
CurrEntry = CurrEntry->next;
} else {
// the list is sorted; Port is not in the list
break;
}
}
// See if we already have this address open and, if so,
// decide whether this request should succeed.
//
status = CheckAddrReuse(Request, Protocol, LocalAddr, Port,
Reuse, AddrSD, &Handle);
if (status != TDI_SUCCESS) {
CTEFreeLock(&AddrObjTableLock.Lock, Handle);
KeReleaseMutex(&AddrSDMutex, FALSE);
CTEFreeMem(NewAO);
return status;
}
}
}
//
// We have a new AO. Set up the protocol specific portions
//
if (Protocol == PROTOCOL_UDP) {
NewAO->ao_dgsend = UDPSend;
NewAO->ao_maxdgsize = 0xFFFF - sizeof(UDPHeader);
}
SET_AO_XSUM(NewAO); // Checksumming defaults to on.
SET_AO_BROADCAST(NewAO); //Set Broadcast on by default
} else {
//
// All other protocols are opened over Raw IP. For now we don't
// do any duplicate checks.
//
ASSERT(!DHCPAddr);
//
// We must set the port to zero. This puts all the raw sockets
// in one hash bucket, which is necessary for GetAddrObj to
// work correctly. It wouldn't be a bad idea to come up with
// a better scheme...
//
Port = 0;
NewAO->ao_dgsend = RawSend;
NewAO->ao_maxdgsize = 0xFFFF;
NewAO->ao_flags |= AO_RAW_FLAG;
IF_TCPDBG(TCP_DEBUG_RAW) {
TCPTRACE(("raw open protocol %u AO %lx\n", Protocol, NewAO));
}
}
// When we get here, we know we're creating a brand new address object.
// Port contains the port in question, and NewAO points to the newly
// created AO.
(*LocalNetInfo.ipi_initopts) (&NewAO->ao_opt);
(*LocalNetInfo.ipi_initopts) (&NewAO->ao_mcastopt);
NewAO->ao_mcastopt.ioi_ttl = 1;
NewAO->ao_opt.ioi_tos = (uchar) DefaultTOSValue;
NewAO->ao_mcastopt.ioi_tos = (uchar) DefaultTOSValue;
NewAO->ao_bindindex = 0;
NewAO->ao_mcast_loop = 1; //Enable mcast loopback by default
NewAO->ao_rcvall = RCVALL_OFF; //Disable receipt of promis pkts
NewAO->ao_rcvall_mcast = RCVALL_OFF; //Disable receipt of promis mcast pkts
NewAO->ao_absorb_rtralert = 0; // Disable receipt of absorbed rtralert pkts
CTEInitLock(&NewAO->ao_lock);
CTEInitEvent(&NewAO->ao_event, RequestEventProc);
INITQ(&NewAO->ao_sendq);
INITQ(&NewAO->ao_pendq);
INITQ(&NewAO->ao_rcvq);
INITQ(&NewAO->ao_activeq);
INITQ(&NewAO->ao_idleq);
INITQ(&NewAO->ao_listenq);
NewAO->ao_port = Port;
NewAO->ao_addr = LocalAddr;
NewAO->ao_prot = (uchar) Protocol;
#if DBG
NewAO->ao_sig = ao_signature;
#endif
NewAO->ao_flags |= AO_VALID_FLAG; // AO is valid.
NewAO->ao_sd = AddrSD;
if (DHCPAddr) {
NewAO->ao_flags |= AO_DHCP_FLAG;
}
if (Reuse) {
SET_AO_SHARE(NewAO);
}
#if !MILLEN
NewAO->ao_owningpid = HandleToUlong(PsGetCurrentProcessId());
#endif
InsertAddrObj(NewAO);
if (PortBitmap) {
RtlSetBit(PortBitmap, net_short(Port));
}
CTEFreeLock(&AddrObjTableLock.Lock, Handle);
KeReleaseMutex(&AddrSDMutex, FALSE);
Request->Handle.AddressHandle = NewAO;
return TDI_SUCCESS;
}
//* DeleteAO - Delete an address object.
//
// The internal routine to delete an address object. We complete any pending
// requests with errors, and remove and free the address object.
//
// Input: DeletedAO - AddrObj to be deleted.
//
// Returns: Nothing.
//
void
DeleteAO(AddrObj * DeletedAO)
{
CTELockHandle TableHandle; // Lock handles we'll use here.
#ifndef UDP_ONLY
CTELockHandle TCBHandle;
TCB *TCBHead = NULL, *CurrentTCB;
TCPConn *Conn;
Queue *Temp;
Queue *CurrentQ;
CTEReqCmpltRtn Rtn; // Completion routine.
PVOID Context; // User context for completion routine.
#endif
AOMCastAddr *AMA;
PSECURITY_DESCRIPTOR AddrSD;
CTEStructAssert(DeletedAO, ao);
ASSERT(!AO_VALID(DeletedAO));
ASSERT(DeletedAO->ao_usecnt == 0);
CTEGetLock(&AddrObjTableLock.Lock, &TableHandle);
CTEGetLockAtDPC(&DeletedAO->ao_lock);
// If he's on an oor queue, remove him.
if (AO_OOR(DeletedAO)) {
InterlockedRemoveQueueItemAtDpcLevel(&DeletedAO->ao_pendq,
&DGQueueLock.Lock);
}
RemoveAddrObj(DeletedAO);
// Walk down the list of associated connections and zap their AO pointers.
// For each connection, we need to shut down the connection if it's active.
// If the connection isn't already closing, we'll put a reference on it
// so that it can't go away while we're dealing with the AO, and put it
// on a list. On our way out we'll walk down that list and zap each
// connection.
CurrentQ = &DeletedAO->ao_activeq;
DeletedAO->ao_usecnt++;
CTEFreeLockFromDPC(&DeletedAO->ao_lock);
for (;;) {
Temp = QHEAD(CurrentQ);
while (Temp != QEND(CurrentQ)) {
Conn = QSTRUCT(TCPConn, Temp, tc_q);
CTEGetLockAtDPC(&(Conn->tc_ConnBlock->cb_lock));
#if DBG
Conn->tc_ConnBlock->line = (uint) __LINE__;
Conn->tc_ConnBlock->module = (uchar *) __FILE__;
#endif
//
// Move our temp pointer to the next connection now,
// since we may free this connection below.
//
Temp = QNEXT(Temp);
CTEStructAssert(Conn, tc);
CurrentTCB = Conn->tc_tcb;
if (CurrentTCB != NULL) {
// We have a TCB.
CTEStructAssert(CurrentTCB, tcb);
CTEGetLock(&CurrentTCB->tcb_lock, &TCBHandle);
if (CurrentTCB->tcb_state != TCB_CLOSED && !CLOSING(CurrentTCB)) {
// It's not closing. Put a reference on it and save it on the
// list.
REFERENCE_TCB(CurrentTCB);
CurrentTCB->tcb_aonext = TCBHead;
TCBHead = CurrentTCB;
}
CurrentTCB->tcb_conn = NULL;
CurrentTCB->tcb_rcvind = NULL;
if ((CurrentTCB->tcb_rcvhndlr == IndicateData) &&
(CurrentTCB->tcb_indicated == 0)) {
if (CurrentTCB->tcb_currcv != NULL) {
CurrentTCB->tcb_rcvhndlr = BufferData;
} else {
CurrentTCB->tcb_rcvhndlr = PendData;
}
}
CTEFreeLock(&CurrentTCB->tcb_lock, TCBHandle);
//
// Subtract one from the connection's ref count, since we
// are about to remove this TCB from the connection.
//
if (--(Conn->tc_refcnt) == 0) {
//
// We need to execute the code for the done
// routine. There are only three done routines that can
// be called. CloseDone(), DisassocDone(), and DummyDone().
// We execute the respective code here to avoid freeing locks.
// Note: DummyDone() does nothing.
//
if (Conn->tc_flags & CONN_CLOSING) {
//
// This is the relevant CloseDone() code.
//
CTEFreeLockFromDPC(&(Conn->tc_ConnBlock->cb_lock));
Rtn = Conn->tc_rtn;
Context = Conn->tc_rtncontext;
FreeConn(Conn);
(*Rtn) (Context, TDI_SUCCESS, 0);
} else if (Conn->tc_flags & CONN_DISACC) {
//
// This is the relevant DisassocDone() code.
//
Rtn = Conn->tc_rtn;
Context = Conn->tc_rtncontext;
Conn->tc_flags &= ~CONN_DISACC;
Conn->tc_ao = NULL;
Conn->tc_tcb = NULL;
CTEFreeLockFromDPC(&(Conn->tc_ConnBlock->cb_lock));
(*Rtn) (Context, TDI_SUCCESS, 0);
} else {
Conn->tc_ao = NULL;
Conn->tc_tcb = NULL;
CTEFreeLockFromDPC(&(Conn->tc_ConnBlock->cb_lock));
}
} else {
Conn->tc_ao = NULL;
Conn->tc_tcb = NULL;
CTEFreeLockFromDPC(&(Conn->tc_ConnBlock->cb_lock));
}
} else {
Conn->tc_ao = NULL;
CTEFreeLockFromDPC(&(Conn->tc_ConnBlock->cb_lock));
}
}
if (CurrentQ == &DeletedAO->ao_activeq) {
CurrentQ = &DeletedAO->ao_idleq;
} else if (CurrentQ == &DeletedAO->ao_idleq) {
CurrentQ = &DeletedAO->ao_listenq;
} else {
ASSERT(CurrentQ == &DeletedAO->ao_listenq);
break;
}
}
//get the aolock again
CTEGetLockAtDPC(&DeletedAO->ao_lock);
DeletedAO->ao_usecnt--;
// We've removed him from the queues, and he's marked as invalid. Return
// pending requests with errors.
CTEFreeLockFromDPC(&AddrObjTableLock.Lock);
// We still hold the lock on the AddrObj, although this may not be
// neccessary.
if (DeletedAO->ao_rce) {
IF_TCPDBG(TCP_DEBUG_CONUDP) {
KdPrintEx((DPFLTR_TCPIP_ID, DPFLTR_INFO_LEVEL, "Deleteao: deleting rce %x %x\n", DeletedAO, DeletedAO->ao_rce));
}
(*LocalNetInfo.ipi_closerce) (DeletedAO->ao_rce);
DeletedAO->ao_rce = NULL;
}
while (!EMPTYQ(&DeletedAO->ao_rcvq)) {
DGRcvReq *Rcv;
DEQUEUE(&DeletedAO->ao_rcvq, Rcv, DGRcvReq, drr_q);
CTEStructAssert(Rcv, drr);
CTEFreeLock(&DeletedAO->ao_lock, TableHandle);
(*Rcv->drr_rtn) (Rcv->drr_context, (uint) TDI_ADDR_DELETED, 0);
FreeDGRcvReq(Rcv);
CTEGetLock(&DeletedAO->ao_lock, &TableHandle);
}
// Now destroy any sends.
while (!EMPTYQ(&DeletedAO->ao_sendq)) {
DGSendReq *Send;
DEQUEUE(&DeletedAO->ao_sendq, Send, DGSendReq, dsr_q);
CTEStructAssert(Send, dsr);
CTEFreeLock(&DeletedAO->ao_lock, TableHandle);
(*Send->dsr_rtn) (Send->dsr_context, (uint) TDI_ADDR_DELETED, 0);
if (Send->dsr_header != NULL) {
FreeDGHeader(Send->dsr_header);
}
FreeDGSendReq(Send);
CTEGetLock(&DeletedAO->ao_lock, &TableHandle);
}
AddrSD = DeletedAO->ao_sd;
CTEFreeLock(&DeletedAO->ao_lock, TableHandle);
// Free any IP options we have.
(*LocalNetInfo.ipi_freeopts) (&DeletedAO->ao_opt);
// Free any associated multicast addresses.
AMA = DeletedAO->ao_mcastlist;
while (AMA != NULL) {
AOMCastAddr *Temp;
uint FilterMode, NumSources;
IPAddr *SourceList = NULL;
TDI_STATUS TdiStatus;
// Compose source array as we delete sources.
TdiStatus = GetSourceArray(AMA, &FilterMode, &NumSources, &SourceList, TRUE);
if (TdiStatus == TDI_SUCCESS) {
// Since the following calls down to IP always delete state, never
// add state, they should always succeed.
if (AMA_VALID(AMA)) {
if (FilterMode == MCAST_EXCLUDE) {
(*LocalNetInfo.ipi_setmcastaddr) (AMA->ama_addr, AMA->ama_if_used, FALSE,
NumSources, SourceList, 0, NULL);
} else {
(*LocalNetInfo.ipi_setmcastinclude) (AMA->ama_addr, AMA->ama_if_used,
0, NULL,
NumSources, SourceList);
}
}
} else {
AOMCastSrcAddr *ASA;
//
// We now need to delete all sources in a way that doesn't require
// allocating any memory. This method is much less efficient
// since it may cause lots of IGMP messages to be sent
//
while ((ASA = AMA->ama_srclist) != NULL) {
if (AMA_VALID(AMA)) {
if (FilterMode == MCAST_EXCLUDE) {
(*LocalNetInfo.ipi_setmcastexclude) (AMA->ama_addr,
AMA->ama_if_used, 0, NULL,
1, &ASA->asa_addr);
} else {
(*LocalNetInfo.ipi_setmcastinclude) (AMA->ama_addr,
AMA->ama_if_used, 0, NULL,
1, &ASA->asa_addr);
}
}
AMA->ama_srclist = ASA->asa_next;
CTEFreeMem(ASA);
}
}
Temp = AMA;
AMA = AMA->ama_next;
CTEFreeMem(Temp);
if (SourceList) {
CTEFreeMem(SourceList);
SourceList = NULL;
}
}
if (DeletedAO->ao_RemoteAddress) {
CTEFreeMem(DeletedAO->ao_RemoteAddress);
}
if (DeletedAO->ao_Options) {
CTEFreeMem(DeletedAO->ao_Options);
}
if (DeletedAO->ao_iflist) {
CTEFreeMem(DeletedAO->ao_iflist);
}
if (AddrSD != NULL) {
KeWaitForSingleObject(&AddrSDMutex, Executive, KernelMode, FALSE, NULL);
ObDereferenceSecurityDescriptor(AddrSD, 1);
KeReleaseMutex(&AddrSDMutex, FALSE);
}
CTEFreeMem(DeletedAO);
// Now go down the TCB list, and destroy any we need to.
CurrentTCB = TCBHead;
while (CurrentTCB != NULL) {
TCB *NextTCB;
CTEGetLock(&CurrentTCB->tcb_lock, &TCBHandle);
CurrentTCB->tcb_flags |= NEED_RST; // Make sure we send a RST.
NextTCB = CurrentTCB->tcb_aonext;
TryToCloseTCB(CurrentTCB, TCB_CLOSE_ABORTED, TCBHandle);
CTEGetLock(&CurrentTCB->tcb_lock, &TCBHandle);
DerefTCB(CurrentTCB, TCBHandle);
CurrentTCB = NextTCB;
}
}
//* GetAORequest - Get an AO request structure.
//
// A routine to allocate a request structure from our free list.
//
// Input: Nothing.
//
// Returns: Pointer to request structure, or NULL if we couldn't get one.
//
AORequest *
GetAORequest(uint Type)
{
AORequest *NewRequest;
NewRequest = (AORequest *)CTEAllocMemN(sizeof(AORequest), 'R1CT');
if (NewRequest) {
#if DBG
NewRequest->aor_sig = aor_signature;
#endif
NewRequest->aor_type = Type;
}
return NewRequest;
}
//* FreeAORequest - Free an AO request structure.
//
// Called to free an AORequest structure. N.B. Delete requests are always
// allocated as part of the IRP and should never be freed.
//
// Input: Request - AORequest structure to be freed.
//
// Returns: Nothing.
//
void
FreeAORequest(AORequest * Request)
{
CTEStructAssert(Request, aor);
ASSERT(Request->aor_type != AOR_TYPE_DELETE);
CTEFreeMem(Request);
}
//* TDICloseAddress - Close an address.
//
// The user API to delete an address. Basically, we destroy the local address
// object if we can.
//
// This routine is interlocked with the AO busy bit - if the busy bit is set,
// we'll just flag the AO for later deletion.
//
// Input: Request - TDI_REQUEST structure for this request.
//
// Returns: Status of attempt to delete the address - either pending or
// success.
//
TDI_STATUS
TdiCloseAddress(PTDI_REQUEST Request)
{
AddrObj *DeletingAO;
CTELockHandle AOHandle;
AddrObj *CurrentAO = NULL;
uint i;
CTELockHandle TableHandle;
PIO_STACK_LOCATION irpSp;
irpSp = IoGetCurrentIrpStackLocation((PIRP) Request->RequestContext);
DeletingAO = Request->Handle.AddressHandle;
CTEStructAssert(DeletingAO, ao);
if (DeletingAO->ao_rcvall == RCVALL_ON) {
uint On = CLEAR_IF;
CTEGetLock(&AddrObjTableLock.Lock, &TableHandle);
DeletingAO->ao_rcvall = RCVALL_OFF;
for (i = 0; i < AddrObjTableSize; i++) {
CurrentAO = AddrObjTable[i];
while (CurrentAO != NULL) {
CTEStructAssert(CurrentAO, ao);
if (CurrentAO->ao_rcvall == RCVALL_ON &&
CurrentAO->ao_promis_ifindex == DeletingAO->ao_promis_ifindex) {
// there is another AO on same interface with RCVALL option,
// break don't do anything
On = SET_IF;
i = AddrObjTableSize;
break;
}
if (CurrentAO->ao_rcvall_mcast == RCVALL_ON &&
CurrentAO->ao_promis_ifindex == DeletingAO->ao_promis_ifindex) {
// there is another AO with MCAST option,
// continue to find any RCVALL AO
On = CLEAR_CARD;
}
CurrentAO = CurrentAO->ao_next;
}
}
CTEFreeLock(&AddrObjTableLock.Lock, TableHandle);
if (On != SET_IF) {
// DeletingAO was the last object in all promiscuous mode
(*LocalNetInfo.ipi_setndisrequest)(DeletingAO->ao_addr,
NDIS_PACKET_TYPE_PROMISCUOUS,
On, DeletingAO->ao_bindindex);
}
}
if (DeletingAO->ao_rcvall_mcast == RCVALL_ON) {
uint On = CLEAR_IF;
CTEGetLock(&AddrObjTableLock.Lock, &TableHandle);
DeletingAO->ao_rcvall_mcast = RCVALL_OFF;
for (i = 0; i < AddrObjTableSize; i++) {
CurrentAO = AddrObjTable[i];
while (CurrentAO != NULL) {
if (CurrentAO->ao_rcvall_mcast == RCVALL_ON &&
CurrentAO->ao_promis_ifindex == DeletingAO->ao_promis_ifindex) {
// there is another AO with MCAST option,
// break don't do anything
On = SET_IF;
i = AddrObjTableSize;
break;
}
if (CurrentAO->ao_rcvall == RCVALL_ON &&
CurrentAO->ao_promis_ifindex == DeletingAO->ao_promis_ifindex) {
// there is another AO with RCVALL option,
// continue to find any MCAST AO
On = CLEAR_CARD;
}
CurrentAO = CurrentAO->ao_next;
}
}
CTEFreeLock(&AddrObjTableLock.Lock, TableHandle);
if (On != SET_IF) {
// DeletingAO was the last object in all mcast mode
(*LocalNetInfo.ipi_setndisrequest)(DeletingAO->ao_addr,
NDIS_PACKET_TYPE_ALL_MULTICAST,
On, DeletingAO->ao_bindindex);
}
}
if (DeletingAO->ao_absorb_rtralert) {
CTEGetLock(&AddrObjTableLock.Lock, &TableHandle);
DeletingAO->ao_absorb_rtralert = 0;
for (i = 0; i < AddrObjTableSize; i++) {
CurrentAO = AddrObjTable[i];
while (CurrentAO != NULL) {
if (CurrentAO->ao_absorb_rtralert &&
(IP_ADDR_EQUAL(CurrentAO->ao_addr, DeletingAO->ao_addr) ||
CurrentAO->ao_bindindex == DeletingAO->ao_bindindex)) {
break;
}
CurrentAO = CurrentAO->ao_next;
}
}
CTEFreeLock(&AddrObjTableLock.Lock, TableHandle);
if (CurrentAO == NULL) {
// this was the last socket like this on this interface
(*LocalNetInfo.ipi_absorbrtralert)(DeletingAO->ao_addr, 0,
DeletingAO->ao_bindindex);
}
}
CTEGetLock(&DeletingAO->ao_lock, &AOHandle);
if (!AO_BUSY(DeletingAO) && !(DeletingAO->ao_usecnt)) {
SET_AO_BUSY(DeletingAO);
SET_AO_INVALID(DeletingAO); // This address object is
// deleting.
CTEFreeLock(&DeletingAO->ao_lock, AOHandle);
DeleteAO(DeletingAO);
return TDI_SUCCESS;
} else {
AORequest *OldRequest;
struct AODeleteRequest *DeleteRequest;
CTEReqCmpltRtn CmpltRtn;
PVOID ReqContext;
TDI_STATUS Status;
// Check and see if we already have a delete in progress. If we don't
// allocate and link up a delete request structure.
if (!AO_REQUEST(DeletingAO, AO_DELETE)) {
OldRequest = DeletingAO->ao_request;
DeleteRequest = (struct AODeleteRequest*)&((PIRP)Request->
RequestContext)->Tail.Overlay.DriverContext[0];
#if DBG
DeleteRequest->aor_sig = aor_signature;
#endif
DeleteRequest->aor_type = AOR_TYPE_DELETE;
DeleteRequest->aor_rtn = Request->RequestNotifyObject;
DeleteRequest->aor_context = Request->RequestContext;
// Clear the option requests, if there are any.
CLEAR_AO_REQUEST(DeletingAO, AO_OPTIONS);
// This address object is being deleted.
SET_AO_REQUEST(DeletingAO, AO_DELETE);
SET_AO_INVALID(DeletingAO);
DeletingAO->ao_request = (AORequest*)DeleteRequest;
CTEFreeLock(&DeletingAO->ao_lock, AOHandle);
while (OldRequest != NULL) {
AORequest *Temp;
CmpltRtn = OldRequest->aor_rtn;
ReqContext = OldRequest->aor_context;
//
// Invoke the completion routine, if one exists
// (eg. AOR_TYPE_REVALIDATE_MCAST won't have any).
//
if (CmpltRtn) {
(*CmpltRtn) (ReqContext, (uint) TDI_ADDR_DELETED, 0);
}
Temp = OldRequest;
OldRequest = OldRequest->aor_next;
FreeAORequest(Temp);
}
return TDI_PENDING;
} else // Delete already in progress.
Status = TDI_ADDR_INVALID;
CTEFreeLock(&DeletingAO->ao_lock, AOHandle);
return Status;
}
}
//* FindAOMCastAddr - Find a multicast address on an AddrObj.
//
// A utility routine to find a multicast address on an AddrObj. We also return
// a pointer to it's predecessor, for use in deleting.
//
// Input: AO - AddrObj to search.
// Addr - MCast address to search for.
// IF - IPAddress of interface
// PrevAMA - Pointer to where to return predecessor.
//
// Returns: Pointer to matching AMA structure, or NULL if there is none.
//
AOMCastAddr *
FindAOMCastAddr(AddrObj * AO, IPAddr Addr, IPAddr IF, AOMCastAddr ** PrevAMA)
{
AOMCastAddr *FoundAMA, *Temp;
Temp = STRUCT_OF(AOMCastAddr, &AO->ao_mcastlist, ama_next);
FoundAMA = AO->ao_mcastlist;
while (FoundAMA != NULL) {
if (IP_ADDR_EQUAL(Addr, FoundAMA->ama_addr) &&
IP_ADDR_EQUAL(IF, FoundAMA->ama_if))
break;
Temp = FoundAMA;
FoundAMA = FoundAMA->ama_next;
}
*PrevAMA = Temp;
return FoundAMA;
}
//* FindAOMCastSrcAddr - find a source entry for a given source address
// off a given group entry
//
// Returns: pointer to source entry found, or NULL if not found.
//
AOMCastSrcAddr *
FindAOMCastSrcAddr(AOMCastAddr *AMA, IPAddr Addr, AOMCastSrcAddr **PrevASA)
{
AOMCastSrcAddr *FoundASA, *Temp;
Temp = STRUCT_OF(AOMCastSrcAddr, &AMA->ama_srclist, asa_next);
FoundASA = AMA->ama_srclist;
while (FoundASA != NULL) {
if (IP_ADDR_EQUAL(Addr, FoundASA->asa_addr))
break;
Temp = FoundASA;
FoundASA = FoundASA->asa_next;
}
*PrevASA = Temp;
return FoundASA;
}
//* MCastAddrOnAO - Test to see if a multicast address on an AddrObj.
//
// A utility routine to test to see if a multicast address is on an AddrObj.
//
// Input: AO - AddrObj to search.
// Dest - MCast address to search for.
// Src - Source address to search for.
// IfIndex - Interface index of the interface which the packet arrived.
// LocalAddr - Local Address of interface on which the packet arrived.
//
// Returns: TRUE is Addr is on AO.
//
uint
MCastAddrOnAO(AddrObj * AO, IPAddr Dest, IPAddr Src, uint IfIndex, IPAddr LocalAddr)
{
AOMCastAddr *AMA;
AOMCastSrcAddr *ASA;
// Find AOMCastAddr entry for the group on the socket
for (AMA=AO->ao_mcastlist; AMA; AMA=AMA->ama_next) {
if (IP_ADDR_EQUAL(Dest, AMA->ama_addr)) {
//
// if this multicast is joined on a specific interface,
// we need to compare the interface index as well.
//
if (AMA->ama_if && !IP_ADDR_EQUAL(AMA->ama_if, LocalAddr) &&
IfIndex != net_long(AMA->ama_if)) {
continue;
}
// Find AOMCastSrcAddr entry for the source
for (ASA=AMA->ama_srclist; ASA; ASA=ASA->asa_next) {
if (IP_ADDR_EQUAL(Src, ASA->asa_addr)) {
break;
}
}
//
// Deliver if inclusion mode and found,
// or if exclusion mode and not found.
//
if ((AMA->ama_inclusion==TRUE) ^ (ASA==NULL)) {
return TRUE;
} else {
continue;
}
}
}
//
// We did not find the matching mcast group, return false.
//
return FALSE;
}
//** AddGroup - Add a group entry (AOMCastAddr) to an address-object's list.
//
// Input: OptionAO - address object to add group on
// GroupAddr - IP address of group to add
// InterfaceAddr - IP address of interface
//
// Output: pAMA - group entry added
//
// Returns: TDI status code
TDI_STATUS
AddGroup(AddrObj * OptionAO, ulong GroupAddr, ulong InterfaceAddr,
IPAddr IfAddrUsed, AOMCastAddr ** pAMA)
{
AOMCastAddr *AMA;
*pAMA = AMA = CTEAllocMemN(sizeof(AOMCastAddr), 'aPCT');
if (AMA == NULL) {
// Couldn't get the resource we need.
return TDI_NO_RESOURCES;
}
RtlZeroMemory(AMA, sizeof(AOMCastAddr));
AMA->ama_next = OptionAO->ao_mcastlist;
OptionAO->ao_mcastlist = AMA;
AMA->ama_addr = GroupAddr;
AMA->ama_if = InterfaceAddr;
AMA->ama_if_used = IfAddrUsed;
AMA->ama_flags = AMA_VALID_FLAG;
return TDI_SUCCESS;
}
//** RemoveGroup - Remove a group entry (AOMCastAddr) from an address-object
//
// Input: PrevAMA - previous AOMCastAddr entry
// pAMA - group entry to remove
//
// Output: pAMA - zeroed since group entry will be freed
void
RemoveGroup(AOMCastAddr * PrevAMA, AOMCastAddr ** pAMA)
{
AOMCastAddr *AMA = *pAMA;
if (AMA) {
PrevAMA->ama_next = AMA->ama_next;
CTEFreeMem(AMA);
*pAMA = NULL;
}
}
//** AddAOMSource - Add a source entry (AOMCastSrcAddr) to a group entry
//
// Input: AMA - group entry to add source to
// SourceAddr - source IP address to add
//
TDI_STATUS
AddAOMSource(AOMCastAddr * AMA, ulong SourceAddr)
{
AOMCastSrcAddr *ASA;
ASA = CTEAllocMemN(sizeof(AOMCastSrcAddr), 'smCT');
if (ASA == NULL) {
// Couldn't get the resource we need.
return TDI_NO_RESOURCES;
}
// Insert in source list
ASA->asa_next = AMA->ama_srclist;
AMA->ama_srclist = ASA;
AMA->ama_srccount++;
ASA->asa_addr = SourceAddr;
return TDI_SUCCESS;
}
//** RemoveAOMSource - Remove a source entry (AOMCastSrcAddr) from a group entry
//
// Input: PrevAMA - previous AOMCastAddr in case we need to free group
// pAMA - group entry to remove the source from
// PrevASA - previous AOMCastSrcAddr
// pASA - source entry to remove
//
// Output: pASA - zeroed since source entry will be freed
// pAMA - zeroed if group entry is also freed
void
RemoveAOMSource(AOMCastAddr * PrevAMA, AOMCastAddr ** pAMA,
AOMCastSrcAddr * PrevASA, AOMCastSrcAddr ** pASA)
{
AOMCastSrcAddr *ASA = *pASA;
AOMCastAddr *AMA = *pAMA;
if (!AMA)
return;
if (ASA) {
PrevASA->asa_next = ASA->asa_next;
AMA->ama_srccount--;
CTEFreeMem(ASA);
*pASA = NULL;
}
// See if we need to remove the group entry too
if ((AMA->ama_srclist == NULL) && (AMA->ama_inclusion == TRUE))
RemoveGroup(PrevAMA, pAMA);
}
//** LeaveGroup - Remove a group entry (AOMCastAddr) from an address object
//
// Input: OptionAO - address object on which to leave group
// pHandle - handle to lock held
// PrevAMA - previous AOMCastAddr in case we need to delete current one
// pAMA - group entry to leave
//
// Output: pAMA - zeroed if AOMCastAddr is freed
//
TDI_STATUS
LeaveGroup(AddrObj * OptionAO, CTELockHandle * pHandle, AOMCastAddr * PrevAMA,
AOMCastAddr ** pAMA)
{
uint FilterMode, NumSources;
IPAddr *SourceList = NULL;
IPAddr gaddr, ifaddr;
IP_STATUS IPStatus = IP_SUCCESS; // Status of IP option set request.
TDI_STATUS TdiStatus;
BOOLEAN InformIP;
// This is a delete request. Fail it if it's not there.
if (*pAMA == NULL) {
return TDI_ADDR_INVALID;
}
// Cache values we'll need after we delete the AMA entry
gaddr = (*pAMA)->ama_addr;
ifaddr = (*pAMA)->ama_if_used;
InformIP = AMA_VALID(*pAMA);
// Delete the AOMCastAddr entry (and any entries in the source list)
TdiStatus = GetSourceArray(*pAMA, &FilterMode, &NumSources, &SourceList, TRUE);
if (TdiStatus != TDI_SUCCESS)
return TdiStatus;
RemoveGroup(PrevAMA, pAMA);
// Inform IP
if (InformIP) {
CTEFreeLock(&OptionAO->ao_lock, *pHandle);
if (FilterMode == MCAST_INCLUDE) {
IPStatus = (*LocalNetInfo.ipi_setmcastinclude) (
gaddr,
ifaddr,
0,
NULL,
NumSources,
SourceList);
} else {
IPStatus = (*LocalNetInfo.ipi_setmcastaddr) (gaddr,
ifaddr,
FALSE,
NumSources,
SourceList,
0,
NULL);
}
CTEGetLock(&OptionAO->ao_lock, pHandle);
}
if (SourceList) {
CTEFreeMem(SourceList);
SourceList = NULL;
}
switch(IPStatus) {
case IP_SUCCESS : return TDI_SUCCESS;
case IP_NO_RESOURCES: return TDI_NO_RESOURCES;
default : return TDI_ADDR_INVALID;
}
}
//* GetAOOptions - Retrieve information about an address object
//
// The get options worker routine, called when we've validated the buffer
// and know that the AddrObj isn't busy.
//
// Input: OptionAO - AddrObj for which options are being retrieved.
// ID - ID of information to get.
// Context - Arguments to ID.
// Length - Length of buffer available.
//
// Output: Buffer - Buffer of options to fill in.
// InfoSize - Number of bytes returned.
//
// Returns: TDI_STATUS of attempt.
//
TDI_STATUS
GetAOOptions(AddrObj * OptionAO, uint ID, uint Length, PNDIS_BUFFER Buffer,
uint * InfoSize, void * Context)
{
CTELockHandle Handle;
TDI_STATUS Status;
AOMCastAddr *AMA, *PrevAMA;
AOMCastSrcAddr *ASA;
uchar *TmpBuff = NULL;
uint Offset, BytesCopied;
ASSERT(AO_BUSY(OptionAO));
// First, see if there are IP options.
// These are UDP/TCP options.
Status = TDI_SUCCESS;
CTEGetLock(&OptionAO->ao_lock, &Handle);
switch (ID) {
case AO_OPTION_MCAST_FILTER:
{
UDPMCastFilter *In = (UDPMCastFilter *) Context;
UDPMCastFilter *Out;
uint NumSrc;
uint NumAddSources, i;
if (Length < UDPMCAST_FILTER_SIZE(0)) {
DEBUGMSG(DBG_WARN && DBG_IGMP,
(DTEXT("Get AO OPT: Buffer too small, need %d\n"),
UDPMCAST_FILTER_SIZE(0)));
Status = TDI_BUFFER_TOO_SMALL;
break;
}
AMA = FindAOMCastAddr(OptionAO, In->umf_addr, In->umf_if,
&PrevAMA);
NumSrc = (AMA)? AMA->ama_srccount : 0;
TmpBuff = CTEAllocMemN(UDPMCAST_FILTER_SIZE(NumSrc), 'bmCT');
if (!TmpBuff) {
Status = TDI_NO_RESOURCES;
break;
}
Out = (UDPMCastFilter *) TmpBuff;
Out->umf_addr = In->umf_addr;
Out->umf_if = In->umf_if;
if (!AMA) {
DEBUGMSG(DBG_TRACE && DBG_IGMP,
(DTEXT("Get AO OPT: No AMA found for addr %x if %x\n"),
In->umf_addr, In->umf_if));
Out->umf_fmode = MCAST_INCLUDE;
Out->umf_numsrc = 0;
*InfoSize = UDPMCAST_FILTER_SIZE(0);
// Copy to NDIS buffer
Offset = 0;
(void)CopyFlatToNdis(Buffer, TmpBuff, *InfoSize, &Offset,
&BytesCopied);
Status = TDI_SUCCESS;
break;
}
Out->umf_fmode = (AMA->ama_inclusion)? MCAST_INCLUDE
: MCAST_EXCLUDE;
Out->umf_numsrc = AMA->ama_srccount;
DEBUGMSG(DBG_TRACE && DBG_IGMP,
(DTEXT("Get AO OPT: Found fmode=%d numsrc=%d\n"),
Out->umf_fmode, Out->umf_numsrc));
NumAddSources = ((Length - sizeof(UDPMCastFilter)) / sizeof(ulong))
+ 1;
if (NumAddSources > AMA->ama_srccount) {
NumAddSources = AMA->ama_srccount;
}
*InfoSize = UDPMCAST_FILTER_SIZE(NumAddSources);
DEBUGMSG(DBG_TRACE && DBG_IGMP,
(DTEXT("Get AO OPT: Mcast Filter ID=%x G=%x IF=%x srccount=%d srcfits=%d\n"),
ID, Out->umf_addr, Out->umf_if, AMA->ama_srccount,
NumAddSources));
for (i=0,ASA=AMA->ama_srclist;
i<NumAddSources;
i++,ASA=ASA->asa_next) {
Out->umf_srclist[i] = ASA->asa_addr;
}
// Copy to NDIS buffer
Offset = 0;
(void)CopyFlatToNdis(Buffer, TmpBuff, *InfoSize, &Offset,
&BytesCopied);
Status = TDI_SUCCESS;
}
break;
default:
Status = TDI_BAD_OPTION;
break;
}
CTEFreeLock(&OptionAO->ao_lock, Handle);
if (TmpBuff) {
CTEFreeMem(TmpBuff);
}
return Status;
}
//** DeleteSources - Delete all sources from an AMA which appear in a given
// array
//
// Assumes caller holds lock
//
// Input: PrevAMA - pointer to previous AOMCastAddr in case we need to
// delete the current one
// pAMA - pointer to the current AOMCastAddr
// NumSources - number of sources to delete
// sourcelist - array of IP addresses of sources to delete
//
// Output: pAMA - zeroed if current AMA is freed
//
VOID
DeleteSources(AOMCastAddr *PrevAMA, AOMCastAddr **pAMA, uint NumSources,
IPAddr *SourceList)
{
AOMCastSrcAddr *ASA, *PrevASA, *NextASA;
uint i;
if (!*pAMA)
return;
PrevASA = STRUCT_OF(AOMCastSrcAddr, &(*pAMA)->ama_srclist, asa_next);
for (ASA=(*pAMA)->ama_srclist; ASA; ASA=NextASA) {
NextASA = ASA->asa_next;
// See if address is in source list
for (i=0; i<NumSources; i++) {
if (IP_ADDR_EQUAL(SourceList[i], ASA->asa_addr))
break;
}
if (i == NumSources) {
PrevASA = ASA;
continue;
}
RemoveAOMSource(PrevAMA, pAMA, PrevASA, &ASA);
}
}
//* SetMulticastFilter - replace the source filter for a group
//
// Input: OptionAO - AddrObj for which options are being set.
// Length - Length of information.
// Req - Buffer of information.
// pHandle - Handle of lock held.
//
// Returns: TDI_STATUS of attempt.
//
TDI_STATUS
SetMulticastFilter(AddrObj * OptionAO, uint Length, UDPMCastFilter * Req,
CTELockHandle * pHandle)
{
uint FilterMode, NumDelSources, NumAddSources, i;
IPAddr ifaddr;
IPAddr *DelSourceList, *AddSourceList = NULL;
AOMCastSrcAddr *NextASA, *PrevASA, *ASA;
AOMCastAddr *AMA, *PrevAMA;
TDI_STATUS TdiStatus = TDI_SUCCESS;
IP_STATUS IPStatus;
ASSERT(AO_BUSY(OptionAO));
// Make sure we even have the umf_numsrc field at all
if (Length < UDPMCAST_FILTER_SIZE(0))
return TDI_BAD_OPTION;
// Make sure the length is long enough to fit the number of sources given
if (Length < UDPMCAST_FILTER_SIZE(Req->umf_numsrc))
return TDI_BAD_OPTION;
AMA = FindAOMCastAddr(OptionAO, Req->umf_addr, Req->umf_if, &PrevAMA);
DEBUGMSG(DBG_TRACE && DBG_IGMP,
(DTEXT("Set AO OPT: Mcast Filter G=%x IF=%x AMA=%x fmode=%d numsrc=%d\n"),
Req->umf_addr, Req->umf_if, AMA, Req->umf_fmode, Req->umf_numsrc));
for (; ;) {
if (Req->umf_fmode == MCAST_EXCLUDE) {
//
// Set filter mode to exclusion with source list
//
// If no AOMCastAddr entry for the socket exists,
// create one in inclusion mode
if (AMA == NULL) {
ifaddr = (Req->umf_if)? Req->umf_if :
(*LocalNetInfo.ipi_getmcastifaddr)();
if (!ifaddr) {
TdiStatus = TDI_ADDR_INVALID;
break;
}
TdiStatus = AddGroup(OptionAO, Req->umf_addr, Req->umf_if,
ifaddr, &AMA);
if (TdiStatus != TDI_SUCCESS)
break;
AMA->ama_inclusion = TRUE;
}
// If AOMCastAddr entry exists in inclusion mode...
if (AMA->ama_inclusion == TRUE) {
AOMCastAddr NewAMA;
//
// Create a new version of the AMA without changing
// the old one.
//
NewAMA = *AMA; // struct copy
NewAMA.ama_inclusion = FALSE;
NewAMA.ama_srccount = 0;
NewAMA.ama_srclist = NULL;
// Add sources to new exclusion list
for (i=0; i<Req->umf_numsrc; i++) {
TdiStatus = AddAOMSource(&NewAMA, Req->umf_srclist[i]);
if (TdiStatus != TDI_SUCCESS) {
FreeAllSources(&NewAMA);
break;
}
}
if (TdiStatus != TDI_SUCCESS) {
break;
}
// Compose an array of sources to delete and
// set mode to exclusion.
TdiStatus = GetSourceArray(AMA, &FilterMode,
&NumDelSources, &DelSourceList, TRUE);
if (TdiStatus != TDI_SUCCESS) {
FreeAllSources(&NewAMA);
break;
}
*AMA = NewAMA; // struct copy
// Call [MOD_GRP(g,+,{xaddlist},{idellist}]
NumAddSources = Req->umf_numsrc;
AddSourceList = Req->umf_srclist;
DEBUGMSG(DBG_TRACE && DBG_IGMP,
(DTEXT("MOD_GRP: G=%x + delnum=%d addnum=%d\n"),
AMA->ama_addr, NumDelSources, NumAddSources));
if (AMA_VALID(AMA)) {
CTEFreeLock(&OptionAO->ao_lock, *pHandle);
IPStatus = (*LocalNetInfo.ipi_setmcastaddr) (
AMA->ama_addr,
AMA->ama_if_used,
TRUE, // add
NumAddSources,
AddSourceList,
NumDelSources,
DelSourceList);
CTEGetLock(&OptionAO->ao_lock, pHandle);
} else {
IPStatus = IP_SUCCESS;
}
TdiStatus = TDI_SUCCESS;
if (IPStatus != IP_SUCCESS) {
// Some problem, we need to update the one we just
// tried to change.
AMA = FindAOMCastAddr(OptionAO, Req->umf_addr, Req->umf_if,
&PrevAMA);
ASSERT(AMA);
// Change state to EXCLUDE(null) and try again.
// This should always succeed.
DeleteSources(PrevAMA, &AMA, NumAddSources, AddSourceList);
if (AMA_VALID(AMA)) {
CTEFreeLock(&OptionAO->ao_lock, *pHandle);
(*LocalNetInfo.ipi_setmcastaddr) ( AMA->ama_addr,
AMA->ama_if_used,
TRUE, // add
0,
NULL,
NumDelSources,
DelSourceList);
CTEGetLock(&OptionAO->ao_lock, pHandle);
}
TdiStatus = (IPStatus == IP_NO_RESOURCES)
? TDI_NO_RESOURCES
: TDI_ADDR_INVALID;
}
if (DelSourceList) {
CTEFreeMem(DelSourceList);
DelSourceList = NULL;
}
break;
}
// Okay, we're just modifying the exclusion list
for (; ;) {
// Get a big enough buffer for the DelSourceList
DelSourceList = NULL;
if (AMA->ama_srccount > 0) {
DelSourceList = CTEAllocMemN((AMA->ama_srccount)
* sizeof(IPAddr), 'amCT');
if (DelSourceList == NULL) {
TdiStatus = TDI_NO_RESOURCES;
break;
}
}
NumDelSources = 0;
// Make a copy of the new list which we can modify
AddSourceList = NULL;
NumAddSources = Req->umf_numsrc;
if (NumAddSources > 0) {
AddSourceList = CTEAllocMemN(NumAddSources * sizeof(IPAddr),
'amCT');
if (AddSourceList == NULL) {
TdiStatus = TDI_NO_RESOURCES;
break;
}
CTEMemCopy(AddSourceList, Req->umf_srclist,
NumAddSources * sizeof(IPAddr));
}
// For each existing AOMCastSrcAddr entry:
PrevASA = STRUCT_OF(AOMCastSrcAddr, &AMA->ama_srclist,asa_next);
for (ASA=AMA->ama_srclist; ASA; ASA=NextASA) {
NextASA = ASA->asa_next;
// See if entry is in new list
for (i=0; i<NumAddSources; i++) {
if (IP_ADDR_EQUAL(AddSourceList[i], ASA->asa_addr))
break;
}
// If entry IS in new list,
if (i<NumAddSources) {
// Remove from new list
AddSourceList[i] = AddSourceList[--NumAddSources];
PrevASA = ASA;
} else {
// Put source in DelSourceList
DelSourceList[NumDelSources++] = ASA->asa_addr;
// Delete source
RemoveAOMSource(PrevAMA, &AMA, PrevASA, &ASA);
}
}
TdiStatus = TDI_SUCCESS;
// Add each entry left in new list
for (i=0; i<NumAddSources; i++) {
TdiStatus = AddAOMSource(AMA, AddSourceList[i]);
if (TdiStatus != TDI_SUCCESS) {
// Truncate add list
NumAddSources = i;
break;
}
}
// Don't do anything unless the filter has actually changed
if ((NumAddSources > 0) || (NumDelSources > 0)) {
// Call [MOD_EXCL(g,{addlist},{dellist})]
DEBUGMSG(DBG_TRACE && DBG_IGMP,
(DTEXT("MOD_EXCL: G=%x addnum=%d delnum=%d\n"),
AMA->ama_addr, NumAddSources, NumDelSources));
if (AMA_VALID(AMA)) {
CTEFreeLock(&OptionAO->ao_lock, *pHandle);
IPStatus=(*LocalNetInfo.ipi_setmcastexclude)(Req->umf_addr,
AMA->ama_if_used,
NumAddSources,
AddSourceList,
NumDelSources,
DelSourceList);
CTEGetLock(&OptionAO->ao_lock, pHandle);
} else {
IPStatus = IP_SUCCESS;
}
if (IPStatus != IP_SUCCESS) {
// Some problem, we need to fix the one we just updated.
AMA = FindAOMCastAddr(OptionAO, Req->umf_addr,
Req->umf_if, &PrevAMA);
ASSERT(AMA);
// Delete sources added and try again. Should always
// succeed.
DeleteSources(PrevAMA, &AMA, NumAddSources,
AddSourceList);
if (AMA_VALID(AMA)) {
CTEFreeLock(&OptionAO->ao_lock, *pHandle);
(*LocalNetInfo.ipi_setmcastexclude)(Req->umf_addr,
AMA->ama_if_used,
0,
NULL,
NumDelSources,
DelSourceList);
CTEGetLock(&OptionAO->ao_lock, pHandle);
}
if (TdiStatus == TDI_SUCCESS) {
TdiStatus = (IPStatus == IP_NO_RESOURCES)
? TDI_NO_RESOURCES
: TDI_ADDR_INVALID;
}
}
}
break;
}
if (DelSourceList) {
CTEFreeMem(DelSourceList);
DelSourceList = NULL;
}
if (AddSourceList) {
CTEFreeMem(AddSourceList);
AddSourceList = NULL;
}
} else if (Req->umf_fmode == MCAST_INCLUDE) {
//
// Set filter mode to inclusion with source list
//
// If source list is empty,
if (!Req->umf_numsrc) {
// If no AOMCastAddr entry exists, just return success.
// Nothing to do.
if (AMA == NULL) {
TdiStatus = TDI_SUCCESS;
break;
}
// Delete group and stop
TdiStatus = LeaveGroup(OptionAO, pHandle, PrevAMA, &AMA);
break;
}
// If AOMCastAddr entry exists in exclusion mode,
if ((AMA != NULL) && (AMA->ama_inclusion == FALSE)) {
// Delete all sources and set mode to inclusion
TdiStatus = GetSourceArray(AMA, &FilterMode,
&NumDelSources, &DelSourceList, TRUE);
if (TdiStatus != TDI_SUCCESS)
break;
AMA->ama_inclusion = TRUE;
// Add sources to exclusion list
for (i=0; i<Req->umf_numsrc; i++) {
TdiStatus = AddAOMSource(AMA, Req->umf_srclist[i]);
}
// Call [MOD_GRP(g,-,{xdellist},{iaddlist}]
NumAddSources = Req->umf_numsrc;
AddSourceList = Req->umf_srclist;
if (AMA_VALID(AMA)) {
CTEFreeLock(&OptionAO->ao_lock, *pHandle);
IPStatus = (*LocalNetInfo.ipi_setmcastaddr) ( AMA->ama_addr,
AMA->ama_if_used,
FALSE, // delete
NumDelSources,
DelSourceList,
NumAddSources,
AddSourceList);
CTEGetLock(&OptionAO->ao_lock, pHandle);
} else {
IPStatus = IP_SUCCESS;
}
TdiStatus = TDI_SUCCESS;
if (IPStatus != IP_SUCCESS) {
// Some problem, we need to update the one we just
// tried to change.
AMA = FindAOMCastAddr(OptionAO, Req->umf_addr, Req->umf_if,
&PrevAMA);
ASSERT(AMA);
// Change state to INCLUDE(null) and try again.
// This should always succeed.
DeleteSources(PrevAMA, &AMA, NumAddSources, AddSourceList);
if (AMA_VALID(AMA)) {
CTEFreeLock(&OptionAO->ao_lock, *pHandle);
(*LocalNetInfo.ipi_setmcastaddr) ( AMA->ama_addr,
AMA->ama_if_used,
FALSE, // delete
NumDelSources,
DelSourceList,
0,
NULL);
CTEGetLock(&OptionAO->ao_lock, pHandle);
}
TdiStatus = (IPStatus == IP_NO_RESOURCES)
? TDI_NO_RESOURCES
: TDI_ADDR_INVALID;
}
if (DelSourceList) {
CTEFreeMem(DelSourceList);
DelSourceList = NULL;
}
break;
}
// If no AOMCastAddr entry for the socket exists,
// create one in inclusion mode
if (AMA == NULL) {
ifaddr = (Req->umf_if)? Req->umf_if :
(*LocalNetInfo.ipi_getmcastifaddr)();
if (!ifaddr) {
TdiStatus = TDI_ADDR_INVALID;
break;
}
TdiStatus = AddGroup(OptionAO, Req->umf_addr, Req->umf_if,
ifaddr, &AMA);
if (TdiStatus != TDI_SUCCESS)
break;
AMA->ama_inclusion = TRUE;
}
// Modify the source inclusion list
for (; ;) {
// Get a big enough buffer for the DelSourceList
DelSourceList = NULL;
if (AMA->ama_srccount > 0) {
DelSourceList = CTEAllocMemN((AMA->ama_srccount)
* sizeof(IPAddr), 'amCT');
if (DelSourceList == NULL) {
TdiStatus = TDI_NO_RESOURCES;
break;
}
}
NumDelSources = 0;
// Make a copy of the new list which we can modify
AddSourceList = NULL;
NumAddSources = Req->umf_numsrc;
if (NumAddSources > 0) {
AddSourceList = CTEAllocMemN(NumAddSources * sizeof(IPAddr),
'amCT');
if (AddSourceList == NULL) {
TdiStatus = TDI_NO_RESOURCES;
break;
}
CTEMemCopy(AddSourceList, Req->umf_srclist,
NumAddSources * sizeof(IPAddr));
}
// For each existing AOMCastSrcAddr entry:
PrevASA = STRUCT_OF(AOMCastSrcAddr, &AMA->ama_srclist,asa_next);
for (ASA=AMA->ama_srclist; ASA; ASA=NextASA) {
NextASA = ASA->asa_next;
// See if entry is in new list
for (i=0; i<NumAddSources; i++) {
if (IP_ADDR_EQUAL(AddSourceList[i], ASA->asa_addr))
break;
}
// If entry IS in new list,
if (i<NumAddSources) {
// Remove from new list
AddSourceList[i] = AddSourceList[--NumAddSources];
PrevASA = ASA;
} else {
// Put source in DelSourceList
DelSourceList[NumDelSources++] = ASA->asa_addr;
// Delete source
RemoveAOMSource(PrevAMA, &AMA, PrevASA, &ASA);
}
}
// If AOMCastAddr entry went away (changing to a disjoint
// source list), recreate it
if (AMA == NULL) {
ifaddr = (Req->umf_if)? Req->umf_if :
(*LocalNetInfo.ipi_getmcastifaddr)();
if (!ifaddr) {
TdiStatus = TDI_ADDR_INVALID;
break;
}
TdiStatus = AddGroup(OptionAO, Req->umf_addr, Req->umf_if,
ifaddr, &AMA);
if (TdiStatus != TDI_SUCCESS)
break;
AMA->ama_inclusion = TRUE;
}
TdiStatus = TDI_SUCCESS;
// Add each entry left in new list
for (i=0; i<NumAddSources; i++) {
TdiStatus = AddAOMSource(AMA, AddSourceList[i]);
if (TdiStatus != TDI_SUCCESS) {
// Truncate add list
NumAddSources = i;
break;
}
}
// Don't do anything unless the filter has actually changed
if ((NumAddSources > 0) || (NumDelSources > 0)) {
ifaddr = AMA->ama_if_used;
// Call [MOD_INCL(g,{addlist},{dellist})]
if (AMA_VALID(AMA)) {
CTEFreeLock(&OptionAO->ao_lock, *pHandle);
IPStatus=(*LocalNetInfo.ipi_setmcastinclude)(Req->umf_addr,
ifaddr,
NumAddSources,
AddSourceList,
NumDelSources,
DelSourceList);
CTEGetLock(&OptionAO->ao_lock, pHandle);
} else {
IPStatus = IP_SUCCESS;
}
if (IPStatus != IP_SUCCESS) {
BOOLEAN InformIP = AMA_VALID(AMA);
// Some problem, we need to update the one we just
// tried to change.
AMA = FindAOMCastAddr(OptionAO, Req->umf_addr,
Req->umf_if, &PrevAMA);
ASSERT(AMA);
ifaddr = AMA->ama_if_used;
// Change state and try again.
DeleteSources(PrevAMA, &AMA, NumAddSources,
AddSourceList);
// This should always succeed.
if (InformIP) {
CTEFreeLock(&OptionAO->ao_lock, *pHandle);
(*LocalNetInfo.ipi_setmcastinclude)( Req->umf_addr,
ifaddr,
0,
NULL,
NumDelSources,
DelSourceList);
CTEGetLock(&OptionAO->ao_lock, pHandle);
}
if (TdiStatus == TDI_SUCCESS) {
TdiStatus = (IPStatus == IP_NO_RESOURCES)
? TDI_NO_RESOURCES
: TDI_ADDR_INVALID;
}
}
}
break;
}
if (DelSourceList) {
CTEFreeMem(DelSourceList);
DelSourceList = NULL;
}
if (AddSourceList) {
CTEFreeMem(AddSourceList);
AddSourceList = NULL;
}
} else
TdiStatus = TDI_INVALID_PARAMETER;
break;
}
return TdiStatus;
}
//* IsBlockingAOOption - Determine if an AddrObj option requires blocking.
//
// Called to determine whether and AddrObj option can be processed completely
// at dispatch IRQL, or whether processing must be deferred.
//
// Input: ID - identifies the option.
// AOHandle - supplies the IRQL at which processing will occur.
//
// Returns: TRUE if blocking is required, FALSE otherwise.
//
BOOLEAN
__inline
IsBlockingAOOption(uint ID, CTELockHandle Handle)
{
return (Handle < DISPATCH_LEVEL ||
(ID != AO_OPTION_RCVALL &&
ID != AO_OPTION_RCVALL_MCAST &&
ID != AO_OPTION_ADD_MCAST &&
ID != AO_OPTION_DEL_MCAST &&
ID != AO_OPTION_INDEX_ADD_MCAST &&
ID != AO_OPTION_INDEX_DEL_MCAST &&
ID != AO_OPTION_RCVALL_IGMPMCAST)) ? FALSE : TRUE;
}
//* SetAOOptions - Set AddrObj options.
//
// The set options worker routine, called when we've validated the buffer
// and know that the AddrObj isn't busy.
//
// Input: OptionAO - AddrObj for which options are being set.
// Options - AOOption buffer of options.
//
// Returns: TDI_STATUS of attempt.
//
TDI_STATUS
SetAOOptions(AddrObj * OptionAO, uint ID, uint Length, uchar * Options)
{
IP_STATUS IPStatus; // Status of IP option set request.
CTELockHandle Handle;
TDI_STATUS Status;
AOMCastAddr *AMA, *PrevAMA;
AOMCastSrcAddr *ASA, *PrevASA = NULL;
IPAddr ifaddr = NULL_IP_ADDR;
ASSERT(AO_BUSY(OptionAO));
// First, see if there are IP options.
if (ID == AO_OPTION_IPOPTIONS) {
IF_TCPDBG(TCP_DEBUG_OPTIONS) {
TCPTRACE(("processing IP_IOTIONS on AO %lx\n", OptionAO));
}
// These are IP options. Pass them down.
(*LocalNetInfo.ipi_freeopts) (&OptionAO->ao_opt);
IPStatus = (*LocalNetInfo.ipi_copyopts) (Options, Length,
&OptionAO->ao_opt);
if (IPStatus == IP_SUCCESS)
return TDI_SUCCESS;
else if (IPStatus == IP_NO_RESOURCES)
return TDI_NO_RESOURCES;
else
return TDI_BAD_OPTION;
}
// These are UDP/TCP options.
if (Length == 0)
return TDI_BAD_OPTION;
if (ID == AO_OPTION_UNBIND) {
CTEGetLock(&AddrObjTableLock.Lock, &Handle);
RemoveAddrObj(OptionAO);
CTEFreeLock(&AddrObjTableLock.Lock, Handle);
return TDI_SUCCESS;
}
Status = TDI_SUCCESS;
CTEGetLock(&OptionAO->ao_lock, &Handle);
switch (ID) {
case AO_OPTION_XSUM:
if (Options[0])
SET_AO_XSUM(OptionAO);
else
CLEAR_AO_XSUM(OptionAO);
break;
case AO_OPTION_IP_DONTFRAGMENT:
IF_TCPDBG(TCP_DEBUG_OPTIONS) {
TCPTRACE((
"DF opt %u, initial flags %lx on AO %lx\n",
(int)Options[0], OptionAO->ao_opt.ioi_flags, OptionAO
));
}
if (Options[0])
OptionAO->ao_opt.ioi_flags |= IP_FLAG_DF;
else
OptionAO->ao_opt.ioi_flags &= ~IP_FLAG_DF;
IF_TCPDBG(TCP_DEBUG_OPTIONS) {
TCPTRACE((
"New flags %lx on AO %lx\n",
OptionAO->ao_opt.ioi_flags, OptionAO
));
}
break;
case AO_OPTION_TTL:
IF_TCPDBG(TCP_DEBUG_OPTIONS) {
TCPTRACE((
"setting TTL to %d on AO %lx\n", Options[0], OptionAO
));
}
OptionAO->ao_opt.ioi_ttl = Options[0];
break;
case AO_OPTION_TOS:
IF_TCPDBG(TCP_DEBUG_OPTIONS) {
TCPTRACE((
"setting TOS to %d on AO %lx\n", Options[0], OptionAO
));
}
//Validate TOS
if (!DisableUserTOSSetting) {
OptionAO->ao_opt.ioi_tos = Options[0];
//This should work for multicast too.
OptionAO->ao_mcastopt.ioi_tos = Options[0];
}
break;
case AO_OPTION_MCASTTTL:
OptionAO->ao_mcastopt.ioi_ttl = Options[0];
break;
case AO_OPTION_MCASTLOOP:
OptionAO->ao_mcast_loop = Options[0];
break;
case AO_OPTION_RCVALL:
{
uchar newvalue;
// set the interface to promiscuous mode
KdPrintEx((DPFLTR_TCPIP_ID, DPFLTR_INFO_LEVEL,
"OptionAO %x Local Interface %x Option %d\n",
OptionAO, OptionAO->ao_addr, Options[0]));
KdPrintEx((DPFLTR_TCPIP_ID, DPFLTR_INFO_LEVEL,
"Protocol %d port %d \n",
OptionAO->ao_prot, OptionAO->ao_port));
// By default, treat non-zero values as RCVALL_ON
newvalue = Options[0];
if (newvalue && (newvalue != RCVALL_SOCKETLEVELONLY)) {
newvalue = RCVALL_ON;
}
// See if there's any change
if (newvalue == OptionAO->ao_rcvall) {
break;
}
if (!OptionAO->ao_promis_ifindex) {
OptionAO->ao_promis_ifindex = OptionAO->ao_bindindex;
}
CTEFreeLock(&OptionAO->ao_lock, Handle);
// Turn adapter pmode on if needed
if (newvalue == RCVALL_ON) {
OptionAO->ao_promis_ifindex =
(*LocalNetInfo.ipi_setndisrequest)(
OptionAO->ao_addr, NDIS_PACKET_TYPE_PROMISCUOUS,
SET_IF, OptionAO->ao_bindindex);
} else if (!OptionAO->ao_promis_ifindex) {
// Locate ifindex if needed
OptionAO->ao_promis_ifindex =
(*LocalNetInfo.ipi_getifindexfromaddr)(OptionAO->ao_addr,IF_CHECK_NONE);
}
if (!OptionAO->ao_promis_ifindex) {
Status = TDI_INVALID_PARAMETER;
CTEGetLock(&OptionAO->ao_lock, &Handle);
break;
}
// Turn adapter pmode off if needed
if (OptionAO->ao_rcvall == RCVALL_ON) {
AddrObj *CurrentAO;
uint i;
uint On = CLEAR_IF;
CTEGetLock(&AddrObjTableLock.Lock, &Handle);
OptionAO->ao_rcvall = newvalue;
for (i = 0; i < AddrObjTableSize; i++) {
CurrentAO = AddrObjTable[i];
while (CurrentAO != NULL) {
CTEStructAssert(CurrentAO, ao);
if (CurrentAO->ao_rcvall == RCVALL_ON &&
CurrentAO->ao_promis_ifindex ==
OptionAO->ao_promis_ifindex) {
// there is another AO on same interface
// with RCVALL option, break don't do anything
On = SET_IF;
i = AddrObjTableSize;
break;
}
if (CurrentAO->ao_rcvall_mcast == RCVALL_ON &&
CurrentAO->ao_promis_ifindex ==
OptionAO->ao_promis_ifindex) {
// there is another AO with MCAST option,
// continue to find any RCVALL AO
On = CLEAR_CARD;
}
CurrentAO = CurrentAO->ao_next;
}
}
CTEFreeLock(&AddrObjTableLock.Lock, Handle);
if (On != SET_IF) {
// OptionAO was the last object in all promiscuous
// mode
(*LocalNetInfo.ipi_setndisrequest)(
OptionAO->ao_addr, NDIS_PACKET_TYPE_PROMISCUOUS,
On, OptionAO->ao_bindindex);
}
}
CTEGetLock(&OptionAO->ao_lock, &Handle);
// Set the value on the AO if not already done
if (OptionAO->ao_rcvall != newvalue) {
OptionAO->ao_rcvall = newvalue;
}
break;
}
case AO_OPTION_RCVALL_MCAST:
case AO_OPTION_RCVALL_IGMPMCAST:
{
uchar newvalue;
// set the interface to promiscuous mcast mode
KdPrintEx((DPFLTR_TCPIP_ID, DPFLTR_INFO_LEVEL,
"Local Interface %x\n", OptionAO->ao_addr));
// By default, treat non-zero values as RCVALL_ON
newvalue = Options[0];
if (newvalue && (newvalue != RCVALL_SOCKETLEVELONLY)) {
newvalue = RCVALL_ON;
}
// See if there's any change
if (newvalue == OptionAO->ao_rcvall_mcast) {
break;
}
if (!OptionAO->ao_promis_ifindex) {
OptionAO->ao_promis_ifindex = OptionAO->ao_bindindex;
}
CTEFreeLock(&OptionAO->ao_lock, Handle);
// Turn adapter pmode on if needed
if (newvalue == RCVALL_ON) {
OptionAO->ao_promis_ifindex =
(*LocalNetInfo.ipi_setndisrequest)(
OptionAO->ao_addr, NDIS_PACKET_TYPE_ALL_MULTICAST,
SET_IF, OptionAO->ao_bindindex);
} else if (!OptionAO->ao_promis_ifindex) {
// Locate ifindex if needed
OptionAO->ao_promis_ifindex =
(*LocalNetInfo.ipi_getifindexfromaddr)(OptionAO->ao_addr,IF_CHECK_NONE);
}
if (!OptionAO->ao_promis_ifindex) {
Status = TDI_INVALID_PARAMETER;
CTEGetLock(&OptionAO->ao_lock, &Handle);
break;
}
// Turn adapter pmode off if needed
if (OptionAO->ao_rcvall_mcast == RCVALL_ON) {
AddrObj *CurrentAO;
uint i;
uint On = CLEAR_IF;
CTEGetLock(&AddrObjTableLock.Lock, &Handle);
OptionAO->ao_rcvall_mcast = newvalue;
for (i = 0; i < AddrObjTableSize; i++) {
CurrentAO = AddrObjTable[i];
while (CurrentAO != NULL) {
CTEStructAssert(CurrentAO, ao);
if (CurrentAO->ao_rcvall_mcast == RCVALL_ON &&
CurrentAO->ao_promis_ifindex ==
OptionAO->ao_promis_ifindex) {
// there is another AO on same interface
// with MCAST option, break don't do anything
On = SET_IF;
i = AddrObjTableSize;
break;
}
if (CurrentAO->ao_rcvall == RCVALL_ON &&
CurrentAO->ao_promis_ifindex ==
OptionAO->ao_promis_ifindex) {
// there is another AO with RCVALL option,
// continue to find any MCAST AO
On = CLEAR_CARD;
}
CurrentAO = CurrentAO->ao_next;
}
}
CTEFreeLock(&AddrObjTableLock.Lock, Handle);
if (On != SET_IF) {
// OptionAO was the last object in all promiscuous
// mode
(*LocalNetInfo.ipi_setndisrequest)(
OptionAO->ao_addr, NDIS_PACKET_TYPE_ALL_MULTICAST,
On, OptionAO->ao_bindindex);
}
}
CTEGetLock(&OptionAO->ao_lock, &Handle);
// Set the value on the AO if not already done
if (OptionAO->ao_rcvall_mcast != newvalue) {
OptionAO->ao_rcvall_mcast = newvalue;
}
break;
}
case AO_OPTION_ABSORB_RTRALERT:
{
// set the interface to absorb forwarded rtralert packet
// currently this won't work if socket is opened as IP_PROTO_IP
KdPrintEx((DPFLTR_TCPIP_ID, DPFLTR_INFO_LEVEL,
"Local Interface addr %x index %x \n",
OptionAO->ao_addr, OptionAO->ao_bindindex));
if (Options[0]) {
CTEFreeLock(&OptionAO->ao_lock, Handle);
OptionAO->ao_promis_ifindex = (*LocalNetInfo.ipi_absorbrtralert)(
OptionAO->ao_addr, OptionAO->ao_prot,
OptionAO->ao_bindindex);
if (OptionAO->ao_promis_ifindex) {
Status = TDI_SUCCESS;
CTEGetLock(&AddrObjTableLock.Lock, &Handle);
OptionAO->ao_absorb_rtralert = OptionAO->ao_prot;
CTEFreeLock(&AddrObjTableLock.Lock, Handle);
}
CTEGetLock(&OptionAO->ao_lock, &Handle);
} else {
Status = TDI_INVALID_PARAMETER;
}
break;
}
case AO_OPTION_MCASTIF:
if (Length >= sizeof(UDPMCastIFReq)) {
UDPMCastIFReq *Req;
IPAddr Addr;
Req = (UDPMCastIFReq *) Options;
Addr = Req->umi_addr;
if (!IP_ADDR_EQUAL(Addr, NULL_IP_ADDR)) {
OptionAO->ao_mcastopt.ioi_mcastif =
(*LocalNetInfo.ipi_getifindexfromaddr) (Addr,(IF_CHECK_MCAST | IF_CHECK_SEND));
if (0 == OptionAO->ao_mcastopt.ioi_mcastif) {
Status = TDI_ADDR_INVALID;
}
}
} else
Status = TDI_BAD_OPTION;
break;
case AO_OPTION_INDEX_ADD_MCAST:
case AO_OPTION_INDEX_DEL_MCAST:
if (Length < sizeof(UDPMCastReq)) {
Status = TDI_BAD_OPTION;
break;
} else {
UDPMCastReq *Req = (UDPMCastReq *) Options;
if (IP_ADDR_EQUAL(
(*LocalNetInfo.ipi_isvalidindex)((uint) Req->umr_if),
NULL_IP_ADDR)) {
Status = TDI_ADDR_INVALID;
break;
}
// Convert IfIndex to an IPAddr
ifaddr = net_long(Req->umr_if);
}
// Convert to AO_OPTION_{ADD,DEL}_MCAST
ID = (ID == AO_OPTION_INDEX_ADD_MCAST)? AO_OPTION_ADD_MCAST
: AO_OPTION_DEL_MCAST;
// fallthrough
case AO_OPTION_ADD_MCAST:
case AO_OPTION_DEL_MCAST:
if (Length >= sizeof(UDPMCastReq)) {
UDPMCastReq *Req = (UDPMCastReq *) Options;
AMA = FindAOMCastAddr(OptionAO, Req->umr_addr, Req->umr_if,
&PrevAMA);
if (ID == AO_OPTION_ADD_MCAST) {
// If an AOMCastAddr entry already exists for the socket, fail.
if (AMA != NULL) {
Status = TDI_ADDR_INVALID;
break;
}
if (IP_ADDR_EQUAL(ifaddr, NULL_IP_ADDR)) {
ifaddr = (Req->umr_if)? Req->umr_if :
(*LocalNetInfo.ipi_getmcastifaddr)();
if (IP_ADDR_EQUAL(ifaddr, NULL_IP_ADDR)) {
Status = TDI_ADDR_INVALID;
break;
}
}
// Add an AOMCastAddr entry on the socket in exclusion mode
Status = AddGroup(OptionAO, Req->umr_addr, Req->umr_if,
ifaddr, &AMA);
if (Status != TDI_SUCCESS)
break;
// Inform IP
CTEFreeLock(&OptionAO->ao_lock, Handle);
IPStatus = (*LocalNetInfo.ipi_setmcastaddr) (Req->umr_addr,
ifaddr,
TRUE,
0, NULL,
0, NULL);
CTEGetLock(&OptionAO->ao_lock, &Handle);
Status = TDI_SUCCESS;
if (IPStatus != IP_SUCCESS) {
// Some problem, we need to free the one we just added.
AMA = FindAOMCastAddr(OptionAO, Req->umr_addr,
Req->umr_if, &PrevAMA);
ASSERT(AMA);
RemoveGroup(PrevAMA, &AMA);
Status = (IPStatus == IP_NO_RESOURCES ? TDI_NO_RESOURCES :
TDI_ADDR_INVALID);
}
} else {
Status = LeaveGroup(OptionAO, &Handle, PrevAMA, &AMA);
break;
}
} else
Status = TDI_BAD_OPTION;
break;
case AO_OPTION_BLOCK_MCAST_SRC:
case AO_OPTION_UNBLOCK_MCAST_SRC:
if (Length >= sizeof(UDPMCastSrcReq)) {
UDPMCastSrcReq *Req = (UDPMCastSrcReq *) Options;
uint Adding = FALSE;
AMA = FindAOMCastAddr(OptionAO, Req->umr_addr, Req->umr_if,
&PrevAMA);
ASA = (AMA)? FindAOMCastSrcAddr(AMA, Req->umr_src, &PrevASA) : NULL;
DEBUGMSG(DBG_TRACE && DBG_IGMP,
(DTEXT("AO OPT: Mcast Src ID=%x G=%x IF=%x AMA=%x\n"),
ID, Req->umr_addr, Req->umr_if, AMA));
if ((AMA == NULL) || (AMA->ama_inclusion == TRUE)) {
Status = TDI_INVALID_PARAMETER;
break;
}
if (ID == AO_OPTION_UNBLOCK_MCAST_SRC) {
//
// UNBLOCK
//
// Return an error if source is not in the exclusion list
if (ASA == NULL) {
Status = TDI_ADDR_INVALID;
break;
}
// Remove the source from the exclusion list
RemoveAOMSource(PrevAMA, &AMA, PrevASA, &ASA);
// Inform IP
if (AMA_VALID(AMA)) {
CTEFreeLock(&OptionAO->ao_lock, Handle);
IPStatus = (*LocalNetInfo.ipi_setmcastexclude)(Req->umr_addr,
AMA->ama_if_used,
0,
NULL,
1,
&Req->umr_src);
CTEGetLock(&OptionAO->ao_lock, &Handle);
} else {
IPStatus = IP_SUCCESS;
}
} else { // AO_OPTION_BLOCK_MCAST_SRC
//
// BLOCK
//
// Return an error if source is in the exclusion list
if (ASA != NULL) {
Status = TDI_ADDR_INVALID;
break;
}
// Add the source to the exclusion list
Status = AddAOMSource(AMA, Req->umr_src);
Adding = TRUE;
// Inform IP
if (AMA_VALID(AMA)) {
CTEFreeLock(&OptionAO->ao_lock, Handle);
IPStatus = (*LocalNetInfo.ipi_setmcastexclude)(Req->umr_addr,
AMA->ama_if_used,
1,
&Req->umr_src,
0, NULL);
CTEGetLock(&OptionAO->ao_lock, &Handle);
} else {
IPStatus = IP_SUCCESS;
}
}
if (IPStatus != IP_SUCCESS) {
// Some problem adding or deleting. If we were adding, we
// need to free the one we just added.
if (Adding) {
AMA = FindAOMCastAddr(OptionAO, Req->umr_addr, Req->umr_if,
&PrevAMA);
ASA = (AMA)? FindAOMCastSrcAddr(AMA, Req->umr_src, &PrevASA)
: NULL;
ASSERT(ASA);
RemoveAOMSource(PrevAMA, &AMA, PrevASA, &ASA);
}
Status = (IPStatus == IP_NO_RESOURCES ? TDI_NO_RESOURCES :
TDI_ADDR_INVALID);
}
} else
Status = TDI_BAD_OPTION;
break;
case AO_OPTION_ADD_MCAST_SRC:
case AO_OPTION_DEL_MCAST_SRC:
if (Length >= sizeof(UDPMCastSrcReq)) {
UDPMCastSrcReq *Req = (UDPMCastSrcReq *) Options;
uint Adding = FALSE;
IPAddr ifaddr;
AMA = FindAOMCastAddr(OptionAO, Req->umr_addr, Req->umr_if,
&PrevAMA);
ASA = (AMA)? FindAOMCastSrcAddr(AMA, Req->umr_src, &PrevASA) : NULL;
DEBUGMSG(DBG_TRACE && DBG_IGMP,
(DTEXT("AO OPT: Mcast Src ID=%x G=%x IF=%x AMA=%x\n"),
ID, Req->umr_addr, Req->umr_if, AMA));
if ((AMA != NULL) && (AMA->ama_inclusion == FALSE)) {
Status = TDI_INVALID_PARAMETER;
break;
}
if (ID == AO_OPTION_ADD_MCAST_SRC) {
//
// JOIN
//
// Return an error if source is in the inclusion list
if (ASA != NULL) {
Status = TDI_ADDR_INVALID;
break;
}
// If no AOMCastAddr entry exists, create one in inclusion mode
if (!AMA) {
ifaddr = (Req->umr_if)? Req->umr_if :
(*LocalNetInfo.ipi_getmcastifaddr)();
if (!ifaddr) {
Status = TDI_ADDR_INVALID;
break;
}
Status = AddGroup(OptionAO, Req->umr_addr, Req->umr_if,
ifaddr, &AMA);
if (Status != TDI_SUCCESS)
break;
AMA->ama_inclusion = TRUE;
}
// Add the source to the inclusion list
Status = AddAOMSource(AMA, Req->umr_src);
Adding = TRUE;
// Inform IP
if (AMA_VALID(AMA)) {
CTEFreeLock(&OptionAO->ao_lock, Handle);
IPStatus = (*LocalNetInfo.ipi_setmcastinclude)(Req->umr_addr,
AMA->ama_if_used,
1,
&Req->umr_src,
0, NULL);
CTEGetLock(&OptionAO->ao_lock, &Handle);
} else {
IPStatus = IP_SUCCESS;
}
} else { // AO_OPTION_DEL_MCAST_SRC
//
// PRUNE
//
BOOLEAN InformIP;
// Return an error if source is not in the inclusion list
if (ASA == NULL) {
Status = TDI_ADDR_INVALID;
break;
}
InformIP = AMA_VALID(AMA);
ifaddr = AMA->ama_if_used;
// Remove the source from the inclusion list, and
// remove the group if needed.
RemoveAOMSource(PrevAMA, &AMA, PrevASA, &ASA);
// Inform IP
if (InformIP) {
CTEFreeLock(&OptionAO->ao_lock, Handle);
IPStatus =(*LocalNetInfo.ipi_setmcastinclude)(Req->umr_addr,
ifaddr,
0,
NULL,
1,
&Req->umr_src);
CTEGetLock(&OptionAO->ao_lock, &Handle);
} else {
IPStatus = IP_SUCCESS;
}
}
if (IPStatus != IP_SUCCESS) {
// Some problem adding or deleting. If we were adding, we
// need to free the one we just added.
if (Adding) {
AMA = FindAOMCastAddr(OptionAO, Req->umr_addr, Req->umr_if,
&PrevAMA);
ASA = (AMA)? FindAOMCastSrcAddr(AMA, Req->umr_src, &PrevASA)
: NULL;
ASSERT(ASA);
RemoveAOMSource(PrevAMA, &AMA, PrevASA, &ASA);
}
Status = (IPStatus == IP_NO_RESOURCES ? TDI_NO_RESOURCES :
TDI_ADDR_INVALID);
}
} else
Status = TDI_BAD_OPTION;
break;
case AO_OPTION_MCAST_FILTER:
Status = SetMulticastFilter(OptionAO, Length,
(UDPMCastFilter *) Options, &Handle);
break;
// Handle unnumbered interface index
// No validation other than a check for zero is made here.
case AO_OPTION_UNNUMBEREDIF:
KdPrintEx((DPFLTR_TCPIP_ID, DPFLTR_INFO_LEVEL, "AO OPT: UnNumberedIF %d\n", Options[0]));
if ((int)Options[0] > 0) {
OptionAO->ao_opt.ioi_uni = Options[0];
} else
Status = TDI_BAD_OPTION;
break;
case AO_OPTION_INDEX_BIND:
//
// If the AO is already bound to an interface, fail the request.
//
if (OptionAO->ao_bindindex) {
if ((Length >= sizeof(uint)) &&
(*(uint *)Options == OptionAO->ao_bindindex)) {
Status = TDI_ADDR_IN_USE;
} else {
Status = TDI_INVALID_REQUEST;
}
} else if (Length >= sizeof(uint)) {
uint IfIndex;
uint *Req;
Req = (uint *) Options;
IfIndex = *Req;
if (!IP_ADDR_EQUAL(
(*LocalNetInfo.ipi_isvalidindex)(IfIndex),
NULL_IP_ADDR)) {
OptionAO->ao_bindindex = IfIndex;
// assert that socket is bound to IN_ADDR_ANY
ASSERT(IP_ADDR_EQUAL(OptionAO->ao_addr, NULL_IP_ADDR));
} else {
Status = TDI_ADDR_INVALID;
}
} else
Status = TDI_BAD_OPTION;
break;
case AO_OPTION_INDEX_MCASTIF:
if (Length >= sizeof(UDPMCastIFReq)) {
UDPMCastIFReq *Req;
uint IfIndex;
Req = (UDPMCastIFReq *) Options;
IfIndex = (uint) Req->umi_addr;
if (!IP_ADDR_EQUAL(
(*LocalNetInfo.ipi_isvalidindex)(IfIndex),
NULL_IP_ADDR)) {
// OptionAO->ao_opt.ioi_mcastif = IfIndex;
OptionAO->ao_mcastopt.ioi_mcastif = IfIndex;
} else {
Status = TDI_ADDR_INVALID;
}
} else
Status = TDI_BAD_OPTION;
break;
case AO_OPTION_IP_HDRINCL:
if (Options[0]) {
OptionAO->ao_opt.ioi_hdrincl = TRUE;
OptionAO->ao_mcastopt.ioi_hdrincl = TRUE;
} else {
OptionAO->ao_opt.ioi_hdrincl = FALSE;
OptionAO->ao_mcastopt.ioi_hdrincl = FALSE;
}
break;
case AO_OPTION_IP_UCASTIF:
if (Length >= sizeof(uint)) {
uint UnicastIf = *(uint*)Options;
if (UnicastIf) {
if (!IP_ADDR_EQUAL(OptionAO->ao_addr, NULL_IP_ADDR)) {
UnicastIf =
(*LocalNetInfo.ipi_getifindexfromaddr)(
OptionAO->ao_addr,IF_CHECK_NONE);
}
OptionAO->ao_opt.ioi_ucastif = UnicastIf;
OptionAO->ao_mcastopt.ioi_ucastif = UnicastIf;
IF_TCPDBG(TCP_DEBUG_OPTIONS) {
KdPrintEx((DPFLTR_TCPIP_ID, DPFLTR_INFO_LEVEL,
"SetAOOptions: setting ucastif %p to %d\n",
OptionAO, UnicastIf));
}
} else {
OptionAO->ao_opt.ioi_ucastif = 0;
OptionAO->ao_mcastopt.ioi_ucastif = 0;
IF_TCPDBG(TCP_DEBUG_OPTIONS) {
KdPrintEx((DPFLTR_TCPIP_ID, DPFLTR_INFO_LEVEL,
"SetAOOptions: clearing ucastif %p\n", OptionAO));
}
}
} else
Status = TDI_BAD_OPTION;
break;
case AO_OPTION_BROADCAST:
if (Options[0]) {
SET_AO_BROADCAST(OptionAO);
} else {
CLEAR_AO_BROADCAST(OptionAO);
}
break;
case AO_OPTION_LIMIT_BCASTS:
if (Options[0]) {
OptionAO->ao_opt.ioi_limitbcasts = (uchar) OnlySendOnSource;
} else {
OptionAO->ao_opt.ioi_limitbcasts = (uchar) EnableSendOnSource;
}
break;
case AO_OPTION_IFLIST:{
uint *IfList;
// Determine whether the interface-list is being enabled or cleared.
// When enabled, an empty zero-terminated interface-list is set.
// When disabled, any existing interface-list is freed.
//
// In both cases, the 'ao_iflist' pointer in the object is replaced
// using an interlocked operation to allow us to check the field
// in the receive-path without first locking the address-object.
if (Options[0]) {
if (OptionAO->ao_iflist) {
Status = TDI_SUCCESS;
} else if (!IP_ADDR_EQUAL(OptionAO->ao_addr, NULL_IP_ADDR)) {
Status = TDI_INVALID_PARAMETER;
} else {
IfList = CTEAllocMemN(sizeof(uint), 'r2CT');
if (!IfList) {
Status = TDI_NO_RESOURCES;
} else {
*IfList = 0;
InterlockedExchangePointer(&OptionAO->ao_iflist,
IfList);
Status = TDI_SUCCESS;
}
}
} else {
IfList = InterlockedExchangePointer(&OptionAO->ao_iflist, NULL);
if (IfList) {
CTEFreeMem(IfList);
}
Status = TDI_SUCCESS;
}
break;
}
case AO_OPTION_ADD_IFLIST:
//
// An interface-index is being added to the object's interface-list
// so verify that an interface-list exists and, if not, fail.
// Otherwise, verify that the index specified is valid and, if so,
// verify that the index is not already in the interface list.
if (!OptionAO->ao_iflist) {
Status = TDI_INVALID_PARAMETER;
} else {
uint IfIndex = *(uint *) Options;
if (IfIndex == 0 ||
IP_ADDR_EQUAL((*LocalNetInfo.ipi_isvalidindex) (IfIndex),
NULL_IP_ADDR)) {
Status = TDI_ADDR_INVALID;
} else {
uint i = 0;
while (OptionAO->ao_iflist[i] != 0 &&
OptionAO->ao_iflist[i] != IfIndex) {
i++;
}
if (OptionAO->ao_iflist[i] == IfIndex) {
Status = TDI_SUCCESS;
} else {
// The index to be added is not already present.
// Allocate space for an expanded interface-list,
// copy the old interface-list, append the new index,
// and replace the old interface-list using an
// interlocked operation.
uint *IfList = CTEAllocMemN((i + 2) * sizeof(uint), 'r2CT');
if (!IfList) {
Status = TDI_NO_RESOURCES;
} else {
RtlCopyMemory(IfList, OptionAO->ao_iflist,
i * sizeof(uint));
IfList[i] = IfIndex;
IfList[i + 1] = 0;
IfList =
InterlockedExchangePointer(&OptionAO->ao_iflist,
IfList);
CTEFreeMem(IfList);
Status = TDI_SUCCESS;
}
}
}
}
break;
case AO_OPTION_DEL_IFLIST:
// An index is being removed from the object's interface-list,
// so verify that an interface-list exists and, if not, fail.
// Otherwise, search the list for the index and, if not found, fail.
//
// N.B. We do not validate the index first in this case, to allow
// an index to be removed even after the corresponding interface
// is no longer present.
if (!OptionAO->ao_iflist) {
Status = TDI_INVALID_PARAMETER;
} else {
uint IfIndex = *(uint *) Options;
if (IfIndex == 0) {
Status = TDI_ADDR_INVALID;
} else {
uint j = (uint) - 1;
uint i = 0;
while (OptionAO->ao_iflist[i] != 0) {
if (OptionAO->ao_iflist[i] == IfIndex) {
j = i;
}
i++;
}
if (j == (uint) - 1) {
Status = TDI_ADDR_INVALID;
} else {
// We've found the index to be removed.
// Allocate a truncated interface-list, copy the old
// interface-list excluding the removed index, and
// replace the old interface-list using an interlocked
// operation.
uint *IfList = CTEAllocMemN(i * sizeof(uint), 'r2CT');
if (!IfList) {
Status = TDI_NO_RESOURCES;
} else {
i = 0;
j = 0;
while (OptionAO->ao_iflist[i] != 0) {
if (OptionAO->ao_iflist[i] != IfIndex) {
IfList[j++] = OptionAO->ao_iflist[i];
}
i++;
}
IfList[j] = 0;
IfList =
InterlockedExchangePointer(&OptionAO->ao_iflist,
IfList);
CTEFreeMem(IfList);
Status = TDI_SUCCESS;
}
}
}
}
break;
case AO_OPTION_IP_PKTINFO:
if (Options[0]) {
SET_AO_PKTINFO(OptionAO);
} else {
CLEAR_AO_PKTINFO(OptionAO);
}
break;
case AO_OPTION_WINDOW:
if (Length >= sizeof(uint)) {
uint Window = *(uint*)Options;
if (Window >= DEFAULT_RCV_WIN && Window <= TCP_MAX_SCALED_WIN) {
OptionAO->ao_window = Window;
SET_AO_WINSET(OptionAO);
} else if (Window == 0) {
OptionAO->ao_window = 0;
CLEAR_AO_WINSET(OptionAO);
} else {
Status = TDI_INVALID_PARAMETER;
}
} else {
Status = TDI_BAD_OPTION;
}
break;
case AO_OPTION_SCALE_CWIN:
if (Options[0]) {
SET_AO_SCALE_CWIN(OptionAO);
} else {
CLEAR_AO_SCALE_CWIN(OptionAO);
}
break;
default:
Status = TDI_BAD_OPTION;
break;
}
CTEFreeLock(&OptionAO->ao_lock, Handle);
return Status;
}
//* GetAddrOptionsEx - Get options on an address object.
//
// Called to get options on an address object. We validate the buffer,
// and if everything is OK we'll check the status of the AddrObj. If
// it's OK then we'll get them, otherwise we'll mark it for later use.
//
// Input: Request - Request describing AddrObj for option set.
// ID - ID for option to be set.
// OptLength - Length of options buffer.
// Context - Arguments to ID.
//
// Output: Options - Pointer to options.
// InfoSize - Number of bytes returned.
//
// Returns: TDI_STATUS of attempt.
//
TDI_STATUS
GetAddrOptionsEx(PTDI_REQUEST Request, uint ID, uint OptLength,
PNDIS_BUFFER Options, uint * InfoSize, void * Context)
{
AddrObj *OptionAO;
TDI_STATUS Status;
CTELockHandle AOHandle;
OptionAO = Request->Handle.AddressHandle;
CTEStructAssert(OptionAO, ao);
CTEGetLock(&OptionAO->ao_lock, &AOHandle);
if (AO_VALID(OptionAO)) {
if (!AO_BUSY(OptionAO) && OptionAO->ao_usecnt == 0) {
SET_AO_BUSY(OptionAO);
CTEFreeLock(&OptionAO->ao_lock, AOHandle);
Status = GetAOOptions(OptionAO, ID, OptLength, Options, InfoSize,
Context);
CTEGetLock(&OptionAO->ao_lock, &AOHandle);
if (!AO_PENDING(OptionAO)) {
CLEAR_AO_BUSY(OptionAO);
CTEFreeLock(&OptionAO->ao_lock, AOHandle);
return Status;
} else {
CTEFreeLock(&OptionAO->ao_lock, AOHandle);
ProcessAORequests(OptionAO);
return Status;
}
} else {
AORequest *NewRequest, *OldRequest;
// The AddrObj is busy somehow. We need to get a request, and link
// him on the request list.
NewRequest = GetAORequest(AOR_TYPE_GET_OPTIONS);
if (NewRequest != NULL) { // Got a request.
NewRequest->aor_rtn = Request->RequestNotifyObject;
NewRequest->aor_context = Request->RequestContext;
NewRequest->aor_id = ID;
NewRequest->aor_length = OptLength;
NewRequest->aor_buffer = Options;
NewRequest->aor_next = NULL;
SET_AO_REQUEST(OptionAO, AO_OPTIONS); // Set the
// option request,
OldRequest = STRUCT_OF(AORequest, &OptionAO->ao_request,
aor_next);
while (OldRequest->aor_next != NULL)
OldRequest = OldRequest->aor_next;
OldRequest->aor_next = NewRequest;
CTEFreeLock(&OptionAO->ao_lock, AOHandle);
return TDI_PENDING;
} else
Status = TDI_NO_RESOURCES;
}
} else
Status = TDI_ADDR_INVALID;
CTEFreeLock(&OptionAO->ao_lock, AOHandle);
return Status;
}
//* SetAddrOptions - Set options on an address object.
//
// Called to set options on an address object. We validate the buffer,
// and if everything is OK we'll check the status of the AddrObj. If
// it's OK then we'll set them, otherwise we'll mark it for later use.
//
// Input: Request - Request describing AddrObj for option set.
// ID - ID for option to be set.
// OptLength - Length of options.
// Options - Pointer to options.
//
// Returns: TDI_STATUS of attempt.
//
TDI_STATUS
SetAddrOptions(PTDI_REQUEST Request, uint ID, uint OptLength, void *Options)
{
AddrObj *OptionAO;
TDI_STATUS Status;
CTELockHandle AOHandle;
OptionAO = Request->Handle.AddressHandle;
CTEStructAssert(OptionAO, ao);
CTEGetLock(&OptionAO->ao_lock, &AOHandle);
if (AO_VALID(OptionAO)) {
if (!AO_BUSY(OptionAO) && OptionAO->ao_usecnt == 0 &&
!IsBlockingAOOption(ID, AOHandle)) {
SET_AO_BUSY(OptionAO);
CTEFreeLock(&OptionAO->ao_lock, AOHandle);
Status = SetAOOptions(OptionAO, ID, OptLength, Options);
CTEGetLock(&OptionAO->ao_lock, &AOHandle);
if (!AO_PENDING(OptionAO)) {
CLEAR_AO_BUSY(OptionAO);
CTEFreeLock(&OptionAO->ao_lock, AOHandle);
return Status;
} else {
CTEFreeLock(&OptionAO->ao_lock, AOHandle);
ProcessAORequests(OptionAO);
return Status;
}
} else {
AORequest *NewRequest, *OldRequest;
// The AddrObj is busy somehow, or we have a request that might
// require a blocking call. We need to get a request, and link
// him on the request list.
NewRequest = GetAORequest(AOR_TYPE_SET_OPTIONS);
if (NewRequest != NULL) { // Got a request.
NewRequest->aor_rtn = Request->RequestNotifyObject;
NewRequest->aor_context = Request->RequestContext;
NewRequest->aor_id = ID;
NewRequest->aor_length = OptLength;
NewRequest->aor_buffer = Options;
NewRequest->aor_next = NULL;
SET_AO_REQUEST(OptionAO, AO_OPTIONS); // Set the
// option request,
OldRequest = STRUCT_OF(AORequest, &OptionAO->ao_request,
aor_next);
while (OldRequest->aor_next != NULL)
OldRequest = OldRequest->aor_next;
OldRequest->aor_next = NewRequest;
// If we're deferring because this request requires a blocking
// call and we can't block in the current execution context,
// schedule an event to deal with it later on.
// Otherwise, the AddrObj is busy and the request
// will be processed whenever its operator is done.
if (!AO_BUSY(OptionAO) && OptionAO->ao_usecnt == 0 &&
!AO_DEFERRED(OptionAO)) {
SET_AO_BUSY(OptionAO);
SET_AO_DEFERRED(OptionAO);
if (CTEScheduleEvent(&OptionAO->ao_event, OptionAO)) {
Status = TDI_PENDING;
} else {
CLEAR_AO_DEFERRED(OptionAO);
CLEAR_AO_BUSY(OptionAO);
Status = TDI_NO_RESOURCES;
}
} else {
Status = TDI_PENDING;
}
CTEFreeLock(&OptionAO->ao_lock, AOHandle);
return Status;
} else {
Status = TDI_NO_RESOURCES;
}
}
} else
Status = TDI_ADDR_INVALID;
CTEFreeLock(&OptionAO->ao_lock, AOHandle);
return Status;
}
//* TDISetEvent - Set a handler for a particular event.
//
// This is the user API to set an event. It's pretty simple, we just
// grab the lock on the AddrObj and fill in the event.
//
//
// Input: Handle - Pointer to address object.
// Type - Event being set.
// Handler - Handler to call for event.
// Context - Context to pass to event.
//
// Returns: TDI_SUCCESS if it works, an error if it doesn't. This routine
// never pends.
//
TDI_STATUS
TdiSetEvent(PVOID Handle, int Type, PVOID Handler, PVOID Context)
{
AddrObj *EventAO;
CTELockHandle AOHandle;
TDI_STATUS Status;
EventAO = (AddrObj *) Handle;
CTEStructAssert(EventAO, ao);
// Don't allow any new handlers to be installed on an invalid AddrObj.
// However, do allow pre-existing handlers to be cleared.
CTEGetLock(&EventAO->ao_lock, &AOHandle);
if (!AO_VALID(EventAO) && Handler != NULL) {
CTEFreeLock(&EventAO->ao_lock, AOHandle);
return TDI_ADDR_INVALID;
}
Status = TDI_SUCCESS;
switch (Type) {
case TDI_EVENT_CONNECT:
EventAO->ao_connect = Handler;
EventAO->ao_conncontext = Context;
break;
case TDI_EVENT_DISCONNECT:
EventAO->ao_disconnect = Handler;
EventAO->ao_disconncontext = Context;
break;
case TDI_EVENT_ERROR:
EventAO->ao_error = Handler;
EventAO->ao_errcontext = Context;
break;
case TDI_EVENT_RECEIVE:
EventAO->ao_rcv = Handler;
EventAO->ao_rcvcontext = Context;
break;
case TDI_EVENT_RECEIVE_DATAGRAM:
EventAO->ao_rcvdg = Handler;
EventAO->ao_rcvdgcontext = Context;
break;
case TDI_EVENT_RECEIVE_EXPEDITED:
EventAO->ao_exprcv = Handler;
EventAO->ao_exprcvcontext = Context;
break;
case TDI_EVENT_CHAINED_RECEIVE:
#if MILLEN
// Chained receives are not supported on Millennium. This is because
// of the architecture to return chained packets, etc from the TDI
// client and the need to convert NDIS_BUFFERs to MDLs before passing
// the chain to the TDI clients.
Status = TDI_BAD_EVENT_TYPE;
#else // MILLEN
EventAO->ao_chainedrcv = Handler;
EventAO->ao_chainedrcvcontext = Context;
#endif // !MILLEN
break;
case TDI_EVENT_ERROR_EX:
EventAO->ao_errorex = Handler;
EventAO->ao_errorexcontext = Context;
break;
default:
Status = TDI_BAD_EVENT_TYPE;
break;
}
CTEFreeLock(&EventAO->ao_lock, AOHandle);
return Status;
}
//* UDPReConnectOrDisconnect - Processes pending connect/disconnect
// requests on an AddrObj.
//
// Re-issues connect/disconnect on AddrObj corresponding to queued up
// connect/disconnect request.
//
// Input: RequestAO - AddrObj to be processed.
// ao_lock is held.
// Request - Request struct.
//
// Returns: Nothing.
//
void
UDPReConnectOrDisconnect(AddrObj *RequestAO,
AORequest *Request, CTELockHandle AOHandle)
{
PTCP_CONTEXT tcpContext;
PIO_STACK_LOCATION IrpSp;
TDI_REQUEST TdiRequest;
PTDI_REQUEST_KERNEL condisconnRequest;
NTSTATUS Status;
PTDI_CONNECTION_INFORMATION requestInformation, returnInformation;
PIRP Irp = (PIRP)Request->aor_context;
IrpSp = IoGetCurrentIrpStackLocation(Irp);
tcpContext = (PTCP_CONTEXT) IrpSp->FileObject->FsContext;
ASSERT((PtrToUlong(IrpSp->FileObject->FsContext2)
== TDI_TRANSPORT_ADDRESS_FILE));
TdiRequest.Handle.ConnectionContext = tcpContext->Handle.ConnectionContext;
TdiRequest.RequestNotifyObject = Request->aor_rtn;
TdiRequest.RequestContext = Request->aor_context;
condisconnRequest = (PTDI_REQUEST_KERNEL_CONNECT) &(IrpSp->Parameters);
requestInformation = condisconnRequest->RequestConnectionInformation;
returnInformation = condisconnRequest->ReturnConnectionInformation;
if (Request->aor_type == AOR_TYPE_DISCONNECT) {
CLEAR_AO_REQUEST(RequestAO, AO_DISCONNECT);
CTEFreeLock(&RequestAO->ao_lock, AOHandle);
Status = UDPDisconnect(&TdiRequest, NULL, requestInformation, returnInformation);
} else {
CLEAR_AO_REQUEST(RequestAO, AO_CONNECT);
CTEFreeLock(&RequestAO->ao_lock, AOHandle);
Status = UDPConnect(&TdiRequest, NULL, requestInformation, returnInformation);
}
if (Status != STATUS_PENDING) {
(Request->aor_rtn)(Irp, Status, 0);
}
}
//* ProcessAORequests - Process pending requests on an AddrObj.
//
// This is the delayed request processing routine, called when we've
// done something that used the busy bit. We examine the pending
// requests flags, and dispatch the requests appropriately.
//
// Input: RequestAO - AddrObj to be processed.
//
// Returns: Nothing.
//
void
ProcessAORequests(AddrObj * RequestAO)
{
CTELockHandle AOHandle;
AORequest *Request;
IP_STATUS IpStatus;
TDI_STATUS Status;
uint LocalInfoSize;
CTEStructAssert(RequestAO, ao);
CTEGetLock(&RequestAO->ao_lock, &AOHandle);
ASSERT(AO_BUSY(RequestAO));
while (AO_PENDING(RequestAO)) {
while ((Request = RequestAO->ao_request) != NULL) {
switch (Request->aor_type) {
case AOR_TYPE_DELETE:
ASSERT(!AO_REQUEST(RequestAO, AO_OPTIONS));
// usecnt has to be zero as this AO is
// deleted
ASSERT(RequestAO->ao_usecnt == 0);
CTEFreeLock(&RequestAO->ao_lock, AOHandle);
DeleteAO(RequestAO);
(*Request->aor_rtn) (Request->aor_context, TDI_SUCCESS, 0);
return; // Deleted him, so get out.
case AOR_TYPE_REVALIDATE_MCAST:
// Handle multicast revalidation request.
// If we are at dispatch_level bail out for now.
if (IsBlockingAOOption(AO_OPTION_ADD_MCAST, AOHandle)) {
CTEScheduleEvent(&RequestAO->ao_event, RequestAO);
CTEFreeLock(&RequestAO->ao_lock, AOHandle);
return;
}
// Unchain the request while we attempt to call IP.
RequestAO->ao_request = Request->aor_next;
if (RequestAO->ao_request == NULL) {
CLEAR_AO_REQUEST(RequestAO, AO_OPTIONS);
}
CTEFreeLock(&RequestAO->ao_lock, AOHandle);
IpStatus = SetIPMCastAddr(RequestAO, Request->aor_id);
if (IpStatus != IP_SUCCESS) {
//
// When a failure occurs, the failure could be
// persistent, so we don't want to just reschedule
// an event. Instead, the multicast join will be left
// in an invalid state (AMA_VALID_FLAG off) until the
// group is left, or until the address is revalidated
// again. For example, the rejoin can fail if the
// address has just been invalidated again, in which case
// we just leave it until the address comes back again.
//
KdPrintEx((DPFLTR_TCPIP_ID, DPFLTR_INFO_LEVEL,
"SetIPMcastAddr: failed with error %d\n",
IpStatus));
}
FreeAORequest(Request);
CTEGetLock(&RequestAO->ao_lock, &AOHandle);
break;
case AOR_TYPE_SET_OPTIONS:
// Now handle set options request.
// Have an option request.
// Look at the request to see if it can be processed here,
// and if not bail out; we'll have to wait for it to be
// pulled off by a scheduled event.
if (IsBlockingAOOption(Request->aor_id, AOHandle)) {
CTEScheduleEvent(&RequestAO->ao_event, RequestAO);
CTEFreeLock(&RequestAO->ao_lock, AOHandle);
return;
}
RequestAO->ao_request = Request->aor_next;
if (RequestAO->ao_request == NULL) {
CLEAR_AO_REQUEST(RequestAO, AO_OPTIONS);
}
CTEFreeLock(&RequestAO->ao_lock, AOHandle);
Status = SetAOOptions(RequestAO, Request->aor_id,
Request->aor_length, Request->aor_buffer);
(*Request->aor_rtn) (Request->aor_context, Status, 0);
FreeAORequest(Request);
CTEGetLock(&RequestAO->ao_lock, &AOHandle);
break;
case AOR_TYPE_GET_OPTIONS:
// Have a get option request.
// Look at the request to see if it can be processed here,
// and if not bail out; we'll have to wait for it to be pulled off
// by a scheduled event.
RequestAO->ao_request = Request->aor_next;
if (RequestAO->ao_request == NULL) {
CLEAR_AO_REQUEST(RequestAO, AO_OPTIONS);
}
CTEFreeLock(&RequestAO->ao_lock, AOHandle);
Status = GetAOOptions(RequestAO, Request->aor_id,
Request->aor_length, Request->aor_buffer,
&LocalInfoSize,
Request->aor_context);
(*Request->aor_rtn) (Request->aor_context, Status, LocalInfoSize);
FreeAORequest(Request);
CTEGetLock(&RequestAO->ao_lock, &AOHandle);
break;
case AOR_TYPE_DISCONNECT:
case AOR_TYPE_CONNECT:
//
// Process pending disconnect/connect request.
//
{
RequestAO->ao_request = Request->aor_next;
UDPReConnectOrDisconnect(RequestAO, Request, AOHandle);
FreeAORequest(Request);
CTEGetLock(&RequestAO->ao_lock, &AOHandle);
}
break;
}
}
// We've done options, now try sends.
if (AO_REQUEST(RequestAO, AO_SEND)) {
DGSendProc SendProc;
DGSendReq *SendReq;
// Need to send. Clear the busy flag, bump the send count, and
// get the send request.
if (!EMPTYQ(&RequestAO->ao_sendq)) {
DEQUEUE(&RequestAO->ao_sendq, SendReq, DGSendReq, dsr_q);
CLEAR_AO_BUSY(RequestAO);
RequestAO->ao_usecnt++;
SendProc = RequestAO->ao_dgsend;
CTEFreeLock(&RequestAO->ao_lock, AOHandle);
(*SendProc)(RequestAO, SendReq);
CTEGetLock(&RequestAO->ao_lock, &AOHandle);
// If there aren't any other pending sends, set the busy bit.
if (!(--RequestAO->ao_usecnt))
SET_AO_BUSY(RequestAO);
else
break; // Still sending, so get out.
} else {
// It is possible to have an AO with AO_SEND flag set with no
// send requests queued up, as the invariant is not maintained
// in many places; so, we just clear the flag and move on.
CLEAR_AO_REQUEST(RequestAO, AO_SEND);
}
}
}
// We're done here.
CLEAR_AO_BUSY(RequestAO);
CTEFreeLock(&RequestAO->ao_lock, AOHandle);
}
//* DelayDerefAO - Derefrence an AddrObj, and schedule an event.
//
// Called when we are done with an address object, and need to
// derefrence it. We dec the usecount, and if it goes to 0 and
// if there are pending actions we'll schedule an event to deal
// with them.
//
// Input: RequestAO - AddrObj to be processed.
//
// Returns: Nothing.
//
void
DelayDerefAO(AddrObj * RequestAO)
{
CTELockHandle Handle;
CTEGetLock(&RequestAO->ao_lock, &Handle);
RequestAO->ao_usecnt--;
if (!RequestAO->ao_usecnt && !AO_BUSY(RequestAO)) {
if (AO_PENDING(RequestAO)) {
SET_AO_BUSY(RequestAO);
CTEFreeLock(&RequestAO->ao_lock, Handle);
CTEScheduleEvent(&RequestAO->ao_event, RequestAO);
return;
}
}
CTEFreeLock(&RequestAO->ao_lock, Handle);
}
//* DerefAO - Derefrence an AddrObj.
//
// Called when we are done with an address object, and need to
// derefrence it. We dec the usecount, and if it goes to 0 and
// if there are pending actions we'll call the process AO handler.
//
// Input: RequestAO - AddrObj to be processed.
//
// Returns: Nothing.
//
void
DerefAO(AddrObj * RequestAO)
{
CTELockHandle Handle;
CTEGetLock(&RequestAO->ao_lock, &Handle);
RequestAO->ao_usecnt--;
if (!RequestAO->ao_usecnt && !AO_BUSY(RequestAO)) {
if (AO_PENDING(RequestAO)) {
SET_AO_BUSY(RequestAO);
CTEFreeLock(&RequestAO->ao_lock, Handle);
ProcessAORequests(RequestAO);
return;
}
}
CTEFreeLock(&RequestAO->ao_lock, Handle);
}
#pragma BEGIN_INIT
//* InitAddr - Initialize the address object stuff.
//
// Called during init time to initalize the address object stuff.
//
// Input: Nothing
//
// Returns: True if we succeed, False if we fail.
//
int
InitAddr()
{
ulong Length;
CTEInitLock(&AddrObjTableLock.Lock);
KeInitializeMutex(&AddrSDMutex, 0);
// Pick the number of elements in the address object hash table based
// on the product type. Servers use a larger hash table.
//
#if MILLEN
AddrObjTableSize = 31;
#else // MILLEN
if (MmIsThisAnNtAsSystem()) {
AddrObjTableSize = 257;
} else {
AddrObjTableSize = 31;
}
#endif // !MILLEN
// Allocate the address object hash table.
//
Length = sizeof(AddrObj*) * AddrObjTableSize;
AddrObjTable = CTEAllocMemBoot(Length);
if (AddrObjTable == NULL) {
return FALSE;
}
RtlZeroMemory(AddrObjTable, Length);
RtlInitializeBitMap(&PortBitmapTcp, PortBitmapBufferTcp, 1 << 16);
RtlInitializeBitMap(&PortBitmapUdp, PortBitmapBufferUdp, 1 << 16);
RtlClearAllBits(&PortBitmapTcp);
RtlClearAllBits(&PortBitmapUdp);
return TRUE;
}
#pragma END_INIT