|
|
/******************************Module*Header*******************************\
* Module Name: * * solline.cxx * * Abstract * * This module draws solid color, single pixel wide, non-styled, trivial or * rectangularly clipped lines to a DIB. * * Author: * * Mark Enstrom (marke) 12-1-93 * * Copyright (c) 1993-1999 Microsoft Corporation \**************************************************************************/
#include "precomp.hxx"
#include "solline.hxx"
#define DBG_LINE 0
#if DBG_LINE
ULONG DbgLine = 0; #endif
//
// horizontal line accelerators
//
PFN_HORZ gapfnHorizontal[6] = { vHorizontalLine1,vHorizontalLine4,vHorizontalLine8, vHorizontalLine16,vHorizontalLine24,vHorizontalLine32 };
//
// line DDA routines for each DIB format
//
PFN_OCTANT gapfnOctant[6][8] = { { vLine1Octant07,vLine1Octant16,vLine1Octant07,vLine1Octant16, vLine1Octant34,vLine1Octant25,vLine1Octant34,vLine1Octant25 }, { vLine4Octant07,vLine4Octant16,vLine4Octant07,vLine4Octant16, vLine4Octant34,vLine4Octant25,vLine4Octant34,vLine4Octant25 }, { vLine8Octant07,vLine8Octant16,vLine8Octant07,vLine8Octant16, vLine8Octant34,vLine8Octant25,vLine8Octant34,vLine8Octant25 }, { vLine16Octant07,vLine16Octant16,vLine16Octant07,vLine16Octant16, vLine16Octant34,vLine16Octant25,vLine16Octant34,vLine16Octant25 }, { vLine24Octant07,vLine24Octant16,vLine24Octant07,vLine24Octant16, vLine24Octant34,vLine24Octant25,vLine24Octant34,vLine24Octant25 }, { vLine32Octant07,vLine32Octant16,vLine32Octant07,vLine32Octant16, vLine32Octant34,vLine32Octant25,vLine32Octant34,vLine32Octant25 }
};
//
// mask for 4bpp pixels
//
UCHAR PixelLineMask4[2] = {0x0f,0xf0};
/******************************Public*Routine******************************\
* * Routine Name * * vSolidLine * * Routine Description: * * Extract line end points from path object and call lower lever drawing * routine * * Arguments: * * pso - destination surface object * ppo - path object * pptfx - line coordinates if 'ppo' is NULL * pco - clip object * iSolidColor - solid color to draw * * Return Value: * * none * \**************************************************************************/
VOID vSolidLine ( SURFACE *pSurf, PATHOBJ *ppo, POINTFIX*pptfx, CLIPOBJ *pco, ULONG iSolidColor ) {
PATHDATA pd; BOOL bMore; ULONG cptfx; POINTFIX ptfxStartFigure; POINTFIX ptfxLast; POINTFIX* pptfxFirst; POINTFIX* pptfxBuf; ULONG ulFormat; LONG lDelta; PBYTE pjDst; RECTL arclClip[4]; PRECTL prclClip = (PRECTL) NULL;
//
// check out params
//
ASSERTGDI((pco == NULL) || (pco->iDComplexity != DC_COMPLEX), "Routine does not handle complex clipping");
ulFormat = pSurf->iFormat(); lDelta = pSurf->lDelta(); pjDst = (PUCHAR)(pSurf->pvScan0());
//
// determine format and routines
//
switch (ulFormat) { case BMF_1BPP: iSolidColor = iSolidColor ? 0xffffffff : 0x00000000; break;
//
// rest fall through
//
case BMF_4BPP: iSolidColor |= (iSolidColor << 4); case BMF_8BPP: iSolidColor |= (iSolidColor << 8); case BMF_16BPP: iSolidColor |= (iSolidColor << 16); case BMF_24BPP: case BMF_32BPP: break; default: RIP("Invalid bitmap format"); }
//
// get clipping rectangle if needed, copy the rectangle into several
// formats for use by the GIQ clipping routine
//
if ((pco != NULL) && (pco->iDComplexity == DC_RECT)) { //
// assign temp rectangles to clipping bounds
//
arclClip[0] = pco->rclBounds;
#if DBG_LINE
if (DbgLine >= 2) { DbgPrint("Clipping rect = %li,%li to %li,%li\n", arclClip[0].left, arclClip[0].top, arclClip[0].right, arclClip[0].bottom); } #endif
//
// generate clipping rect variants for use in
// GIQ line routines
//
arclClip[1].top = pco->rclBounds.left; arclClip[2].left = pco->rclBounds.left; arclClip[3].top = pco->rclBounds.left;
arclClip[1].left = pco->rclBounds.top; arclClip[2].bottom = -pco->rclBounds.top + 1; arclClip[3].right = arclClip[2].bottom;
arclClip[1].bottom = pco->rclBounds.right; arclClip[2].right = pco->rclBounds.right; arclClip[3].bottom = pco->rclBounds.right;
arclClip[1].right = pco->rclBounds.bottom; arclClip[2].top = -pco->rclBounds.bottom + 1; arclClip[3].left = arclClip[2].top;
prclClip = arclClip;
}
//
// subtract 1 from ulFormat to use as array index
//
ulFormat --;
//
// if the path pointer 'ppo' is NULL, then we must use the vertice
// pointer 'pptfx':
//
if (ppo == NULL) { vDrawLine(pptfx,pptfx + 1,pjDst,lDelta,iSolidColor,prclClip,ulFormat); } else { //
// Enumerate the paths and send line segments to
// vDrawLine
//
//
// start enumeration of lines
//
pd.flags = 0;
((EPATHOBJ*) ppo)->vEnumStart();
//
// enumerate each set
//
do { bMore = ((EPATHOBJ*) ppo)->bEnum(&pd);
cptfx = pd.count;
//
// Should not get to here with empty path
//
if (cptfx == 0) { ASSERTGDI(!bMore, "Empty path record in non-empty path"); break; }
//
// if BEGINSUBPATH, save the starting point for the
// figure
//
if (pd.flags & PD_BEGINSUBPATH) { ptfxStartFigure = *pd.pptfx; pptfxFirst = pd.pptfx; pptfxBuf = pd.pptfx + 1; cptfx--;
} else {
pptfxFirst = &ptfxLast; pptfxBuf = pd.pptfx;
}
//
// draw line segments
//
if (cptfx > 0) { //
// draw line segment
//
while (cptfx --) {
vDrawLine(pptfxFirst,pptfxBuf,pjDst,lDelta,iSolidColor,prclClip,ulFormat);
pptfxFirst = pptfxBuf; pptfxBuf++;
}
}
ptfxLast = pd.pptfx[pd.count - 1];
if (pd.flags & PD_CLOSEFIGURE) {
//
// draw closure line segment
//
vDrawLine(&ptfxLast,&ptfxStartFigure,pjDst,lDelta,iSolidColor,prclClip,ulFormat);
}
} while (bMore); } }
/******************************Public*Routine******************************\
* * Routine Name * * vDrawLine * * Routine Description: * * This routine is passed end points of a line segment, either integer or * GIQ. The DDA equation for the line is determined then specific routines * are called to run the line DDA and draw the pixels for each bitmap format * * * Arguments: * * pptfx0 - end point 0 * pptfx1 - end point 1 * pjDst - pointer to dst * lDelta - byte scan line increment for dst * iSolidColor - draw color expnaded to 32 bits * prclClip - clip rectangles * FormatIndex - look up for dst bitmap format * * Return Value: * * none * \**************************************************************************/ VOID vDrawLine ( POINTFIX *pptfx0, POINTFIX *pptfx1, PUCHAR pjDst, LONG lDelta, ULONG iSolidColor, PRECTL prclClip, ULONG FormatIndex ) { LONG x0; LONG y0; LONG x1; LONG y1; LONG dx; LONG dy; ULONG ulTmp; PFN_OCTANT pfnOctant; LONG DeltaDst = lDelta; DDALINE DDALine; LONG Reduce;
DDALine.ulFlags = 0;
//
// check for GIQ lines
//
ulTmp = ( (ULONG)pptfx0->x | (ULONG)pptfx0->y | (ULONG)pptfx1->x | (ULONG)pptfx1->y ) & 0x0F;
//
// check for integer lines
//
if (ulTmp == 0) {
//
// check for no clipping rectangle or trivial
// accept/reject of each line with the clipping
// rectangle
//
x0 = pptfx0->x >> 4; y0 = pptfx0->y >> 4; x1 = pptfx1->x >> 4; y1 = pptfx1->y >> 4; DDALine.ptlStart.x = x0; DDALine.ptlStart.y = y0;
//
// order x0,x1 and y0,y1 for clip check and slope calculation
//
if (x1 < x0) { ULONG Tmp = x1; x1 = x0; x0 = Tmp; DDALine.ulFlags |= FL_SOL_FLIP_H; }
if (y1 < y0) { ULONG Tmp = y1; y1 = y0; y0 = Tmp; DDALine.ulFlags |= FL_SOL_FLIP_V; }
if (prclClip != (PRECTL) NULL) {
//
// check for a line totally outside clip rect
//
if ( (x1 < prclClip->left) || (x0 >= prclClip->right) || (y1 < prclClip->top) || (y0 >= prclClip->bottom) ) { //
// line is totally clipped out
//
#if DBG_LINE
if (DbgLine >= 1) { DbgPrint("Trivial reject line %li,%li to %li,%li\n",x0,y0,x1,y1); DbgPrint("Clipping rect: %li,%li to %li,%li\n", prclClip->left, prclClip->top, prclClip->right, prclClip->bottom); } #endif
return;
}
//
// check for line that is not totally inside clip rect,
// if not then call GIQ routine which has rectangular
// clipping.
//
if ( (x0 < prclClip->left) || (x1 >= prclClip->right) || (y0 < prclClip->top) || (y1 >= prclClip->bottom) ) { goto calc_GIQ_line; }
}
//
// transform line to the first octant and calculate
// terms and flags
//
//
// find out if line is x major or y major
//
dx = x1 - x0; dy = y1 - y0;
//
// check for x-major or y-major lines
//
if (dx >= dy) {
//
// check for horizontal line
//
if (dy == 0) {
PFN_HORZ pfnHorz = gapfnHorizontal[FormatIndex]; pjDst = pjDst + (DDALine.ptlStart.y * lDelta);
//
// must check to see if end points have been
// swapped due to exclusive line drawing
//
if (DDALine.ulFlags & FL_SOL_FLIP_H) { x0++; x1++; }
(*pfnHorz)(pjDst,x0,x1,iSolidColor); return; }
//
// check for zero length
//
if (dx == 0) { return; }
Reduce = -1;
//
// x major line
//
DDALine.dMajor = dx; DDALine.dMinor = dy;
//
// see if y has been flipped
//
if (DDALine.ulFlags & FL_SOL_FLIP_V) { DeltaDst = -DeltaDst; Reduce = 0; }
//
// Bresenham term except lErrorTerm is normally dy - dx/2 or
// 2x which is 2*dy - dx. In this case the 2*2y is not added to
// the error term until the start of the inner loop routine so that
// the x86 can immediately use the flag register to determine the sign
// of the error term after the addition of 2*dy.
//
DDALine.cPels = DDALine.dMajor; DDALine.lErrorTerm = -DDALine.dMajor; DDALine.dMajor = 2 * DDALine.dMajor; DDALine.dMinor = 2 * DDALine.dMinor;
//
// if FL_SOL_FLIP_V then lError term must be reduced by one to
// compensate for the rounding convention
//
DDALine.lErrorTerm += Reduce;
} else {
//
// check for 0 length
//
if (dy == 0) { return; }
Reduce = -1;
//
// y major line, swap the meaning of dMajor and dMinor
//
DDALine.dMajor = dy; DDALine.dMinor = dx;
DDALine.ulFlags |= FL_SOL_FLIP_D;
DDALine.xInc = 1;
//
// check for flipped x
//
if (DDALine.ulFlags & FL_SOL_FLIP_H) {
//
// compensate for negative x in y major line
//
Reduce = 0; }
//
// + or - y
//
if (DDALine.ulFlags & FL_SOL_FLIP_V) { DeltaDst = -DeltaDst; }
//
// Bresenham term except lErrorTerm is normally dy - dx/2 or
// 2x which is 2*dy - dx. In this case the 2*2y is not added to
// the error term until the start of the inner loop routine so that
// the x86 can immediately use the flag register to determine the sign
// of the error term after the addition of 2*dy.
//
DDALine.cPels = DDALine.dMajor; DDALine.lErrorTerm = -DDALine.dMajor; DDALine.dMajor = 2 * DDALine.dMajor; DDALine.dMinor = 2 * DDALine.dMinor;
//
// if FL_SOL_FLIP_H then lError term must be reduced by one to
// compensate for the rounding convention
//
DDALine.lErrorTerm += Reduce;
}
#if DBG_LINE
if (DbgLine >= 2) { DbgPrint("Integer line:\n"); DbgPrint("x0 = %li, y0 = %li\n",x0,y0); DbgPrint("Error term = %li\n",DDALine.lErrorTerm); DbgPrint("dMajor = %li\n",DDALine.dMajor); DbgPrint("dMinor = %li\n",DDALine.dMinor); DbgPrint("Pixel Count = %li\n",DDALine.cPels); DbgPrint("ulFlags = 0x%08lx\n\n",DDALine.ulFlags); }
#endif
} else {
calc_GIQ_line:
//
// caclulate GIQ parameters
//
if (!bGIQtoIntegerLine(pptfx0,pptfx1,prclClip,&DDALine)) { return; }
//
// check for 0 length
//
if (DDALine.cPels <= 0) { return; }
if (DDALine.ulFlags & FL_SOL_FLIP_V) { DeltaDst = -DeltaDst; }
#if DBG_LINE
if (DbgLine >= 2) { DbgPrint("GIQ line:\n"); DbgPrint("x0 = %li\n",DDALine.ptlStart.x); DbgPrint("y0 = %li\n",DDALine.ptlStart.y); DbgPrint("Error term = %li\n",DDALine.lErrorTerm); DbgPrint("dMajor = %li\n",DDALine.dMajor); DbgPrint("dMinor = %li\n",DDALine.dMinor); DbgPrint("Pixel Count = %li\n",DDALine.cPels); DbgPrint("DeltaDst = %li\n",DeltaDst); DbgPrint("xInc = %li\n",DDALine.xInc); DbgPrint("ulFlags = 0x%08lx\n\n",DDALine.ulFlags); } #endif
}
//
// select drawing routine based on format and octant
//
pfnOctant = gapfnOctant[FormatIndex][DDALine.ulFlags & 0x07];
pjDst = pjDst + (DDALine.ptlStart.y * lDelta);
(*pfnOctant)(&DDALine,pjDst,DeltaDst,iSolidColor);
}
/******************************Public*Routine******************************\
* * Routine Name * * Inner loop DDA line drawing routines for 8bpp * * Routine Description: * * 4 dda routines for line drawing in each octant for each resolution * * * Arguments: * * pDDALine - dda parameters * pjDst - Destination line address * lDeltaDst - Destination address scan line increment (bytes) * iSolidColor - Solid color for line * * Return Value: * * VOID * \**************************************************************************/
#if !defined(_X86_)
VOID vLine8Octant07( PDDALINE pDDALine, PUCHAR pjDst, LONG lDeltaDst, ULONG iSolidColor ) {
LONG ErrorTerm = pDDALine->lErrorTerm; LONG dM = pDDALine->dMajor; LONG dN = pDDALine->dMinor; LONG PixelCount = pDDALine->cPels;
//
// octant 0
//
// x major
//
// x - positive
// y - positive/negative
//
pjDst += pDDALine->ptlStart.x;
while (TRUE) {
*pjDst = (UCHAR)iSolidColor;
if (--PixelCount == 0) { return; }
pjDst++; ErrorTerm += dN;
if (ErrorTerm >= 0){
ErrorTerm -= dM; pjDst += lDeltaDst; }
}
}
VOID vLine8Octant34( PDDALINE pDDALine, PUCHAR pjDst, LONG lDeltaDst, ULONG iSolidColor ) {
LONG ErrorTerm = pDDALine->lErrorTerm; LONG dM = pDDALine->dMajor; LONG dN = pDDALine->dMinor; LONG PixelCount = pDDALine->cPels;
//
// octant 3
//
// x major
//
// x - negative
// y - positive/negative
//
pjDst += pDDALine->ptlStart.x;
//
// integer line
//
while (TRUE) {
*pjDst = (UCHAR)iSolidColor;
if (--PixelCount == 0) { return; }
pjDst--; ErrorTerm += dN;
if (ErrorTerm >= 0){
ErrorTerm -= dM; pjDst += lDeltaDst;
} } }
VOID vLine8Octant16( PDDALINE pDDALine, PUCHAR pjDst, LONG lDeltaDst, ULONG iSolidColor ) {
LONG ErrorTerm = pDDALine->lErrorTerm; LONG dM = pDDALine->dMajor; LONG dN = pDDALine->dMinor; LONG PixelCount = pDDALine->cPels;
//
// octant 1
//
// y major
//
// x - positive/negative
// y - positive
//
pjDst += pDDALine->ptlStart.x;
while (TRUE) {
*pjDst = (UCHAR)iSolidColor;
//
// integer line
//
if (--PixelCount == 0) { return; }
pjDst += lDeltaDst; ErrorTerm += dN;
if (ErrorTerm >= 0){ ErrorTerm -= dM; pjDst ++; } } }
VOID vLine8Octant25( PDDALINE pDDALine, PUCHAR pjDst, LONG lDeltaDst, ULONG iSolidColor ) {
LONG ErrorTerm = pDDALine->lErrorTerm; LONG dM = pDDALine->dMajor; LONG dN = pDDALine->dMinor; LONG PixelCount = pDDALine->cPels; LONG xInc = pDDALine->xInc;
//
// octant 5,6
//
// y major
//
// x - positive/negative
// y - negative
//
pjDst += pDDALine->ptlStart.x;
while (TRUE) {
*pjDst = (UCHAR)iSolidColor;
//
// integer line
//
if (--PixelCount == 0) { return; }
pjDst += lDeltaDst; ErrorTerm += dN;
if (ErrorTerm >= 0){ ErrorTerm -= dM; pjDst --; } } } #endif
/******************************Public*Routine******************************\
* * Routine Name * * Inner loop DDA line drawing routines for 16 bpp * * Routine Description: * * 4 dda routines for line drawing in each octant for each resolution * * * Arguments: * * pDDALine - dda parameters * pjDst - Destination line address * lDeltaDst - Destination address scan line increment (bytes) * iSolidColor - Solid color for line * * Return Value: * * VOID * \**************************************************************************/
VOID vLine16Octant07( PDDALINE pDDALine, PUCHAR pjDst, LONG lDeltaDst, ULONG iSolidColor ) {
LONG ErrorTerm = pDDALine->lErrorTerm; LONG dM = pDDALine->dMajor; LONG dN = pDDALine->dMinor; LONG PixelCount = pDDALine->cPels; PUSHORT pusDst = (PUSHORT)pjDst;
//
// octant 0
//
// x major
//
// x - positive
// y - positive/negative
//
pusDst += pDDALine->ptlStart.x;
while (TRUE) {
*pusDst = (USHORT)iSolidColor;
//
// integer line
//
if (--PixelCount == 0) { return; }
pusDst++; ErrorTerm += dN;
if (ErrorTerm >= 0){
ErrorTerm -= dM; pusDst = (PUSHORT)((PUCHAR)pusDst + lDeltaDst);
} } }
VOID vLine16Octant34( PDDALINE pDDALine, PUCHAR pjDst, LONG lDeltaDst, ULONG iSolidColor ) {
LONG ErrorTerm = pDDALine->lErrorTerm; LONG dM = pDDALine->dMajor; LONG dN = pDDALine->dMinor; LONG PixelCount = pDDALine->cPels; PUSHORT pusDst = (PUSHORT)pjDst;
//
// octant 3
//
// x major
//
// x - negative
// y - positive/negative
//
pusDst += pDDALine->ptlStart.x;
while (TRUE) {
*pusDst = (USHORT)iSolidColor;
//
// integer line
//
if (--PixelCount == 0) { return; }
pusDst--; ErrorTerm += dN;
if (ErrorTerm >= 0){
ErrorTerm -= dM; pusDst = (PUSHORT)((PUCHAR)pusDst + lDeltaDst);
} } }
VOID vLine16Octant16( PDDALINE pDDALine, PUCHAR pjDst, LONG lDeltaDst, ULONG iSolidColor ) {
LONG ErrorTerm = pDDALine->lErrorTerm; LONG dM = pDDALine->dMajor; LONG dN = pDDALine->dMinor; LONG PixelCount = pDDALine->cPels; LONG xInc = pDDALine->xInc; PUSHORT pusDst = (PUSHORT)pjDst;
//
// octant 1
//
// y major
//
// x - positive
// y - positive/negative
//
pusDst += pDDALine->ptlStart.x;
while (TRUE) {
*pusDst = (USHORT)iSolidColor;
//
// integer line
//
if (--PixelCount == 0) { return; }
pusDst = (PUSHORT)((PUCHAR)pusDst + lDeltaDst); ErrorTerm += dN;
if (ErrorTerm >= 0){ ErrorTerm -= dM; pusDst ++; } } }
VOID vLine16Octant25( PDDALINE pDDALine, PUCHAR pjDst, LONG lDeltaDst, ULONG iSolidColor ) {
LONG ErrorTerm = pDDALine->lErrorTerm; LONG dM = pDDALine->dMajor; LONG dN = pDDALine->dMinor; LONG PixelCount = pDDALine->cPels; LONG xInc = pDDALine->xInc; PUSHORT pusDst = (PUSHORT)pjDst;
//
// octant 5,6
//
// y major
//
// x - negative
// y - positive/ negative
//
pusDst += pDDALine->ptlStart.x;
while (TRUE) {
*pusDst = (USHORT)iSolidColor;
//
// integer line
//
if (--PixelCount == 0) { return; }
pusDst = (PUSHORT)((PUCHAR)pusDst + lDeltaDst); ErrorTerm += dN;
if (ErrorTerm >= 0){ ErrorTerm -= dM; pusDst --; } }
}
/******************************Public*Routine******************************\
* * Routine Name * * Inner loop DDA line drawing routines for 24bpp * * Routine Description: * * 4 dda routines for line drawing in each octant for each resolution * * * Arguments: * * pDDALine - dda parameters * pjDst - Destination line address * lDeltaDst - Destination address scan line increment (bytes) * iSolidColor - Solid color for line * * Return Value: * * VOID * \**************************************************************************/
VOID vLine24Octant07( PDDALINE pDDALine, PUCHAR pjDst, LONG lDeltaDst, ULONG iSolidColor ) {
LONG ErrorTerm = pDDALine->lErrorTerm; LONG dM = pDDALine->dMajor; LONG dN = pDDALine->dMinor; LONG PixelCount = pDDALine->cPels; UCHAR Red = (UCHAR)iSolidColor; UCHAR Green = (UCHAR)(iSolidColor >> 8); UCHAR Blue = (UCHAR)(iSolidColor >> 16);
//
// octant 0
//
// x major
//
// x - positive
// y - positive/negative
//
pjDst += (3 * pDDALine->ptlStart.x);
while (TRUE) {
*pjDst = Red; *(pjDst+1) = Green; *(pjDst+2) = Blue;
//
// integer line
//
if (--PixelCount == 0) { return; }
pjDst += 3; ErrorTerm += dN;
if (ErrorTerm >= 0){
ErrorTerm -= dM; pjDst += lDeltaDst;
}
*pjDst = Red; *(pjDst+1) = Green; *(pjDst+2) = Blue; } }
VOID vLine24Octant34( PDDALINE pDDALine, PUCHAR pjDst, LONG lDeltaDst, ULONG iSolidColor ) {
LONG ErrorTerm = pDDALine->lErrorTerm; LONG dM = pDDALine->dMajor; LONG dN = pDDALine->dMinor; LONG PixelCount = pDDALine->cPels; UCHAR Red = (UCHAR)iSolidColor; UCHAR Green = (UCHAR)(iSolidColor >> 8); UCHAR Blue = (UCHAR)(iSolidColor >> 16);
//
// octant 3
//
// x major
//
// x - negative
// y - positive/negative
//
pjDst += (3 * pDDALine->ptlStart.x);
while (TRUE) {
*pjDst = Red; *(pjDst+1) = Green; *(pjDst+2) = Blue;
//
// integer line
//
if (--PixelCount == 0) { return; }
pjDst -= 3; ErrorTerm += dN;
if (ErrorTerm >= 0){
ErrorTerm -= dM; pjDst += lDeltaDst;
}
*pjDst = Red; *(pjDst+1) = Green; *(pjDst+2) = Blue; } }
VOID vLine24Octant16( PDDALINE pDDALine, PUCHAR pjDst, LONG lDeltaDst, ULONG iSolidColor ) {
LONG ErrorTerm = pDDALine->lErrorTerm; LONG dM = pDDALine->dMajor; LONG dN = pDDALine->dMinor; LONG PixelCount = pDDALine->cPels; UCHAR Red = (UCHAR)iSolidColor; UCHAR Green = (UCHAR)(iSolidColor >> 8); UCHAR Blue = (UCHAR)(iSolidColor >> 16);
//
// octant 1,2
//
// y major
//
// x - positive
// y - positive/negative
//
pjDst += (3*pDDALine->ptlStart.x);
while (TRUE) {
*pjDst = Red; *(pjDst+1) = Green; *(pjDst+2) = Blue;
//
// integer line
//
if (--PixelCount == 0) { return; }
pjDst += lDeltaDst; ErrorTerm += dN;
if (ErrorTerm >= 0){ ErrorTerm -= dM; pjDst+=3; } } }
VOID vLine24Octant25( PDDALINE pDDALine, PUCHAR pjDst, LONG lDeltaDst, ULONG iSolidColor ) {
LONG ErrorTerm = pDDALine->lErrorTerm; LONG dM = pDDALine->dMajor; LONG dN = pDDALine->dMinor; LONG PixelCount = pDDALine->cPels; UCHAR Red = (UCHAR)iSolidColor; UCHAR Green = (UCHAR)(iSolidColor >> 8); UCHAR Blue = (UCHAR)(iSolidColor >> 16);
//
// octant 5,6
//
// y major
//
// x - negative
// y - positive/negative
//
pjDst += (3*pDDALine->ptlStart.x);
while (TRUE) {
*pjDst = Red; *(pjDst+1) = Green; *(pjDst+2) = Blue;
//
// integer line
//
if (--PixelCount == 0) { return; }
pjDst += lDeltaDst; ErrorTerm += dN;
if (ErrorTerm >= 0){ ErrorTerm -= dM; pjDst-=3; } } }
/******************************Public*Routine******************************\
* * Routine Name * * Inner loop DDA line drawing routines for 32 bpp * * Routine Description: * * 4 dda routines for line drawing in each octant for each resolution * * * Arguments: * * pDDALine - dda parameters * pjDst - Destination line address * lDeltaDst - Destination address scan line increment (bytes) * iSolidColor - Solid color for line * * Return Value: * * VOID * \**************************************************************************/
VOID vLine32Octant07( PDDALINE pDDALine, PUCHAR pjDst, LONG lDeltaDst, ULONG iSolidColor ) {
LONG ErrorTerm = pDDALine->lErrorTerm; LONG dM = pDDALine->dMajor; LONG dN = pDDALine->dMinor; LONG PixelCount = pDDALine->cPels; PULONG pulDst = (PULONG)pjDst;
//
// octant 0
//
// x major
//
// x - positive
// y - positive/negative
//
pulDst += pDDALine->ptlStart.x;
while (TRUE) {
*pulDst = iSolidColor;
//
// integer line
//
if (--PixelCount == 0) { return; }
pulDst++; ErrorTerm += dN;
if (ErrorTerm >= 0){
ErrorTerm -= dM; pulDst = (PULONG)((PUCHAR)pulDst + lDeltaDst);
} } }
VOID vLine32Octant34( PDDALINE pDDALine, PUCHAR pjDst, LONG lDeltaDst, ULONG iSolidColor ) {
LONG ErrorTerm = pDDALine->lErrorTerm; LONG dM = pDDALine->dMajor; LONG dN = pDDALine->dMinor; LONG PixelCount = pDDALine->cPels; PULONG pulDst = (PULONG)pjDst;
//
// octant 3
//
// x major
//
// x - negative
// y - positive/negative
//
pulDst += pDDALine->ptlStart.x;
while (TRUE) {
*pulDst = iSolidColor;
//
// integer line
//
if (--PixelCount == 0) { return; }
pulDst--; ErrorTerm += dN;
if (ErrorTerm >= 0){
ErrorTerm -= dM; pulDst = (PULONG)((PUCHAR)pulDst + lDeltaDst);
} } }
VOID vLine32Octant16( PDDALINE pDDALine, PUCHAR pjDst, LONG lDeltaDst, ULONG iSolidColor ) {
LONG ErrorTerm = pDDALine->lErrorTerm; LONG dM = pDDALine->dMajor; LONG dN = pDDALine->dMinor; LONG PixelCount = pDDALine->cPels; LONG xInc = pDDALine->xInc; PULONG pulDst = (PULONG)pjDst;
//
// octant 1
//
// y major
//
// x - positive/negative
// y - positive
//
pulDst += pDDALine->ptlStart.x;
while (TRUE) {
*pulDst = iSolidColor;
//
// integer line
//
if (--PixelCount == 0) { return; }
pulDst = (PULONG)((PUCHAR)pulDst + lDeltaDst); ErrorTerm += dN;
if (ErrorTerm >= 0){ ErrorTerm -= dM; pulDst++; }
*pulDst = iSolidColor; } }
VOID vLine32Octant25( PDDALINE pDDALine, PUCHAR pjDst, LONG lDeltaDst, ULONG iSolidColor ) {
LONG ErrorTerm = pDDALine->lErrorTerm; LONG dM = pDDALine->dMajor; LONG dN = pDDALine->dMinor; LONG PixelCount = pDDALine->cPels; LONG xInc = pDDALine->xInc; PULONG pulDst = (PULONG)pjDst;
//
// octant 5,6
//
// y major
//
// x - positive/negative
// y - negative
//
pulDst += pDDALine->ptlStart.x;
while (TRUE) {
*pulDst = iSolidColor;
//
// integer line
//
if (--PixelCount == 0) { return; }
pulDst = (PULONG)((PUCHAR)pulDst + lDeltaDst); ErrorTerm += dN;
if (ErrorTerm >= 0){ ErrorTerm -= dM; pulDst--; }
*pulDst = iSolidColor; } }
/******************************Public*Routine******************************\
* * Routine Name * * Inner loop DDA line drawing routines for 1bpp * * Routine Description: * * 4 dda routines for line drawing in each octant for each resolution * * * Arguments: * * pDDALine - dda parameters * pjDst - Destination line address * lDeltaDst - Destination address scan line increment (bytes) * iSolidColor - Solid color for line * * Return Value: * * VOID * \**************************************************************************/
VOID vLine1Octant07( PDDALINE pDDALine, PUCHAR pjDst, LONG lDeltaDst, ULONG iSolidColor ) {
LONG ErrorTerm = pDDALine->lErrorTerm; LONG dM = pDDALine->dMajor; LONG dN = pDDALine->dMinor; LONG PixelCount = pDDALine->cPels; ULONG Pixel;
//
// octant 0
//
// x major
//
// x - positive
// y - positive/negative
//
Pixel = pDDALine->ptlStart.x;
UCHAR Mask = (UCHAR)(0x80 >> (Pixel & 0x07));
pjDst = pjDst + (Pixel >> 3);
//
// integer line
//
if (iSolidColor) {
//
// loop for storing '1' pixels
//
while (TRUE) {
*pjDst |= Mask;
if (--PixelCount == 0) { return; }
Mask = (UCHAR)(Mask >> 1);
if (!(Mask)) { Mask = 0x80; pjDst++; }
ErrorTerm += dN;
if (ErrorTerm >= 0){
ErrorTerm -= dM; pjDst += lDeltaDst;
} }
} else {
//
// loop for storing '0' pixels
//
while (TRUE) {
*pjDst &= (~Mask);
if (--PixelCount == 0) { return; }
Mask = (UCHAR)(Mask >> 1);
if (!(Mask)) { Mask = 0x80; pjDst++; }
ErrorTerm += dN;
if (ErrorTerm >= 0){
ErrorTerm -= dM; pjDst += lDeltaDst;
} } }
}
VOID vLine1Octant34( PDDALINE pDDALine, PUCHAR pjDst, LONG lDeltaDst, ULONG iSolidColor ) {
LONG ErrorTerm = pDDALine->lErrorTerm; LONG dM = pDDALine->dMajor; LONG dN = pDDALine->dMinor; LONG PixelCount = pDDALine->cPels; ULONG Pixel;
//
// octant 3,4
//
// x major
//
// x - negative
// y - positive/negative
//
Pixel = pDDALine->ptlStart.x;
UCHAR Mask = (UCHAR)(0x80 >> (Pixel & 0x07));
pjDst = pjDst + (Pixel >> 3);
//
// integer line
//
if (iSolidColor) {
//
// loop for storing '1' pixels
//
while (TRUE) {
*pjDst |= Mask;
if (--PixelCount == 0) { return; }
Mask = (UCHAR)(Mask << 1);
if (!(Mask)) { Mask = 0x01; pjDst--; }
ErrorTerm += dN;
if (ErrorTerm >= 0){
ErrorTerm -= dM; pjDst += lDeltaDst;
} }
} else {
while (TRUE) {
*pjDst &= (~Mask);
if (--PixelCount == 0) { return; }
Mask = (UCHAR)(Mask << 1);
if (!(Mask)) { Mask = 0x01; pjDst--; }
ErrorTerm += dN;
if (ErrorTerm >= 0){
ErrorTerm -= dM; pjDst += lDeltaDst;
} } } }
VOID vLine1Octant16( PDDALINE pDDALine, PUCHAR pjDst, LONG lDeltaDst, ULONG iSolidColor ) {
LONG ErrorTerm = pDDALine->lErrorTerm; LONG dM = pDDALine->dMajor; LONG dN = pDDALine->dMinor; LONG PixelCount = pDDALine->cPels; ULONG Pixel;
//
// octant 1,6
//
// y major
//
// x - positive
// y - positive/negative
//
Pixel = pDDALine->ptlStart.x;
UCHAR Mask = (UCHAR)(0x80 >> (Pixel & 0x07));
pjDst = pjDst + (Pixel >> 3);
//
// integer line
//
if (iSolidColor) {
//
// loop for storing '1' pixels
//
while (TRUE) {
*pjDst |= Mask;
if (--PixelCount == 0) { return; }
pjDst += lDeltaDst;
ErrorTerm += dN;
if (ErrorTerm >= 0){
ErrorTerm -= dM;
Mask = (UCHAR)(Mask >> 1);
if (!(Mask)) { Mask = 0x80; pjDst++; }
} }
} else {
while (TRUE) {
*pjDst &= (~Mask);
if (--PixelCount == 0) { return; }
pjDst += lDeltaDst;
ErrorTerm += dN;
if (ErrorTerm >= 0){
ErrorTerm -= dM;
Mask = (UCHAR)(Mask >> 1);
if (!(Mask)) { Mask = 0x80; pjDst++; }
} } }
}
VOID vLine1Octant25( PDDALINE pDDALine, PUCHAR pjDst, LONG lDeltaDst, ULONG iSolidColor ) {
LONG ErrorTerm = pDDALine->lErrorTerm; LONG dM = pDDALine->dMajor; LONG dN = pDDALine->dMinor; LONG PixelCount = pDDALine->cPels; LONG xInc = pDDALine->xInc; ULONG Pixel;
//
// octant 2,5
//
// y major
//
// x - negative
// y - negative/positive
//
Pixel = pDDALine->ptlStart.x;
UCHAR Mask = (UCHAR)(0x80 >> (Pixel & 0x07));
pjDst = pjDst + (Pixel >> 3);
//
// integer line
//
if (iSolidColor) {
//
// loop for storing '1' pixels
//
while (TRUE) {
*pjDst |= Mask;
if (--PixelCount == 0) { return; }
pjDst += lDeltaDst;
ErrorTerm += dN;
if (ErrorTerm >= 0){
ErrorTerm -= dM;
Mask = (UCHAR)(Mask << 1);
if (!(Mask)) { Mask = 0x01; pjDst--; }
} }
} else {
while (TRUE) {
*pjDst &= (~Mask);
if (--PixelCount == 0) { return; }
pjDst += lDeltaDst;
ErrorTerm += dN;
if (ErrorTerm >= 0){
ErrorTerm -= dM;
Mask = (UCHAR)(Mask << 1);
if (!(Mask)) { Mask = 0x01; pjDst--; }
} } }
}
/******************************Public*Routine******************************\
* * Routine Name * * Inner loop DDA line drawing routines for 4bpp * * Routine Description: * * 4 dda routines for line drawing in each octant for each resolution * * * Arguments: * * pDDALine - dda parameters * pjDst - Destination line address * lDeltaDst - Destination address scan line increment (bytes) * iSolidColor - Solid color for line * * Return Value: * * VOID * \**************************************************************************/
VOID vLine4Octant07( PDDALINE pDDALine, PUCHAR pjDst, LONG lDeltaDst, ULONG iSolidColor ) {
LONG ErrorTerm = pDDALine->lErrorTerm; LONG dM = pDDALine->dMajor; LONG dN = pDDALine->dMinor; LONG PixelCount = pDDALine->cPels; ULONG Pixel; PUCHAR PixelAddr;
iSolidColor &= 0x0f; iSolidColor |= iSolidColor << 4;
//
// octant 0
//
// x major
//
// x - positive
// y - positive/negative
//
Pixel = pDDALine->ptlStart.x;
while (TRUE) {
PixelAddr = pjDst + (Pixel >> 1);
*PixelAddr = (UCHAR)((*PixelAddr & PixelLineMask4[Pixel & 1]) | (iSolidColor & ~PixelLineMask4[Pixel & 1]));
//
// integer line
//
if (--PixelCount == 0) { return; }
Pixel++; ErrorTerm += dN;
if (ErrorTerm >= 0){
ErrorTerm -= dM; pjDst += lDeltaDst;
} } }
VOID vLine4Octant34( PDDALINE pDDALine, PUCHAR pjDst, LONG lDeltaDst, ULONG iSolidColor ) {
LONG ErrorTerm = pDDALine->lErrorTerm; LONG dM = pDDALine->dMajor; LONG dN = pDDALine->dMinor; LONG PixelCount = pDDALine->cPels; ULONG Pixel; PUCHAR PixelAddr;
iSolidColor &= 0x0f; iSolidColor |= iSolidColor << 4;
//
// octant 3
//
// x major
//
// x - negative
// y - positive/negative
//
Pixel = pDDALine->ptlStart.x;
while (TRUE) {
PixelAddr = pjDst + (Pixel >> 1);
*PixelAddr = (UCHAR)((*PixelAddr & PixelLineMask4[Pixel & 1]) | (iSolidColor & ~PixelLineMask4[Pixel & 1]));
//
// integer line
//
if (--PixelCount == 0) { return; }
Pixel--; ErrorTerm += dN;
if (ErrorTerm >= 0){
ErrorTerm -= dM; pjDst += lDeltaDst;
} }
}
VOID vLine4Octant16( PDDALINE pDDALine, PUCHAR pjDst, LONG lDeltaDst, ULONG iSolidColor ) {
LONG ErrorTerm = pDDALine->lErrorTerm; LONG dM = pDDALine->dMajor; LONG dN = pDDALine->dMinor; LONG PixelCount = pDDALine->cPels; LONG xInc = pDDALine->xInc; ULONG Pixel; PUCHAR PixelAddr;
iSolidColor &= 0x0f; iSolidColor |= iSolidColor << 4;
//
// octant 1,6
//
// y major
//
// x - positive
// y - positive/negative
//
Pixel = pDDALine->ptlStart.x;
while (TRUE) {
PixelAddr = pjDst + (Pixel >> 1); *PixelAddr = (UCHAR)((*PixelAddr & PixelLineMask4[Pixel & 1]) | (iSolidColor & ~PixelLineMask4[Pixel & 1]));
//
// integer line
//
if (--PixelCount == 0) { return; }
pjDst += lDeltaDst; ErrorTerm += dN;
if (ErrorTerm >= 0){ ErrorTerm -= dM; Pixel ++; } } }
VOID vLine4Octant25( PDDALINE pDDALine, PUCHAR pjDst, LONG lDeltaDst, ULONG iSolidColor ) {
LONG ErrorTerm = pDDALine->lErrorTerm; LONG dM = pDDALine->dMajor; LONG dN = pDDALine->dMinor; LONG PixelCount = pDDALine->cPels; LONG xInc = pDDALine->xInc; ULONG Pixel; PUCHAR PixelAddr;
iSolidColor &= 0x0f; iSolidColor |= iSolidColor << 4;
//
// octant 2,5
//
// y major
//
// x - negative
// y - psoitive\negative
//
Pixel = pDDALine->ptlStart.x;
while (TRUE) {
PixelAddr = pjDst + (Pixel >> 1); *PixelAddr = (UCHAR)((*PixelAddr & PixelLineMask4[Pixel & 1]) | (iSolidColor & ~PixelLineMask4[Pixel & 1]));
//
// integer line
//
if (--PixelCount == 0) { return; }
pjDst += lDeltaDst; ErrorTerm += dN;
if (ErrorTerm >= 0){ ErrorTerm -= dM; Pixel --; } }
}
/******************************Public*Routine******************************\
* * Routine Name * * vHorizontalLineN * * Routine Description: * * Accelerator for horizontal lines * * Arguments: * * pjDst - Scan line dst address * x0 - Starting pixel location * x1 - Ending pixel location (exclusive) * iSolidColor - Solid Color replicated to 32 bits if needed * * Return Value: * * VOID * \**************************************************************************/
VOID vHorizontalLine1( PUCHAR pjDst, LONG x0, LONG x1, ULONG iSolidColor) { ULONG Count; ULONG Alignment;
//
// count = number of pixels to write, make sure it is not 0
//
Count = x1 - x0;
if (Count) {
pjDst += (x0 >> 3);
Alignment = x0 & 0x07;
//
// alignment Start bits
//
if ((Alignment) && ((ULONG)Count >= (8 - Alignment))) { //
// partial byte
//
*pjDst = (UCHAR)((*pjDst & (~(0xFF >> Alignment))) | (iSolidColor & (0xFF >> Alignment)));
pjDst ++; Count -= ( 8 - Alignment); Alignment = 0;
}
//
// byte loop
//
if (Alignment == 0) {
//
// full byte stores
//
ULONG NumBytes = Count >> 3;
if (NumBytes > 0) { RtlFillMemory((PVOID)pjDst,NumBytes,(UCHAR)iSolidColor); pjDst += NumBytes; Count = (Count & 0x07); }
//
// last store
//
if (Count > 0) { *pjDst = (UCHAR)((*pjDst & (0xFF >> Count)) | (iSolidColor & (~(0xFF >> Count)))); }
return; }
//
// do whats left, partial of 1 byte with
// start bit = alignment, number of bits = Count
//
//
// bit
// ���������������Ŀ
// �7�6�5�4�3�2�1�0�
// �����������������
//
// pixel
// ���������������Ŀ
// �0�1�2�3�4�5�6�7�
// �����������������
{ UCHAR DstMask = (UCHAR)(0xff >> Alignment); UCHAR AndMask = (UCHAR)(0xff << (8 - (Count + Alignment)));
DstMask &= AndMask;
*pjDst = (UCHAR)((*pjDst & (~DstMask)) | (iSolidColor & DstMask));
} }
}
VOID vHorizontalLine4( PUCHAR pjDst, LONG x0, LONG x1, ULONG iSolidColor) { ULONG Count; ULONG Alignment; ULONG NumBytes;
Count = x1 - x0;
if (Count) {
pjDst += (x0 >> 1);
//
// alignment Start nibble
//
Alignment = x0 & 0x01;
if (Alignment) { *pjDst = (UCHAR)((*pjDst & 0xf0) | (iSolidColor & 0x0f)); Count--; pjDst++; }
//
// aligned to byte boundary
//
NumBytes = Count >> 1;
if (NumBytes) {
RtlFillMemory((PVOID)pjDst,NumBytes,(BYTE)iSolidColor);
pjDst += NumBytes; Count = Count & 0x01; }
//
// end alignment if needed
//
if (Count) { *pjDst = (UCHAR)((*pjDst & 0x0f) | (iSolidColor & 0xf0)); }
} }
VOID vHorizontalLine8( PUCHAR pjDst, LONG x0, LONG x1, ULONG iSolidColor) { ULONG Count; UCHAR Align;
//
// increment pjDst to x0 address
//
pjDst += x0;
//
// if byte count is less then 7, then just quickly do
// the bytes
//
Count = x1 - x0;
if (Count <= 6) {
while (Count--) { *pjDst++ = (UCHAR)iSolidColor; }
return; }
//
// large scan line that at least covers 1 full DWORD,
// first do partial bytes if needed
//
//
// do partial bytes, count is gaurenteed to be
// greater than max of 3 alignment bytes
//
Align = (UCHAR)(x0 & 0x03);
switch (Align) { case 1: *pjDst++ = (UCHAR)iSolidColor; Count--; case 2: *(PUSHORT)pjDst = (USHORT)iSolidColor; pjDst += 2; Count -= 2; break; case 3: *pjDst++ = (UCHAR)iSolidColor; Count--; }
ULONG NumBytes = Count & (~0x03);
//
// fill Dwords
//
RtlFillMemoryUlong((PVOID)pjDst,NumBytes,iSolidColor); pjDst += NumBytes;
//
// fill last partial bytes
//
switch (Count & 0x03) { case 1: *pjDst = (UCHAR)iSolidColor; break; case 2: *(PUSHORT)pjDst = (USHORT)iSolidColor; break; case 3: *(PUSHORT)pjDst = (USHORT)iSolidColor; *(pjDst+2) = (UCHAR)iSolidColor; }
}
VOID vHorizontalLine16( PUCHAR pjDst, LONG x0, LONG x1, ULONG iSolidColor) { PUSHORT pusDst = (PUSHORT)pjDst + x0; ULONG Count = x1 - x0;
if (Count) {
//
// do starting alignment
//
if (x0 & 0x01) { *pusDst++ = (USHORT)iSolidColor; Count--; }
//
// fill dwords
//
ULONG NumDwords = Count >> 1;
if (NumDwords) { RtlFillMemoryUlong((PVOID)pusDst,NumDwords << 2,iSolidColor); }
//
// fill last 16 if needed
//
if (Count & 0x01) {
//
// add Number of USHORTS stored in RtlFillMemoryUlong to pusDst
// then store final USHORT
//
pusDst += NumDwords << 1;
*pusDst = (USHORT)iSolidColor; } } }
VOID vHorizontalLine24( PUCHAR pjDst, LONG x0, LONG x1, ULONG iSolidColor) { UCHAR Red = (UCHAR)iSolidColor; UCHAR Green = (UCHAR)(iSolidColor >> 8); UCHAR Blue = (UCHAR)(iSolidColor >> 16); PUCHAR pjEnd = pjDst + 3*x1;
pjDst += 3*x0;
while (pjDst < pjEnd) { *pjDst = Red; *(pjDst+1) = Green; *(pjDst+2) = Blue; pjDst += 3; } }
VOID vHorizontalLine32( PUCHAR pjDst, LONG x0, LONG x1, ULONG iSolidColor) {
//
// incremnet pjDst x0 DWORDs
//
pjDst += (x0 << 2);
//
// fill
//
if (x1 != x0) { RtlFillMemoryUlong((PVOID)pjDst,(x1 - x0) << 2,iSolidColor); } }
/******************************Public*Routine******************************\
* * Routine Name * * bGIQtoIntegerLine * * Routine Description: * * This routine takes GIQ endpoints and calculates the correct integer * endpoints, error term and flags. * * Arguments: * * pptfxStart - GIQ point 0 * pptfxEnd - GIQ point 1 * prclClip - clip rectangles * pDDALine - Interger line params * * Return Value: * * True if this line can be drawn with 32 bit arithmatic and * all params are calculated, otherwise false * \**************************************************************************/
#define HW_X_ROUND_DOWN 0x0100L // x = 1/2 rounds down in value
#define HW_Y_ROUND_DOWN 0x0200L // y = 1/2 rounds down in value
FLONG gaflHardwareRound[] = { HW_X_ROUND_DOWN | HW_Y_ROUND_DOWN, // | | |
HW_X_ROUND_DOWN | HW_Y_ROUND_DOWN, // | | | FLIP_D
HW_X_ROUND_DOWN, // | | FLIP_V |
HW_Y_ROUND_DOWN, // | | FLIP_V | FLIP_D
HW_Y_ROUND_DOWN, // | FLIP_H | |
HW_X_ROUND_DOWN, // | FLIP_H | | FLIP_D
0, // | FLIP_H | FLIP_V |
0, // | FLIP_H | FLIP_V | FLIP_D
HW_Y_ROUND_DOWN, // SLOPE_ONE | | |
0xffffffff, // SLOPE_ONE | | | FLIP_D
HW_X_ROUND_DOWN, // SLOPE_ONE | | FLIP_V |
0xffffffff, // SLOPE_ONE | | FLIP_V | FLIP_D
HW_Y_ROUND_DOWN, // SLOPE_ONE | FLIP_H | |
0xffffffff, // SLOPE_ONE | FLIP_H | | FLIP_D
HW_X_ROUND_DOWN, // SLOPE_ONE | FLIP_H | FLIP_V |
0xffffffff // SLOPE_ONE | FLIP_H | FLIP_V | FLIP_D
};
BOOL bGIQtoIntegerLine( POINTFIX* pptfxStart, POINTFIX* pptfxEnd, PRECTL prclClip, DDALINE* pDDALine)
{ FLONG fl; // Various flags
ULONG M0; // Normalized fractional unit x start coordinate (0 <= M0 < F)
ULONG N0; // Normalized fractional unit y start coordinate (0 <= N0 < F)
ULONG M1; // Normalized fractional unit x end coordinate (0 <= M1 < F)
ULONG N1; // Normalized fractional unit x end coordinate (0 <= N1 < F)
ULONG dM; // Normalized fractional unit x-delta (0 <= dM)
ULONG dN; // Normalized fractional unit y-delta (0 <= dN <= dM)
LONG x; // Normalized x coordinate of origin
LONG y; // Normalized y coordinate of origin
LONG x0; // Normalized x offset from origin to start Pixel (inclusive)
LONG y0; // Normalized y offset from origin to start Pixel (inclusive)
LONG x1; // Normalized x offset from origin to end Pixel (inclusive)
LONG lGamma; // Possibly overflowing Bresenham error term at origin
LONGLONG eqGamma;// Non-overflowing Bresenham error term at origin
BOOL bReturn = FALSE;
/***********************************************************************\
* Normalize line to the first octant. \***********************************************************************/
#if DBG_LINE
if (DbgLine >= 2) { DbgPrint("\nCalculate GIQ parameters for line:\n"); DbgPrint("pptfxStart = %li.%li, %li.%li\n", pptfxStart->x >> 4, pptfxStart->x & 0x0f, pptfxStart->y >> 4, pptfxStart->y & 0x0f);
DbgPrint("pptxEnd = %li.%li, %li.%li\n\n", pptfxEnd->x >> 4, pptfxEnd->x & 0x0f, pptfxEnd->y >> 4, pptfxEnd->y & 0x0f); }
#endif
fl = 0;
M0 = pptfxStart->x; dM = pptfxEnd->x;
if ((LONG) dM < (LONG) M0) { //
// Line runs from right to left, so flip across x = 0:
//
M0 = -(LONG) M0; dM = -(LONG) dM; fl |= FL_SOL_FLIP_H; }
//
// Compute the delta dx. The DDI says we can never have a valid delta
// with a magnitude more than 2^31 - 1, but the engine never actually
// checks its transforms. Check for that case and simply refuse to draw
// the line:
//
dM -= M0; if ((LONG) dM < 0) { goto GIQEnd; }
N0 = pptfxStart->y; dN = pptfxEnd->y;
if ((LONG) dN < (LONG) N0) {
//
// Line runs from bottom to top, so flip across y = 0
//
N0 = -(LONG) N0; dN = -(LONG) dN; fl |= FL_SOL_FLIP_V; }
//
// Compute the delta dy
//
dN -= N0; if ((LONG) dN < 0) { goto GIQEnd; }
//
// check for y-major lines and lines with
// slope = 1
//
if (dN >= dM) { if (dN == dM) {
//
// Have to special case slopes of one:
//
fl |= FL_SOL_FLIP_SLOPE_ONE; } else { //
// Since line has slope greater than 1, flip across x = y:
//
register ULONG ulTmp; ulTmp = dM; dM = dN; dN = ulTmp; ulTmp = M0; M0 = N0; N0 = ulTmp; fl |= FL_SOL_FLIP_D; } }
//
// look up rounding for this line from the table
//
fl |= gaflHardwareRound[fl];
//
// Calculate the error term at Pixel 0
//
x = LFLOOR((LONG) M0); y = LFLOOR((LONG) N0);
M0 = FXFRAC(M0); N0 = FXFRAC(N0);
#if DBG_LINE
if (DbgLine >= 2) { DbgPrint("Calc x = %li\n",x); DbgPrint("Calc y = %li\n",y); DbgPrint("Calc M0 = %li\n",M0); DbgPrint("Calc N0 = %li\n",N0); }
#endif
//
// Calculate the remainder term [ dM * (N0 + F/2) - M0 * dN ]. Note
// that M0 and N0 have at most 4 bits of significance (and if the
// arguments are properly ordered, on a 486 each multiply would be no
// more than 13 cycles):
//
//
// For the sake of speed, we're only going to do 32-bit multiplies
// in this routine. If the line is long enough though, we may
// need 38 bits for this calculation. Since at this point
// dM >= dN >= 0, and 0 <= N0 < 16, we'll just need to have 6 bits
// unused in 'dM':
//
if (dM <= (LONG_MAX >> 6)) { lGamma = (N0 + F/2) * dM - M0 * dN;
if (fl & HW_Y_ROUND_DOWN) lGamma--;
lGamma >>= FLOG2;
eqGamma = lGamma; } else { LONGLONG eq;
//
// Ugh, use safe 64-bit multiply code (cut and pasted from
// 'engline.cxx'):
//
eqGamma = Int32x32To64(N0 + F/2, dM); eq = Int32x32To64(M0, dN);
eqGamma -= eq;
if (fl & FL_V_ROUND_DOWN) eqGamma -= 1; // Adjust so y = 1/2 rounds down
eqGamma >>= FLOG2; }
//
// Figure out which Pixels are at the ends of the line.
//
//
// The toughest part of GIQ is determining the start and end pels.
//
// Our approach here is to calculate x0 and x1 (the inclusive start
// and end columns of the line respectively, relative to our normalized
// origin). Then x1 - x0 + 1 is the number of pels in the line. The
// start point is easily calculated by plugging x0 into our line equation
// (which takes care of whether y = 1/2 rounds up or down in value)
// getting y0, and then undoing the normalizing flips to get back
// into device space.
//
// We look at the fractional parts of the coordinates of the start and
// end points, and call them (M0, N0) and (M1, N1) respectively, where
// 0 <= M0, N0, M1, N1 < 16. We plot (M0, N0) on the following grid
// to determine x0:
//
// +-----------------------> +x
// |
// | 0 1
// | 0123456789abcdef
// |
// | 0 ........?xxxxxxx
// | 1 ..........xxxxxx
// | 2 ...........xxxxx
// | 3 ............xxxx
// | 4 .............xxx
// | 5 ..............xx
// | 6 ...............x
// | 7 ................
// | 8 ................
// | 9 ......**........
// | a ........****...x
// | b ............****
// | c .............xxx****
// | d ............xxxx ****
// | e ...........xxxxx ****
// | f ..........xxxxxx
// |
// | 2 3
// v
//
// +y
//
// This grid accounts for the appropriate rounding of GIQ and last-pel
// exclusion. If (M0, N0) lands on an 'x', x0 = 2. If (M0, N0) lands
// on a '.', x0 = 1. If (M0, N0) lands on a '?', x0 rounds up or down,
// depending on what flips have been done to normalize the line.
//
// For the end point, if (M1, N1) lands on an 'x', x1 =
// floor((M0 + dM) / 16) + 1. If (M1, N1) lands on a '.', x1 =
// floor((M0 + dM)). If (M1, N1) lands on a '?', x1 rounds up or down,
// depending on what flips have been done to normalize the line.
//
// Lines of exactly slope one require a special case for both the start
// and end. For example, if the line ends such that (M1, N1) is (9, 1),
// the line has gone exactly through (8, 0) -- which may be considered
// to be part of 'x' because of rounding! So slopes of exactly slope
// one going through (8, 0) must also be considered as belonging in 'x'
// when an x value of 1/2 is supposed to round up in value.
//
//
// Calculate x0, x1:
//
N1 = FXFRAC(N0 + dN); M1 = FXFRAC(M0 + dM);
x1 = LFLOOR(M0 + dM);
//
// Line runs left-to-right
//
//
// Compute x1
//
x1--; if (M1 > 0) { if (N1 == 0) { if (LROUND(M1, fl & HW_X_ROUND_DOWN)) x1++; } else if (ABS((LONG) (N1 - F/2)) <= (LONG) M1) { x1++; } }
if ((fl & (FL_SOL_FLIP_SLOPE_ONE | HW_X_ROUND_DOWN)) == (FL_SOL_FLIP_SLOPE_ONE | HW_X_ROUND_DOWN)) {
//
// Have to special-case diagonal lines going through our
// the point exactly equidistant between two horizontal
// Pixels, if we're supposed to round x=1/2 down:
//
if ((M1 > 0) && (N1 == M1 + 8)) x1--;
if ((M0 > 0) && (N0 == M0 + 8)) { x0 = 0; goto left_to_right_compute_y0; } }
//
// Compute x0:
//
x0 = 0; if (M0 > 0) { if (N0 == 0) { if (LROUND(M0, fl & HW_X_ROUND_DOWN)) x0 = 1; } else if (ABS((LONG) (N0 - F/2)) <= (LONG) M0) { x0 = 1; } }
left_to_right_compute_y0:
//**********************************************************************
// Calculate the start Pixel.
//***********************************************************************
//
// We now compute y0 and adjust the error term. We know x0, and we know
// the current formula for the Pixels to be lit on the line:
//
// dN * x + eqGamma
// y(x) = floor( ---------------- )
// dM
//
// The remainder of this expression is the new error term at (x0, y0).
// Since x0 is going to be either 0 or 1, we don't actually have to do a
// multiply or divide to compute y0. Finally, we subtract dM from the
// new error term so that it is in the range [-dM, 0).
//
y0 = 0;
if ((eqGamma >= 0) && (eqGamma >= (dM - (dN & (-(LONG) x0))))) { y0 = 1; }
//
// check to see if the line is NULL, this should only happen
// with a line of slope = 1.
//
if (x1 < x0) { pDDALine->cPels = 0; bReturn = TRUE; goto GIQEnd; }
//*******************************************************************
//
// Must perform rectangular clipping
//
//*******************************************************************
if (prclClip != (PRECTL) NULL) { ULONG y1; LONG xRight; LONG xLeft; LONG yBottom; LONG yTop; LONGLONG euq; LONGLONG eq; LONGLONG eqBeta; RECTL rclClip;
//
// Note that y0 and y1 are actually the lower and upper bounds,
// respectively, of the y coordinates of the line (the line may
// have actually shrunk due to first/last pel clipping).
//
// Also note that x0, y0 are not necessarily zero.
//
RECTL* prcl = &prclClip[(fl & FL_SOL_RECTLCLIP_MASK)];
//
// take flip_h into account
//
if (fl & FL_SOL_FLIP_H) {
if (fl & FL_SOL_FLIP_D) {
rclClip.top = -prcl->bottom + 1; rclClip.bottom = -prcl->top + 1; rclClip.left = prcl->left; rclClip.right = prcl->right;
} else {
rclClip.left = -prcl->right + 1; rclClip.right = -prcl->left + 1; rclClip.top = prcl->top; rclClip.bottom = prcl->bottom;
}
} else {
rclClip.left = prcl->left; rclClip.right = prcl->right; rclClip.top = prcl->top; rclClip.bottom = prcl->bottom;
}
//
// Normalize to the same point we've normalized for the DDA
// calculations:
//
xRight = rclClip.right - x; xLeft = rclClip.left - x; yBottom = rclClip.bottom - y; yTop = rclClip.top - y;
#if DBG_LINE
if (DbgLine >= 2) {
DbgPrint("Clipping line to rect %li,%li to %li,%li\n", rclClip.left, rclClip.top, rclClip.right, rclClip.bottom);
DbgPrint("Clipping Parameters: xLeft %li xRight %li yBottom %li yTop %li\n", xLeft, xRight, yBottom, yTop);
DbgPrint("normalized line before clip, x = %li, y = %li, x0 = %li, x1 = %li, y0 = %li\n", x,y,x0,x1,y0);
DbgPrint("Line Params: dM = %li, dN = %li, eqGamma = %lx\n",dM,dN,(ULONG)eqGamma); }
#endif
if (yBottom <= (LONG) y0 || xRight <= (LONG) x0 || xLeft > (LONG) x1) { Totally_Clipped:
#if DBG_LINE
if (DbgLine >= 2) { DbgPrint("Line is totally clipped\n"); }
#endif
pDDALine->cPels = 0; bReturn = TRUE; goto GIQEnd; }
if ((LONG) x1 >= xRight) { x1 = xRight - 1;
#if DBG_LINE
if (DbgLine >= 2) { DbgPrint("Line clip x1 to %li\n",x1); }
#endif
}
//
// We have to know the correct y1, which we haven't bothered to
// calculate up until now. This multiply and divide is quite
// expensive; we could replace it with code similar to that which
// we used for computing y0.
//
// The reason why we need the actual value, and not an upper
// bounds guess like y1 = LFLOOR(dM) + 2 is that we have to be
// careful when calculating x(y) that y0 <= y <= y1, otherwise
// we can overflow on the divide (which, needless to say, is very
// bad).
//
eqBeta = ~eqGamma; euq = Int32x32To64(x1, dN); euq += eqGamma;
y1 = DIV(euq, dM);
#if DBG_LINE
if (DbgLine >= 2) {
DbgPrint("Clipping: calculated y1 = %li eqBeta = 0x%lx 0x%lx\n",y1,(LONG)(eqBeta>>32),(ULONG)eqBeta);
}
#endif
//
// check for y1 less than the top of the clip rect
//
if (yTop > (LONG) y1) goto Totally_Clipped;
//
// check for y1 > the bottom of the clip rect, clip if true
//
if (yBottom <= (LONG) y1) { y1 = yBottom;
euq = Int32x32To64(y1, dM); euq += eqBeta; x1 = DIV(euq,dN);
#if DBG_LINE
if (DbgLine >= 2) {
DbgPrint("Clipped y1 to %li, x1 = %li\n",y1,x1);
}
#endif
}
//
// At this point, we've taken care of calculating the intercepts
// with the right and bottom edges. Now we work on the left and
// top edges:
//
if (xLeft > (LONG) x0) { x0 = xLeft;
euq = Int32x32To64(x0, dN); euq += eqGamma; y0 = DIV(euq, dM);
if (yBottom <= (LONG) y0) goto Totally_Clipped;
#if DBG_LINE
if (DbgLine >= 2) {
DbgPrint("Clipped x0 to %li, y0 = %li\n",x0,y0);
}
#endif
}
//
// check for y0 less than the top of the clip rect, clip if true
//
if (yTop > (LONG) y0) { y0 = yTop;
euq = Int32x32To64(y0, dM); euq += eqBeta; x0 = DIV(euq, dN) + 1;
if (xRight <= (LONG) x0) goto Totally_Clipped;
#if DBG_LINE
if (DbgLine >= 2) {
DbgPrint("Clipped y0 to %li, x0 = %li\n",y0,x0);
}
#endif
}
euq = Int32x32To64(x0,dN); eq = Int32x32To64(y0,dM);
euq -= eq;
eqGamma += euq;
eqGamma -= dM;
#if DBG_LINE
if (DbgLine >= 2) { DbgPrint("Clipped line: x0 = %li, x1 = %li, y0 = %li, y1 = %li\n", x0, x1, y0, y1);
DbgPrint("eqGamma = %lx\n",eqGamma); }
if (x0 > x1) { DbgPrint("Clip Error: x0 > x1\n");
DbgPrint(" pptxStart = %li.%li, %li.%li\n", pptfxStart->x >> 4, pptfxStart->x & 0x0f, pptfxStart->y >> 4, pptfxStart->y & 0x0f);
DbgPrint(" pptxEnd = %li.%li, %li.%li\n", pptfxEnd->x >> 4, pptfxEnd->x & 0x0f, pptfxEnd->y >> 4, pptfxEnd->y & 0x0f);
DbgPrint(" prclClip = 0x%lx\n",prclClip);
DbgPrint(" x0 = %li\n",x0); DbgPrint(" y0 = %li\n",y0); DbgPrint(" x1 = %li\n",x1); DbgPrint(" y1 = %li\n",y1);
DbgPrint(" dM = %li\n",dM); DbgPrint(" dN = %li\n",dN);
DbgPrint(" lGamma = %li\n",lGamma);
DbgPrint(" Clipping line to rect %li,%li to %li,%li\n", rclClip.left, rclClip.top, rclClip.right, rclClip.bottom);
}
#endif
ASSERTGDI(x0 <= x1, "Improper rectangle clip");
} else {
//
// adjust lGamma
//
eqGamma += (dN & (-x0)); eqGamma -= dM;
if (eqGamma >= 0) { eqGamma -= dM; } }
//
// END of simple clipping
//
//
// Undo our flips to get the start coordinate:
//
x += x0; y += y0;
if (fl & FL_SOL_FLIP_D) { register LONG lTmp; lTmp = x; x = y; y = lTmp; }
if (fl & FL_SOL_FLIP_V) { y = -y; }
if (fl & FL_SOL_FLIP_H) { x = -x; }
/***********************************************************************\
* Return the Bresenham terms: \***********************************************************************/
//
// check values
//
pDDALine->ulFlags = fl; pDDALine->ptlStart.x = x; pDDALine->ptlStart.y = y; pDDALine->cPels = x1 - x0 + 1; // NOTE: You'll have to check if cPels <= 0!
pDDALine->dMajor = dM; pDDALine->dMinor = dN; pDDALine->lErrorTerm = (LONG) eqGamma; pDDALine->xInc = 1; bReturn = TRUE;
//
// end routine
//
GIQEnd:
return(bReturn); }
|