Leaked source code of windows server 2003
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

3451 lines
75 KiB

/******************************Module*Header*******************************\
* Module Name:
*
* solline.cxx
*
* Abstract
*
* This module draws solid color, single pixel wide, non-styled, trivial or
* rectangularly clipped lines to a DIB.
*
* Author:
*
* Mark Enstrom (marke) 12-1-93
*
* Copyright (c) 1993-1999 Microsoft Corporation
\**************************************************************************/
#include "precomp.hxx"
#include "solline.hxx"
#define DBG_LINE 0
#if DBG_LINE
ULONG DbgLine = 0;
#endif
//
// horizontal line accelerators
//
PFN_HORZ gapfnHorizontal[6] =
{
vHorizontalLine1,vHorizontalLine4,vHorizontalLine8,
vHorizontalLine16,vHorizontalLine24,vHorizontalLine32
};
//
// line DDA routines for each DIB format
//
PFN_OCTANT gapfnOctant[6][8] =
{
{
vLine1Octant07,vLine1Octant16,vLine1Octant07,vLine1Octant16,
vLine1Octant34,vLine1Octant25,vLine1Octant34,vLine1Octant25
},
{
vLine4Octant07,vLine4Octant16,vLine4Octant07,vLine4Octant16,
vLine4Octant34,vLine4Octant25,vLine4Octant34,vLine4Octant25
},
{
vLine8Octant07,vLine8Octant16,vLine8Octant07,vLine8Octant16,
vLine8Octant34,vLine8Octant25,vLine8Octant34,vLine8Octant25
},
{
vLine16Octant07,vLine16Octant16,vLine16Octant07,vLine16Octant16,
vLine16Octant34,vLine16Octant25,vLine16Octant34,vLine16Octant25
},
{
vLine24Octant07,vLine24Octant16,vLine24Octant07,vLine24Octant16,
vLine24Octant34,vLine24Octant25,vLine24Octant34,vLine24Octant25
},
{
vLine32Octant07,vLine32Octant16,vLine32Octant07,vLine32Octant16,
vLine32Octant34,vLine32Octant25,vLine32Octant34,vLine32Octant25
}
};
//
// mask for 4bpp pixels
//
UCHAR PixelLineMask4[2] = {0x0f,0xf0};
/******************************Public*Routine******************************\
*
* Routine Name
*
* vSolidLine
*
* Routine Description:
*
* Extract line end points from path object and call lower lever drawing
* routine
*
* Arguments:
*
* pso - destination surface object
* ppo - path object
* pptfx - line coordinates if 'ppo' is NULL
* pco - clip object
* iSolidColor - solid color to draw
*
* Return Value:
*
* none
*
\**************************************************************************/
VOID
vSolidLine (
SURFACE *pSurf,
PATHOBJ *ppo,
POINTFIX*pptfx,
CLIPOBJ *pco,
ULONG iSolidColor
)
{
PATHDATA pd;
BOOL bMore;
ULONG cptfx;
POINTFIX ptfxStartFigure;
POINTFIX ptfxLast;
POINTFIX* pptfxFirst;
POINTFIX* pptfxBuf;
ULONG ulFormat;
LONG lDelta;
PBYTE pjDst;
RECTL arclClip[4];
PRECTL prclClip = (PRECTL) NULL;
//
// check out params
//
ASSERTGDI((pco == NULL) || (pco->iDComplexity != DC_COMPLEX),
"Routine does not handle complex clipping");
ulFormat = pSurf->iFormat();
lDelta = pSurf->lDelta();
pjDst = (PUCHAR)(pSurf->pvScan0());
//
// determine format and routines
//
switch (ulFormat)
{
case BMF_1BPP:
iSolidColor = iSolidColor ? 0xffffffff : 0x00000000;
break;
//
// rest fall through
//
case BMF_4BPP:
iSolidColor |= (iSolidColor << 4);
case BMF_8BPP:
iSolidColor |= (iSolidColor << 8);
case BMF_16BPP:
iSolidColor |= (iSolidColor << 16);
case BMF_24BPP:
case BMF_32BPP:
break;
default:
RIP("Invalid bitmap format");
}
//
// get clipping rectangle if needed, copy the rectangle into several
// formats for use by the GIQ clipping routine
//
if ((pco != NULL) && (pco->iDComplexity == DC_RECT))
{
//
// assign temp rectangles to clipping bounds
//
arclClip[0] = pco->rclBounds;
#if DBG_LINE
if (DbgLine >= 2) {
DbgPrint("Clipping rect = %li,%li to %li,%li\n",
arclClip[0].left,
arclClip[0].top,
arclClip[0].right,
arclClip[0].bottom);
}
#endif
//
// generate clipping rect variants for use in
// GIQ line routines
//
arclClip[1].top = pco->rclBounds.left;
arclClip[2].left = pco->rclBounds.left;
arclClip[3].top = pco->rclBounds.left;
arclClip[1].left = pco->rclBounds.top;
arclClip[2].bottom = -pco->rclBounds.top + 1;
arclClip[3].right = arclClip[2].bottom;
arclClip[1].bottom = pco->rclBounds.right;
arclClip[2].right = pco->rclBounds.right;
arclClip[3].bottom = pco->rclBounds.right;
arclClip[1].right = pco->rclBounds.bottom;
arclClip[2].top = -pco->rclBounds.bottom + 1;
arclClip[3].left = arclClip[2].top;
prclClip = arclClip;
}
//
// subtract 1 from ulFormat to use as array index
//
ulFormat --;
//
// if the path pointer 'ppo' is NULL, then we must use the vertice
// pointer 'pptfx':
//
if (ppo == NULL)
{
vDrawLine(pptfx,pptfx + 1,pjDst,lDelta,iSolidColor,prclClip,ulFormat);
}
else
{
//
// Enumerate the paths and send line segments to
// vDrawLine
//
//
// start enumeration of lines
//
pd.flags = 0;
((EPATHOBJ*) ppo)->vEnumStart();
//
// enumerate each set
//
do
{
bMore = ((EPATHOBJ*) ppo)->bEnum(&pd);
cptfx = pd.count;
//
// Should not get to here with empty path
//
if (cptfx == 0)
{
ASSERTGDI(!bMore, "Empty path record in non-empty path");
break;
}
//
// if BEGINSUBPATH, save the starting point for the
// figure
//
if (pd.flags & PD_BEGINSUBPATH)
{
ptfxStartFigure = *pd.pptfx;
pptfxFirst = pd.pptfx;
pptfxBuf = pd.pptfx + 1;
cptfx--;
} else {
pptfxFirst = &ptfxLast;
pptfxBuf = pd.pptfx;
}
//
// draw line segments
//
if (cptfx > 0)
{
//
// draw line segment
//
while (cptfx --) {
vDrawLine(pptfxFirst,pptfxBuf,pjDst,lDelta,iSolidColor,prclClip,ulFormat);
pptfxFirst = pptfxBuf;
pptfxBuf++;
}
}
ptfxLast = pd.pptfx[pd.count - 1];
if (pd.flags & PD_CLOSEFIGURE)
{
//
// draw closure line segment
//
vDrawLine(&ptfxLast,&ptfxStartFigure,pjDst,lDelta,iSolidColor,prclClip,ulFormat);
}
} while (bMore);
}
}
/******************************Public*Routine******************************\
*
* Routine Name
*
* vDrawLine
*
* Routine Description:
*
* This routine is passed end points of a line segment, either integer or
* GIQ. The DDA equation for the line is determined then specific routines
* are called to run the line DDA and draw the pixels for each bitmap format
*
*
* Arguments:
*
* pptfx0 - end point 0
* pptfx1 - end point 1
* pjDst - pointer to dst
* lDelta - byte scan line increment for dst
* iSolidColor - draw color expnaded to 32 bits
* prclClip - clip rectangles
* FormatIndex - look up for dst bitmap format
*
* Return Value:
*
* none
*
\**************************************************************************/
VOID
vDrawLine (
POINTFIX *pptfx0,
POINTFIX *pptfx1,
PUCHAR pjDst,
LONG lDelta,
ULONG iSolidColor,
PRECTL prclClip,
ULONG FormatIndex
)
{
LONG x0;
LONG y0;
LONG x1;
LONG y1;
LONG dx;
LONG dy;
ULONG ulTmp;
PFN_OCTANT pfnOctant;
LONG DeltaDst = lDelta;
DDALINE DDALine;
LONG Reduce;
DDALine.ulFlags = 0;
//
// check for GIQ lines
//
ulTmp = ( (ULONG)pptfx0->x |
(ULONG)pptfx0->y |
(ULONG)pptfx1->x |
(ULONG)pptfx1->y
) & 0x0F;
//
// check for integer lines
//
if (ulTmp == 0)
{
//
// check for no clipping rectangle or trivial
// accept/reject of each line with the clipping
// rectangle
//
x0 = pptfx0->x >> 4;
y0 = pptfx0->y >> 4;
x1 = pptfx1->x >> 4;
y1 = pptfx1->y >> 4;
DDALine.ptlStart.x = x0;
DDALine.ptlStart.y = y0;
//
// order x0,x1 and y0,y1 for clip check and slope calculation
//
if (x1 < x0) {
ULONG Tmp = x1;
x1 = x0;
x0 = Tmp;
DDALine.ulFlags |= FL_SOL_FLIP_H;
}
if (y1 < y0) {
ULONG Tmp = y1;
y1 = y0;
y0 = Tmp;
DDALine.ulFlags |= FL_SOL_FLIP_V;
}
if (prclClip != (PRECTL) NULL)
{
//
// check for a line totally outside clip rect
//
if (
(x1 < prclClip->left) ||
(x0 >= prclClip->right) ||
(y1 < prclClip->top) ||
(y0 >= prclClip->bottom)
)
{
//
// line is totally clipped out
//
#if DBG_LINE
if (DbgLine >= 1) {
DbgPrint("Trivial reject line %li,%li to %li,%li\n",x0,y0,x1,y1);
DbgPrint("Clipping rect: %li,%li to %li,%li\n",
prclClip->left,
prclClip->top,
prclClip->right,
prclClip->bottom);
}
#endif
return;
}
//
// check for line that is not totally inside clip rect,
// if not then call GIQ routine which has rectangular
// clipping.
//
if
(
(x0 < prclClip->left) ||
(x1 >= prclClip->right) ||
(y0 < prclClip->top) ||
(y1 >= prclClip->bottom)
)
{
goto calc_GIQ_line;
}
}
//
// transform line to the first octant and calculate
// terms and flags
//
//
// find out if line is x major or y major
//
dx = x1 - x0;
dy = y1 - y0;
//
// check for x-major or y-major lines
//
if (dx >= dy) {
//
// check for horizontal line
//
if (dy == 0)
{
PFN_HORZ pfnHorz = gapfnHorizontal[FormatIndex];
pjDst = pjDst + (DDALine.ptlStart.y * lDelta);
//
// must check to see if end points have been
// swapped due to exclusive line drawing
//
if (DDALine.ulFlags & FL_SOL_FLIP_H)
{
x0++;
x1++;
}
(*pfnHorz)(pjDst,x0,x1,iSolidColor);
return;
}
//
// check for zero length
//
if (dx == 0) {
return;
}
Reduce = -1;
//
// x major line
//
DDALine.dMajor = dx;
DDALine.dMinor = dy;
//
// see if y has been flipped
//
if (DDALine.ulFlags & FL_SOL_FLIP_V)
{
DeltaDst = -DeltaDst;
Reduce = 0;
}
//
// Bresenham term except lErrorTerm is normally dy - dx/2 or
// 2x which is 2*dy - dx. In this case the 2*2y is not added to
// the error term until the start of the inner loop routine so that
// the x86 can immediately use the flag register to determine the sign
// of the error term after the addition of 2*dy.
//
DDALine.cPels = DDALine.dMajor;
DDALine.lErrorTerm = -DDALine.dMajor;
DDALine.dMajor = 2 * DDALine.dMajor;
DDALine.dMinor = 2 * DDALine.dMinor;
//
// if FL_SOL_FLIP_V then lError term must be reduced by one to
// compensate for the rounding convention
//
DDALine.lErrorTerm += Reduce;
} else {
//
// check for 0 length
//
if (dy == 0) {
return;
}
Reduce = -1;
//
// y major line, swap the meaning of dMajor and dMinor
//
DDALine.dMajor = dy;
DDALine.dMinor = dx;
DDALine.ulFlags |= FL_SOL_FLIP_D;
DDALine.xInc = 1;
//
// check for flipped x
//
if (DDALine.ulFlags & FL_SOL_FLIP_H) {
//
// compensate for negative x in y major line
//
Reduce = 0;
}
//
// + or - y
//
if (DDALine.ulFlags & FL_SOL_FLIP_V) {
DeltaDst = -DeltaDst;
}
//
// Bresenham term except lErrorTerm is normally dy - dx/2 or
// 2x which is 2*dy - dx. In this case the 2*2y is not added to
// the error term until the start of the inner loop routine so that
// the x86 can immediately use the flag register to determine the sign
// of the error term after the addition of 2*dy.
//
DDALine.cPels = DDALine.dMajor;
DDALine.lErrorTerm = -DDALine.dMajor;
DDALine.dMajor = 2 * DDALine.dMajor;
DDALine.dMinor = 2 * DDALine.dMinor;
//
// if FL_SOL_FLIP_H then lError term must be reduced by one to
// compensate for the rounding convention
//
DDALine.lErrorTerm += Reduce;
}
#if DBG_LINE
if (DbgLine >= 2) {
DbgPrint("Integer line:\n");
DbgPrint("x0 = %li, y0 = %li\n",x0,y0);
DbgPrint("Error term = %li\n",DDALine.lErrorTerm);
DbgPrint("dMajor = %li\n",DDALine.dMajor);
DbgPrint("dMinor = %li\n",DDALine.dMinor);
DbgPrint("Pixel Count = %li\n",DDALine.cPels);
DbgPrint("ulFlags = 0x%08lx\n\n",DDALine.ulFlags);
}
#endif
} else {
calc_GIQ_line:
//
// caclulate GIQ parameters
//
if (!bGIQtoIntegerLine(pptfx0,pptfx1,prclClip,&DDALine)) {
return;
}
//
// check for 0 length
//
if (DDALine.cPels <= 0) {
return;
}
if (DDALine.ulFlags & FL_SOL_FLIP_V)
{
DeltaDst = -DeltaDst;
}
#if DBG_LINE
if (DbgLine >= 2) {
DbgPrint("GIQ line:\n");
DbgPrint("x0 = %li\n",DDALine.ptlStart.x);
DbgPrint("y0 = %li\n",DDALine.ptlStart.y);
DbgPrint("Error term = %li\n",DDALine.lErrorTerm);
DbgPrint("dMajor = %li\n",DDALine.dMajor);
DbgPrint("dMinor = %li\n",DDALine.dMinor);
DbgPrint("Pixel Count = %li\n",DDALine.cPels);
DbgPrint("DeltaDst = %li\n",DeltaDst);
DbgPrint("xInc = %li\n",DDALine.xInc);
DbgPrint("ulFlags = 0x%08lx\n\n",DDALine.ulFlags);
}
#endif
}
//
// select drawing routine based on format and octant
//
pfnOctant = gapfnOctant[FormatIndex][DDALine.ulFlags & 0x07];
pjDst = pjDst + (DDALine.ptlStart.y * lDelta);
(*pfnOctant)(&DDALine,pjDst,DeltaDst,iSolidColor);
}
/******************************Public*Routine******************************\
*
* Routine Name
*
* Inner loop DDA line drawing routines for 8bpp
*
* Routine Description:
*
* 4 dda routines for line drawing in each octant for each resolution
*
*
* Arguments:
*
* pDDALine - dda parameters
* pjDst - Destination line address
* lDeltaDst - Destination address scan line increment (bytes)
* iSolidColor - Solid color for line
*
* Return Value:
*
* VOID
*
\**************************************************************************/
#if !defined(_X86_)
VOID
vLine8Octant07(
PDDALINE pDDALine,
PUCHAR pjDst,
LONG lDeltaDst,
ULONG iSolidColor
)
{
LONG ErrorTerm = pDDALine->lErrorTerm;
LONG dM = pDDALine->dMajor;
LONG dN = pDDALine->dMinor;
LONG PixelCount = pDDALine->cPels;
//
// octant 0
//
// x major
//
// x - positive
// y - positive/negative
//
pjDst += pDDALine->ptlStart.x;
while (TRUE) {
*pjDst = (UCHAR)iSolidColor;
if (--PixelCount == 0) {
return;
}
pjDst++;
ErrorTerm += dN;
if (ErrorTerm >= 0){
ErrorTerm -= dM;
pjDst += lDeltaDst;
}
}
}
VOID
vLine8Octant34(
PDDALINE pDDALine,
PUCHAR pjDst,
LONG lDeltaDst,
ULONG iSolidColor
)
{
LONG ErrorTerm = pDDALine->lErrorTerm;
LONG dM = pDDALine->dMajor;
LONG dN = pDDALine->dMinor;
LONG PixelCount = pDDALine->cPels;
//
// octant 3
//
// x major
//
// x - negative
// y - positive/negative
//
pjDst += pDDALine->ptlStart.x;
//
// integer line
//
while (TRUE) {
*pjDst = (UCHAR)iSolidColor;
if (--PixelCount == 0) {
return;
}
pjDst--;
ErrorTerm += dN;
if (ErrorTerm >= 0){
ErrorTerm -= dM;
pjDst += lDeltaDst;
}
}
}
VOID
vLine8Octant16(
PDDALINE pDDALine,
PUCHAR pjDst,
LONG lDeltaDst,
ULONG iSolidColor
)
{
LONG ErrorTerm = pDDALine->lErrorTerm;
LONG dM = pDDALine->dMajor;
LONG dN = pDDALine->dMinor;
LONG PixelCount = pDDALine->cPels;
//
// octant 1
//
// y major
//
// x - positive/negative
// y - positive
//
pjDst += pDDALine->ptlStart.x;
while (TRUE) {
*pjDst = (UCHAR)iSolidColor;
//
// integer line
//
if (--PixelCount == 0) {
return;
}
pjDst += lDeltaDst;
ErrorTerm += dN;
if (ErrorTerm >= 0){
ErrorTerm -= dM;
pjDst ++;
}
}
}
VOID
vLine8Octant25(
PDDALINE pDDALine,
PUCHAR pjDst,
LONG lDeltaDst,
ULONG iSolidColor
)
{
LONG ErrorTerm = pDDALine->lErrorTerm;
LONG dM = pDDALine->dMajor;
LONG dN = pDDALine->dMinor;
LONG PixelCount = pDDALine->cPels;
LONG xInc = pDDALine->xInc;
//
// octant 5,6
//
// y major
//
// x - positive/negative
// y - negative
//
pjDst += pDDALine->ptlStart.x;
while (TRUE) {
*pjDst = (UCHAR)iSolidColor;
//
// integer line
//
if (--PixelCount == 0) {
return;
}
pjDst += lDeltaDst;
ErrorTerm += dN;
if (ErrorTerm >= 0){
ErrorTerm -= dM;
pjDst --;
}
}
}
#endif
/******************************Public*Routine******************************\
*
* Routine Name
*
* Inner loop DDA line drawing routines for 16 bpp
*
* Routine Description:
*
* 4 dda routines for line drawing in each octant for each resolution
*
*
* Arguments:
*
* pDDALine - dda parameters
* pjDst - Destination line address
* lDeltaDst - Destination address scan line increment (bytes)
* iSolidColor - Solid color for line
*
* Return Value:
*
* VOID
*
\**************************************************************************/
VOID
vLine16Octant07(
PDDALINE pDDALine,
PUCHAR pjDst,
LONG lDeltaDst,
ULONG iSolidColor
)
{
LONG ErrorTerm = pDDALine->lErrorTerm;
LONG dM = pDDALine->dMajor;
LONG dN = pDDALine->dMinor;
LONG PixelCount = pDDALine->cPels;
PUSHORT pusDst = (PUSHORT)pjDst;
//
// octant 0
//
// x major
//
// x - positive
// y - positive/negative
//
pusDst += pDDALine->ptlStart.x;
while (TRUE) {
*pusDst = (USHORT)iSolidColor;
//
// integer line
//
if (--PixelCount == 0) {
return;
}
pusDst++;
ErrorTerm += dN;
if (ErrorTerm >= 0){
ErrorTerm -= dM;
pusDst = (PUSHORT)((PUCHAR)pusDst + lDeltaDst);
}
}
}
VOID
vLine16Octant34(
PDDALINE pDDALine,
PUCHAR pjDst,
LONG lDeltaDst,
ULONG iSolidColor
)
{
LONG ErrorTerm = pDDALine->lErrorTerm;
LONG dM = pDDALine->dMajor;
LONG dN = pDDALine->dMinor;
LONG PixelCount = pDDALine->cPels;
PUSHORT pusDst = (PUSHORT)pjDst;
//
// octant 3
//
// x major
//
// x - negative
// y - positive/negative
//
pusDst += pDDALine->ptlStart.x;
while (TRUE) {
*pusDst = (USHORT)iSolidColor;
//
// integer line
//
if (--PixelCount == 0) {
return;
}
pusDst--;
ErrorTerm += dN;
if (ErrorTerm >= 0){
ErrorTerm -= dM;
pusDst = (PUSHORT)((PUCHAR)pusDst + lDeltaDst);
}
}
}
VOID
vLine16Octant16(
PDDALINE pDDALine,
PUCHAR pjDst,
LONG lDeltaDst,
ULONG iSolidColor
)
{
LONG ErrorTerm = pDDALine->lErrorTerm;
LONG dM = pDDALine->dMajor;
LONG dN = pDDALine->dMinor;
LONG PixelCount = pDDALine->cPels;
LONG xInc = pDDALine->xInc;
PUSHORT pusDst = (PUSHORT)pjDst;
//
// octant 1
//
// y major
//
// x - positive
// y - positive/negative
//
pusDst += pDDALine->ptlStart.x;
while (TRUE) {
*pusDst = (USHORT)iSolidColor;
//
// integer line
//
if (--PixelCount == 0) {
return;
}
pusDst = (PUSHORT)((PUCHAR)pusDst + lDeltaDst);
ErrorTerm += dN;
if (ErrorTerm >= 0){
ErrorTerm -= dM;
pusDst ++;
}
}
}
VOID
vLine16Octant25(
PDDALINE pDDALine,
PUCHAR pjDst,
LONG lDeltaDst,
ULONG iSolidColor
)
{
LONG ErrorTerm = pDDALine->lErrorTerm;
LONG dM = pDDALine->dMajor;
LONG dN = pDDALine->dMinor;
LONG PixelCount = pDDALine->cPels;
LONG xInc = pDDALine->xInc;
PUSHORT pusDst = (PUSHORT)pjDst;
//
// octant 5,6
//
// y major
//
// x - negative
// y - positive/ negative
//
pusDst += pDDALine->ptlStart.x;
while (TRUE) {
*pusDst = (USHORT)iSolidColor;
//
// integer line
//
if (--PixelCount == 0) {
return;
}
pusDst = (PUSHORT)((PUCHAR)pusDst + lDeltaDst);
ErrorTerm += dN;
if (ErrorTerm >= 0){
ErrorTerm -= dM;
pusDst --;
}
}
}
/******************************Public*Routine******************************\
*
* Routine Name
*
* Inner loop DDA line drawing routines for 24bpp
*
* Routine Description:
*
* 4 dda routines for line drawing in each octant for each resolution
*
*
* Arguments:
*
* pDDALine - dda parameters
* pjDst - Destination line address
* lDeltaDst - Destination address scan line increment (bytes)
* iSolidColor - Solid color for line
*
* Return Value:
*
* VOID
*
\**************************************************************************/
VOID
vLine24Octant07(
PDDALINE pDDALine,
PUCHAR pjDst,
LONG lDeltaDst,
ULONG iSolidColor
)
{
LONG ErrorTerm = pDDALine->lErrorTerm;
LONG dM = pDDALine->dMajor;
LONG dN = pDDALine->dMinor;
LONG PixelCount = pDDALine->cPels;
UCHAR Red = (UCHAR)iSolidColor;
UCHAR Green = (UCHAR)(iSolidColor >> 8);
UCHAR Blue = (UCHAR)(iSolidColor >> 16);
//
// octant 0
//
// x major
//
// x - positive
// y - positive/negative
//
pjDst += (3 * pDDALine->ptlStart.x);
while (TRUE) {
*pjDst = Red;
*(pjDst+1) = Green;
*(pjDst+2) = Blue;
//
// integer line
//
if (--PixelCount == 0) {
return;
}
pjDst += 3;
ErrorTerm += dN;
if (ErrorTerm >= 0){
ErrorTerm -= dM;
pjDst += lDeltaDst;
}
*pjDst = Red;
*(pjDst+1) = Green;
*(pjDst+2) = Blue;
}
}
VOID
vLine24Octant34(
PDDALINE pDDALine,
PUCHAR pjDst,
LONG lDeltaDst,
ULONG iSolidColor
)
{
LONG ErrorTerm = pDDALine->lErrorTerm;
LONG dM = pDDALine->dMajor;
LONG dN = pDDALine->dMinor;
LONG PixelCount = pDDALine->cPels;
UCHAR Red = (UCHAR)iSolidColor;
UCHAR Green = (UCHAR)(iSolidColor >> 8);
UCHAR Blue = (UCHAR)(iSolidColor >> 16);
//
// octant 3
//
// x major
//
// x - negative
// y - positive/negative
//
pjDst += (3 * pDDALine->ptlStart.x);
while (TRUE) {
*pjDst = Red;
*(pjDst+1) = Green;
*(pjDst+2) = Blue;
//
// integer line
//
if (--PixelCount == 0) {
return;
}
pjDst -= 3;
ErrorTerm += dN;
if (ErrorTerm >= 0){
ErrorTerm -= dM;
pjDst += lDeltaDst;
}
*pjDst = Red;
*(pjDst+1) = Green;
*(pjDst+2) = Blue;
}
}
VOID
vLine24Octant16(
PDDALINE pDDALine,
PUCHAR pjDst,
LONG lDeltaDst,
ULONG iSolidColor
)
{
LONG ErrorTerm = pDDALine->lErrorTerm;
LONG dM = pDDALine->dMajor;
LONG dN = pDDALine->dMinor;
LONG PixelCount = pDDALine->cPels;
UCHAR Red = (UCHAR)iSolidColor;
UCHAR Green = (UCHAR)(iSolidColor >> 8);
UCHAR Blue = (UCHAR)(iSolidColor >> 16);
//
// octant 1,2
//
// y major
//
// x - positive
// y - positive/negative
//
pjDst += (3*pDDALine->ptlStart.x);
while (TRUE) {
*pjDst = Red;
*(pjDst+1) = Green;
*(pjDst+2) = Blue;
//
// integer line
//
if (--PixelCount == 0) {
return;
}
pjDst += lDeltaDst;
ErrorTerm += dN;
if (ErrorTerm >= 0){
ErrorTerm -= dM;
pjDst+=3;
}
}
}
VOID
vLine24Octant25(
PDDALINE pDDALine,
PUCHAR pjDst,
LONG lDeltaDst,
ULONG iSolidColor
)
{
LONG ErrorTerm = pDDALine->lErrorTerm;
LONG dM = pDDALine->dMajor;
LONG dN = pDDALine->dMinor;
LONG PixelCount = pDDALine->cPels;
UCHAR Red = (UCHAR)iSolidColor;
UCHAR Green = (UCHAR)(iSolidColor >> 8);
UCHAR Blue = (UCHAR)(iSolidColor >> 16);
//
// octant 5,6
//
// y major
//
// x - negative
// y - positive/negative
//
pjDst += (3*pDDALine->ptlStart.x);
while (TRUE) {
*pjDst = Red;
*(pjDst+1) = Green;
*(pjDst+2) = Blue;
//
// integer line
//
if (--PixelCount == 0) {
return;
}
pjDst += lDeltaDst;
ErrorTerm += dN;
if (ErrorTerm >= 0){
ErrorTerm -= dM;
pjDst-=3;
}
}
}
/******************************Public*Routine******************************\
*
* Routine Name
*
* Inner loop DDA line drawing routines for 32 bpp
*
* Routine Description:
*
* 4 dda routines for line drawing in each octant for each resolution
*
*
* Arguments:
*
* pDDALine - dda parameters
* pjDst - Destination line address
* lDeltaDst - Destination address scan line increment (bytes)
* iSolidColor - Solid color for line
*
* Return Value:
*
* VOID
*
\**************************************************************************/
VOID
vLine32Octant07(
PDDALINE pDDALine,
PUCHAR pjDst,
LONG lDeltaDst,
ULONG iSolidColor
)
{
LONG ErrorTerm = pDDALine->lErrorTerm;
LONG dM = pDDALine->dMajor;
LONG dN = pDDALine->dMinor;
LONG PixelCount = pDDALine->cPels;
PULONG pulDst = (PULONG)pjDst;
//
// octant 0
//
// x major
//
// x - positive
// y - positive/negative
//
pulDst += pDDALine->ptlStart.x;
while (TRUE) {
*pulDst = iSolidColor;
//
// integer line
//
if (--PixelCount == 0) {
return;
}
pulDst++;
ErrorTerm += dN;
if (ErrorTerm >= 0){
ErrorTerm -= dM;
pulDst = (PULONG)((PUCHAR)pulDst + lDeltaDst);
}
}
}
VOID
vLine32Octant34(
PDDALINE pDDALine,
PUCHAR pjDst,
LONG lDeltaDst,
ULONG iSolidColor
)
{
LONG ErrorTerm = pDDALine->lErrorTerm;
LONG dM = pDDALine->dMajor;
LONG dN = pDDALine->dMinor;
LONG PixelCount = pDDALine->cPels;
PULONG pulDst = (PULONG)pjDst;
//
// octant 3
//
// x major
//
// x - negative
// y - positive/negative
//
pulDst += pDDALine->ptlStart.x;
while (TRUE) {
*pulDst = iSolidColor;
//
// integer line
//
if (--PixelCount == 0) {
return;
}
pulDst--;
ErrorTerm += dN;
if (ErrorTerm >= 0){
ErrorTerm -= dM;
pulDst = (PULONG)((PUCHAR)pulDst + lDeltaDst);
}
}
}
VOID
vLine32Octant16(
PDDALINE pDDALine,
PUCHAR pjDst,
LONG lDeltaDst,
ULONG iSolidColor
)
{
LONG ErrorTerm = pDDALine->lErrorTerm;
LONG dM = pDDALine->dMajor;
LONG dN = pDDALine->dMinor;
LONG PixelCount = pDDALine->cPels;
LONG xInc = pDDALine->xInc;
PULONG pulDst = (PULONG)pjDst;
//
// octant 1
//
// y major
//
// x - positive/negative
// y - positive
//
pulDst += pDDALine->ptlStart.x;
while (TRUE) {
*pulDst = iSolidColor;
//
// integer line
//
if (--PixelCount == 0) {
return;
}
pulDst = (PULONG)((PUCHAR)pulDst + lDeltaDst);
ErrorTerm += dN;
if (ErrorTerm >= 0){
ErrorTerm -= dM;
pulDst++;
}
*pulDst = iSolidColor;
}
}
VOID
vLine32Octant25(
PDDALINE pDDALine,
PUCHAR pjDst,
LONG lDeltaDst,
ULONG iSolidColor
)
{
LONG ErrorTerm = pDDALine->lErrorTerm;
LONG dM = pDDALine->dMajor;
LONG dN = pDDALine->dMinor;
LONG PixelCount = pDDALine->cPels;
LONG xInc = pDDALine->xInc;
PULONG pulDst = (PULONG)pjDst;
//
// octant 5,6
//
// y major
//
// x - positive/negative
// y - negative
//
pulDst += pDDALine->ptlStart.x;
while (TRUE) {
*pulDst = iSolidColor;
//
// integer line
//
if (--PixelCount == 0) {
return;
}
pulDst = (PULONG)((PUCHAR)pulDst + lDeltaDst);
ErrorTerm += dN;
if (ErrorTerm >= 0){
ErrorTerm -= dM;
pulDst--;
}
*pulDst = iSolidColor;
}
}
/******************************Public*Routine******************************\
*
* Routine Name
*
* Inner loop DDA line drawing routines for 1bpp
*
* Routine Description:
*
* 4 dda routines for line drawing in each octant for each resolution
*
*
* Arguments:
*
* pDDALine - dda parameters
* pjDst - Destination line address
* lDeltaDst - Destination address scan line increment (bytes)
* iSolidColor - Solid color for line
*
* Return Value:
*
* VOID
*
\**************************************************************************/
VOID
vLine1Octant07(
PDDALINE pDDALine,
PUCHAR pjDst,
LONG lDeltaDst,
ULONG iSolidColor
)
{
LONG ErrorTerm = pDDALine->lErrorTerm;
LONG dM = pDDALine->dMajor;
LONG dN = pDDALine->dMinor;
LONG PixelCount = pDDALine->cPels;
ULONG Pixel;
//
// octant 0
//
// x major
//
// x - positive
// y - positive/negative
//
Pixel = pDDALine->ptlStart.x;
UCHAR Mask = (UCHAR)(0x80 >> (Pixel & 0x07));
pjDst = pjDst + (Pixel >> 3);
//
// integer line
//
if (iSolidColor) {
//
// loop for storing '1' pixels
//
while (TRUE) {
*pjDst |= Mask;
if (--PixelCount == 0) {
return;
}
Mask = (UCHAR)(Mask >> 1);
if (!(Mask)) {
Mask = 0x80;
pjDst++;
}
ErrorTerm += dN;
if (ErrorTerm >= 0){
ErrorTerm -= dM;
pjDst += lDeltaDst;
}
}
} else {
//
// loop for storing '0' pixels
//
while (TRUE) {
*pjDst &= (~Mask);
if (--PixelCount == 0) {
return;
}
Mask = (UCHAR)(Mask >> 1);
if (!(Mask)) {
Mask = 0x80;
pjDst++;
}
ErrorTerm += dN;
if (ErrorTerm >= 0){
ErrorTerm -= dM;
pjDst += lDeltaDst;
}
}
}
}
VOID
vLine1Octant34(
PDDALINE pDDALine,
PUCHAR pjDst,
LONG lDeltaDst,
ULONG iSolidColor
)
{
LONG ErrorTerm = pDDALine->lErrorTerm;
LONG dM = pDDALine->dMajor;
LONG dN = pDDALine->dMinor;
LONG PixelCount = pDDALine->cPels;
ULONG Pixel;
//
// octant 3,4
//
// x major
//
// x - negative
// y - positive/negative
//
Pixel = pDDALine->ptlStart.x;
UCHAR Mask = (UCHAR)(0x80 >> (Pixel & 0x07));
pjDst = pjDst + (Pixel >> 3);
//
// integer line
//
if (iSolidColor) {
//
// loop for storing '1' pixels
//
while (TRUE) {
*pjDst |= Mask;
if (--PixelCount == 0) {
return;
}
Mask = (UCHAR)(Mask << 1);
if (!(Mask)) {
Mask = 0x01;
pjDst--;
}
ErrorTerm += dN;
if (ErrorTerm >= 0){
ErrorTerm -= dM;
pjDst += lDeltaDst;
}
}
} else {
while (TRUE) {
*pjDst &= (~Mask);
if (--PixelCount == 0) {
return;
}
Mask = (UCHAR)(Mask << 1);
if (!(Mask)) {
Mask = 0x01;
pjDst--;
}
ErrorTerm += dN;
if (ErrorTerm >= 0){
ErrorTerm -= dM;
pjDst += lDeltaDst;
}
}
}
}
VOID
vLine1Octant16(
PDDALINE pDDALine,
PUCHAR pjDst,
LONG lDeltaDst,
ULONG iSolidColor
)
{
LONG ErrorTerm = pDDALine->lErrorTerm;
LONG dM = pDDALine->dMajor;
LONG dN = pDDALine->dMinor;
LONG PixelCount = pDDALine->cPels;
ULONG Pixel;
//
// octant 1,6
//
// y major
//
// x - positive
// y - positive/negative
//
Pixel = pDDALine->ptlStart.x;
UCHAR Mask = (UCHAR)(0x80 >> (Pixel & 0x07));
pjDst = pjDst + (Pixel >> 3);
//
// integer line
//
if (iSolidColor) {
//
// loop for storing '1' pixels
//
while (TRUE) {
*pjDst |= Mask;
if (--PixelCount == 0) {
return;
}
pjDst += lDeltaDst;
ErrorTerm += dN;
if (ErrorTerm >= 0){
ErrorTerm -= dM;
Mask = (UCHAR)(Mask >> 1);
if (!(Mask)) {
Mask = 0x80;
pjDst++;
}
}
}
} else {
while (TRUE) {
*pjDst &= (~Mask);
if (--PixelCount == 0) {
return;
}
pjDst += lDeltaDst;
ErrorTerm += dN;
if (ErrorTerm >= 0){
ErrorTerm -= dM;
Mask = (UCHAR)(Mask >> 1);
if (!(Mask)) {
Mask = 0x80;
pjDst++;
}
}
}
}
}
VOID
vLine1Octant25(
PDDALINE pDDALine,
PUCHAR pjDst,
LONG lDeltaDst,
ULONG iSolidColor
)
{
LONG ErrorTerm = pDDALine->lErrorTerm;
LONG dM = pDDALine->dMajor;
LONG dN = pDDALine->dMinor;
LONG PixelCount = pDDALine->cPels;
LONG xInc = pDDALine->xInc;
ULONG Pixel;
//
// octant 2,5
//
// y major
//
// x - negative
// y - negative/positive
//
Pixel = pDDALine->ptlStart.x;
UCHAR Mask = (UCHAR)(0x80 >> (Pixel & 0x07));
pjDst = pjDst + (Pixel >> 3);
//
// integer line
//
if (iSolidColor) {
//
// loop for storing '1' pixels
//
while (TRUE) {
*pjDst |= Mask;
if (--PixelCount == 0) {
return;
}
pjDst += lDeltaDst;
ErrorTerm += dN;
if (ErrorTerm >= 0){
ErrorTerm -= dM;
Mask = (UCHAR)(Mask << 1);
if (!(Mask)) {
Mask = 0x01;
pjDst--;
}
}
}
} else {
while (TRUE) {
*pjDst &= (~Mask);
if (--PixelCount == 0) {
return;
}
pjDst += lDeltaDst;
ErrorTerm += dN;
if (ErrorTerm >= 0){
ErrorTerm -= dM;
Mask = (UCHAR)(Mask << 1);
if (!(Mask)) {
Mask = 0x01;
pjDst--;
}
}
}
}
}
/******************************Public*Routine******************************\
*
* Routine Name
*
* Inner loop DDA line drawing routines for 4bpp
*
* Routine Description:
*
* 4 dda routines for line drawing in each octant for each resolution
*
*
* Arguments:
*
* pDDALine - dda parameters
* pjDst - Destination line address
* lDeltaDst - Destination address scan line increment (bytes)
* iSolidColor - Solid color for line
*
* Return Value:
*
* VOID
*
\**************************************************************************/
VOID
vLine4Octant07(
PDDALINE pDDALine,
PUCHAR pjDst,
LONG lDeltaDst,
ULONG iSolidColor
)
{
LONG ErrorTerm = pDDALine->lErrorTerm;
LONG dM = pDDALine->dMajor;
LONG dN = pDDALine->dMinor;
LONG PixelCount = pDDALine->cPels;
ULONG Pixel;
PUCHAR PixelAddr;
iSolidColor &= 0x0f;
iSolidColor |= iSolidColor << 4;
//
// octant 0
//
// x major
//
// x - positive
// y - positive/negative
//
Pixel = pDDALine->ptlStart.x;
while (TRUE) {
PixelAddr = pjDst + (Pixel >> 1);
*PixelAddr = (UCHAR)((*PixelAddr & PixelLineMask4[Pixel & 1]) |
(iSolidColor & ~PixelLineMask4[Pixel & 1]));
//
// integer line
//
if (--PixelCount == 0) {
return;
}
Pixel++;
ErrorTerm += dN;
if (ErrorTerm >= 0){
ErrorTerm -= dM;
pjDst += lDeltaDst;
}
}
}
VOID
vLine4Octant34(
PDDALINE pDDALine,
PUCHAR pjDst,
LONG lDeltaDst,
ULONG iSolidColor
)
{
LONG ErrorTerm = pDDALine->lErrorTerm;
LONG dM = pDDALine->dMajor;
LONG dN = pDDALine->dMinor;
LONG PixelCount = pDDALine->cPels;
ULONG Pixel;
PUCHAR PixelAddr;
iSolidColor &= 0x0f;
iSolidColor |= iSolidColor << 4;
//
// octant 3
//
// x major
//
// x - negative
// y - positive/negative
//
Pixel = pDDALine->ptlStart.x;
while (TRUE) {
PixelAddr = pjDst + (Pixel >> 1);
*PixelAddr = (UCHAR)((*PixelAddr & PixelLineMask4[Pixel & 1]) |
(iSolidColor & ~PixelLineMask4[Pixel & 1]));
//
// integer line
//
if (--PixelCount == 0) {
return;
}
Pixel--;
ErrorTerm += dN;
if (ErrorTerm >= 0){
ErrorTerm -= dM;
pjDst += lDeltaDst;
}
}
}
VOID
vLine4Octant16(
PDDALINE pDDALine,
PUCHAR pjDst,
LONG lDeltaDst,
ULONG iSolidColor
)
{
LONG ErrorTerm = pDDALine->lErrorTerm;
LONG dM = pDDALine->dMajor;
LONG dN = pDDALine->dMinor;
LONG PixelCount = pDDALine->cPels;
LONG xInc = pDDALine->xInc;
ULONG Pixel;
PUCHAR PixelAddr;
iSolidColor &= 0x0f;
iSolidColor |= iSolidColor << 4;
//
// octant 1,6
//
// y major
//
// x - positive
// y - positive/negative
//
Pixel = pDDALine->ptlStart.x;
while (TRUE) {
PixelAddr = pjDst + (Pixel >> 1);
*PixelAddr = (UCHAR)((*PixelAddr & PixelLineMask4[Pixel & 1]) |
(iSolidColor & ~PixelLineMask4[Pixel & 1]));
//
// integer line
//
if (--PixelCount == 0) {
return;
}
pjDst += lDeltaDst;
ErrorTerm += dN;
if (ErrorTerm >= 0){
ErrorTerm -= dM;
Pixel ++;
}
}
}
VOID
vLine4Octant25(
PDDALINE pDDALine,
PUCHAR pjDst,
LONG lDeltaDst,
ULONG iSolidColor
)
{
LONG ErrorTerm = pDDALine->lErrorTerm;
LONG dM = pDDALine->dMajor;
LONG dN = pDDALine->dMinor;
LONG PixelCount = pDDALine->cPels;
LONG xInc = pDDALine->xInc;
ULONG Pixel;
PUCHAR PixelAddr;
iSolidColor &= 0x0f;
iSolidColor |= iSolidColor << 4;
//
// octant 2,5
//
// y major
//
// x - negative
// y - psoitive\negative
//
Pixel = pDDALine->ptlStart.x;
while (TRUE) {
PixelAddr = pjDst + (Pixel >> 1);
*PixelAddr = (UCHAR)((*PixelAddr & PixelLineMask4[Pixel & 1]) |
(iSolidColor & ~PixelLineMask4[Pixel & 1]));
//
// integer line
//
if (--PixelCount == 0) {
return;
}
pjDst += lDeltaDst;
ErrorTerm += dN;
if (ErrorTerm >= 0){
ErrorTerm -= dM;
Pixel --;
}
}
}
/******************************Public*Routine******************************\
*
* Routine Name
*
* vHorizontalLineN
*
* Routine Description:
*
* Accelerator for horizontal lines
*
* Arguments:
*
* pjDst - Scan line dst address
* x0 - Starting pixel location
* x1 - Ending pixel location (exclusive)
* iSolidColor - Solid Color replicated to 32 bits if needed
*
* Return Value:
*
* VOID
*
\**************************************************************************/
VOID
vHorizontalLine1(
PUCHAR pjDst,
LONG x0,
LONG x1,
ULONG iSolidColor)
{
ULONG Count;
ULONG Alignment;
//
// count = number of pixels to write, make sure it is not 0
//
Count = x1 - x0;
if (Count) {
pjDst += (x0 >> 3);
Alignment = x0 & 0x07;
//
// alignment Start bits
//
if ((Alignment) && ((ULONG)Count >= (8 - Alignment)))
{
//
// partial byte
//
*pjDst = (UCHAR)((*pjDst & (~(0xFF >> Alignment))) |
(iSolidColor & (0xFF >> Alignment)));
pjDst ++;
Count -= ( 8 - Alignment);
Alignment = 0;
}
//
// byte loop
//
if (Alignment == 0) {
//
// full byte stores
//
ULONG NumBytes = Count >> 3;
if (NumBytes > 0) {
RtlFillMemory((PVOID)pjDst,NumBytes,(UCHAR)iSolidColor);
pjDst += NumBytes;
Count = (Count & 0x07);
}
//
// last store
//
if (Count > 0) {
*pjDst = (UCHAR)((*pjDst & (0xFF >> Count)) |
(iSolidColor & (~(0xFF >> Count))));
}
return;
}
//
// do whats left, partial of 1 byte with
// start bit = alignment, number of bits = Count
//
//
// bit
// ÚÄÂÄÂÄÂÄÂÄÂÄÂÄÂÄ¿
// ³7³6³5³4³3³2³1³0³
// ÀÄÁÄÁÄÁÄÁÄÁÄÁÄÁÄÙ
//
// pixel
// ÚÄÂÄÂÄÂÄÂÄÂÄÂÄÂÄ¿
// ³0³1³2³3³4³5³6³7³
// ÀÄÁÄÁÄÁÄÁÄÁÄÁÄÁÄÙ
{
UCHAR DstMask = (UCHAR)(0xff >> Alignment);
UCHAR AndMask = (UCHAR)(0xff << (8 - (Count + Alignment)));
DstMask &= AndMask;
*pjDst = (UCHAR)((*pjDst & (~DstMask)) | (iSolidColor & DstMask));
}
}
}
VOID
vHorizontalLine4(
PUCHAR pjDst,
LONG x0,
LONG x1,
ULONG iSolidColor)
{
ULONG Count;
ULONG Alignment;
ULONG NumBytes;
Count = x1 - x0;
if (Count) {
pjDst += (x0 >> 1);
//
// alignment Start nibble
//
Alignment = x0 & 0x01;
if (Alignment)
{
*pjDst = (UCHAR)((*pjDst & 0xf0) |
(iSolidColor & 0x0f));
Count--;
pjDst++;
}
//
// aligned to byte boundary
//
NumBytes = Count >> 1;
if (NumBytes) {
RtlFillMemory((PVOID)pjDst,NumBytes,(BYTE)iSolidColor);
pjDst += NumBytes;
Count = Count & 0x01;
}
//
// end alignment if needed
//
if (Count) {
*pjDst = (UCHAR)((*pjDst & 0x0f) |
(iSolidColor & 0xf0));
}
}
}
VOID
vHorizontalLine8(
PUCHAR pjDst,
LONG x0,
LONG x1,
ULONG iSolidColor)
{
ULONG Count;
UCHAR Align;
//
// increment pjDst to x0 address
//
pjDst += x0;
//
// if byte count is less then 7, then just quickly do
// the bytes
//
Count = x1 - x0;
if (Count <= 6) {
while (Count--) {
*pjDst++ = (UCHAR)iSolidColor;
}
return;
}
//
// large scan line that at least covers 1 full DWORD,
// first do partial bytes if needed
//
//
// do partial bytes, count is gaurenteed to be
// greater than max of 3 alignment bytes
//
Align = (UCHAR)(x0 & 0x03);
switch (Align) {
case 1:
*pjDst++ = (UCHAR)iSolidColor;
Count--;
case 2:
*(PUSHORT)pjDst = (USHORT)iSolidColor;
pjDst += 2;
Count -= 2;
break;
case 3:
*pjDst++ = (UCHAR)iSolidColor;
Count--;
}
ULONG NumBytes = Count & (~0x03);
//
// fill Dwords
//
RtlFillMemoryUlong((PVOID)pjDst,NumBytes,iSolidColor);
pjDst += NumBytes;
//
// fill last partial bytes
//
switch (Count & 0x03) {
case 1:
*pjDst = (UCHAR)iSolidColor;
break;
case 2:
*(PUSHORT)pjDst = (USHORT)iSolidColor;
break;
case 3:
*(PUSHORT)pjDst = (USHORT)iSolidColor;
*(pjDst+2) = (UCHAR)iSolidColor;
}
}
VOID
vHorizontalLine16(
PUCHAR pjDst,
LONG x0,
LONG x1,
ULONG iSolidColor)
{
PUSHORT pusDst = (PUSHORT)pjDst + x0;
ULONG Count = x1 - x0;
if (Count) {
//
// do starting alignment
//
if (x0 & 0x01) {
*pusDst++ = (USHORT)iSolidColor;
Count--;
}
//
// fill dwords
//
ULONG NumDwords = Count >> 1;
if (NumDwords) {
RtlFillMemoryUlong((PVOID)pusDst,NumDwords << 2,iSolidColor);
}
//
// fill last 16 if needed
//
if (Count & 0x01) {
//
// add Number of USHORTS stored in RtlFillMemoryUlong to pusDst
// then store final USHORT
//
pusDst += NumDwords << 1;
*pusDst = (USHORT)iSolidColor;
}
}
}
VOID
vHorizontalLine24(
PUCHAR pjDst,
LONG x0,
LONG x1,
ULONG iSolidColor)
{
UCHAR Red = (UCHAR)iSolidColor;
UCHAR Green = (UCHAR)(iSolidColor >> 8);
UCHAR Blue = (UCHAR)(iSolidColor >> 16);
PUCHAR pjEnd = pjDst + 3*x1;
pjDst += 3*x0;
while (pjDst < pjEnd) {
*pjDst = Red;
*(pjDst+1) = Green;
*(pjDst+2) = Blue;
pjDst += 3;
}
}
VOID
vHorizontalLine32(
PUCHAR pjDst,
LONG x0,
LONG x1,
ULONG iSolidColor)
{
//
// incremnet pjDst x0 DWORDs
//
pjDst += (x0 << 2);
//
// fill
//
if (x1 != x0) {
RtlFillMemoryUlong((PVOID)pjDst,(x1 - x0) << 2,iSolidColor);
}
}
/******************************Public*Routine******************************\
*
* Routine Name
*
* bGIQtoIntegerLine
*
* Routine Description:
*
* This routine takes GIQ endpoints and calculates the correct integer
* endpoints, error term and flags.
*
* Arguments:
*
* pptfxStart - GIQ point 0
* pptfxEnd - GIQ point 1
* prclClip - clip rectangles
* pDDALine - Interger line params
*
* Return Value:
*
* True if this line can be drawn with 32 bit arithmatic and
* all params are calculated, otherwise false
*
\**************************************************************************/
#define HW_X_ROUND_DOWN 0x0100L // x = 1/2 rounds down in value
#define HW_Y_ROUND_DOWN 0x0200L // y = 1/2 rounds down in value
FLONG gaflHardwareRound[] = {
HW_X_ROUND_DOWN | HW_Y_ROUND_DOWN, // | | |
HW_X_ROUND_DOWN | HW_Y_ROUND_DOWN, // | | | FLIP_D
HW_X_ROUND_DOWN, // | | FLIP_V |
HW_Y_ROUND_DOWN, // | | FLIP_V | FLIP_D
HW_Y_ROUND_DOWN, // | FLIP_H | |
HW_X_ROUND_DOWN, // | FLIP_H | | FLIP_D
0, // | FLIP_H | FLIP_V |
0, // | FLIP_H | FLIP_V | FLIP_D
HW_Y_ROUND_DOWN, // SLOPE_ONE | | |
0xffffffff, // SLOPE_ONE | | | FLIP_D
HW_X_ROUND_DOWN, // SLOPE_ONE | | FLIP_V |
0xffffffff, // SLOPE_ONE | | FLIP_V | FLIP_D
HW_Y_ROUND_DOWN, // SLOPE_ONE | FLIP_H | |
0xffffffff, // SLOPE_ONE | FLIP_H | | FLIP_D
HW_X_ROUND_DOWN, // SLOPE_ONE | FLIP_H | FLIP_V |
0xffffffff // SLOPE_ONE | FLIP_H | FLIP_V | FLIP_D
};
BOOL bGIQtoIntegerLine(
POINTFIX* pptfxStart,
POINTFIX* pptfxEnd,
PRECTL prclClip,
DDALINE* pDDALine)
{
FLONG fl; // Various flags
ULONG M0; // Normalized fractional unit x start coordinate (0 <= M0 < F)
ULONG N0; // Normalized fractional unit y start coordinate (0 <= N0 < F)
ULONG M1; // Normalized fractional unit x end coordinate (0 <= M1 < F)
ULONG N1; // Normalized fractional unit x end coordinate (0 <= N1 < F)
ULONG dM; // Normalized fractional unit x-delta (0 <= dM)
ULONG dN; // Normalized fractional unit y-delta (0 <= dN <= dM)
LONG x; // Normalized x coordinate of origin
LONG y; // Normalized y coordinate of origin
LONG x0; // Normalized x offset from origin to start Pixel (inclusive)
LONG y0; // Normalized y offset from origin to start Pixel (inclusive)
LONG x1; // Normalized x offset from origin to end Pixel (inclusive)
LONG lGamma; // Possibly overflowing Bresenham error term at origin
LONGLONG eqGamma;// Non-overflowing Bresenham error term at origin
BOOL bReturn = FALSE;
/***********************************************************************\
* Normalize line to the first octant.
\***********************************************************************/
#if DBG_LINE
if (DbgLine >= 2) {
DbgPrint("\nCalculate GIQ parameters for line:\n");
DbgPrint("pptfxStart = %li.%li, %li.%li\n",
pptfxStart->x >> 4,
pptfxStart->x & 0x0f,
pptfxStart->y >> 4,
pptfxStart->y & 0x0f);
DbgPrint("pptxEnd = %li.%li, %li.%li\n\n",
pptfxEnd->x >> 4,
pptfxEnd->x & 0x0f,
pptfxEnd->y >> 4,
pptfxEnd->y & 0x0f);
}
#endif
fl = 0;
M0 = pptfxStart->x;
dM = pptfxEnd->x;
if ((LONG) dM < (LONG) M0)
{
//
// Line runs from right to left, so flip across x = 0:
//
M0 = -(LONG) M0;
dM = -(LONG) dM;
fl |= FL_SOL_FLIP_H;
}
//
// Compute the delta dx. The DDI says we can never have a valid delta
// with a magnitude more than 2^31 - 1, but the engine never actually
// checks its transforms. Check for that case and simply refuse to draw
// the line:
//
dM -= M0;
if ((LONG) dM < 0)
{
goto GIQEnd;
}
N0 = pptfxStart->y;
dN = pptfxEnd->y;
if ((LONG) dN < (LONG) N0)
{
//
// Line runs from bottom to top, so flip across y = 0
//
N0 = -(LONG) N0;
dN = -(LONG) dN;
fl |= FL_SOL_FLIP_V;
}
//
// Compute the delta dy
//
dN -= N0;
if ((LONG) dN < 0)
{
goto GIQEnd;
}
//
// check for y-major lines and lines with
// slope = 1
//
if (dN >= dM)
{
if (dN == dM)
{
//
// Have to special case slopes of one:
//
fl |= FL_SOL_FLIP_SLOPE_ONE;
}
else
{
//
// Since line has slope greater than 1, flip across x = y:
//
register ULONG ulTmp;
ulTmp = dM; dM = dN; dN = ulTmp;
ulTmp = M0; M0 = N0; N0 = ulTmp;
fl |= FL_SOL_FLIP_D;
}
}
//
// look up rounding for this line from the table
//
fl |= gaflHardwareRound[fl];
//
// Calculate the error term at Pixel 0
//
x = LFLOOR((LONG) M0);
y = LFLOOR((LONG) N0);
M0 = FXFRAC(M0);
N0 = FXFRAC(N0);
#if DBG_LINE
if (DbgLine >= 2) {
DbgPrint("Calc x = %li\n",x);
DbgPrint("Calc y = %li\n",y);
DbgPrint("Calc M0 = %li\n",M0);
DbgPrint("Calc N0 = %li\n",N0);
}
#endif
//
// Calculate the remainder term [ dM * (N0 + F/2) - M0 * dN ]. Note
// that M0 and N0 have at most 4 bits of significance (and if the
// arguments are properly ordered, on a 486 each multiply would be no
// more than 13 cycles):
//
//
// For the sake of speed, we're only going to do 32-bit multiplies
// in this routine. If the line is long enough though, we may
// need 38 bits for this calculation. Since at this point
// dM >= dN >= 0, and 0 <= N0 < 16, we'll just need to have 6 bits
// unused in 'dM':
//
if (dM <= (LONG_MAX >> 6))
{
lGamma = (N0 + F/2) * dM - M0 * dN;
if (fl & HW_Y_ROUND_DOWN)
lGamma--;
lGamma >>= FLOG2;
eqGamma = lGamma;
}
else
{
LONGLONG eq;
//
// Ugh, use safe 64-bit multiply code (cut and pasted from
// 'engline.cxx'):
//
eqGamma = Int32x32To64(N0 + F/2, dM);
eq = Int32x32To64(M0, dN);
eqGamma -= eq;
if (fl & FL_V_ROUND_DOWN)
eqGamma -= 1; // Adjust so y = 1/2 rounds down
eqGamma >>= FLOG2;
}
//
// Figure out which Pixels are at the ends of the line.
//
//
// The toughest part of GIQ is determining the start and end pels.
//
// Our approach here is to calculate x0 and x1 (the inclusive start
// and end columns of the line respectively, relative to our normalized
// origin). Then x1 - x0 + 1 is the number of pels in the line. The
// start point is easily calculated by plugging x0 into our line equation
// (which takes care of whether y = 1/2 rounds up or down in value)
// getting y0, and then undoing the normalizing flips to get back
// into device space.
//
// We look at the fractional parts of the coordinates of the start and
// end points, and call them (M0, N0) and (M1, N1) respectively, where
// 0 <= M0, N0, M1, N1 < 16. We plot (M0, N0) on the following grid
// to determine x0:
//
// +-----------------------> +x
// |
// | 0 1
// | 0123456789abcdef
// |
// | 0 ........?xxxxxxx
// | 1 ..........xxxxxx
// | 2 ...........xxxxx
// | 3 ............xxxx
// | 4 .............xxx
// | 5 ..............xx
// | 6 ...............x
// | 7 ................
// | 8 ................
// | 9 ......**........
// | a ........****...x
// | b ............****
// | c .............xxx****
// | d ............xxxx ****
// | e ...........xxxxx ****
// | f ..........xxxxxx
// |
// | 2 3
// v
//
// +y
//
// This grid accounts for the appropriate rounding of GIQ and last-pel
// exclusion. If (M0, N0) lands on an 'x', x0 = 2. If (M0, N0) lands
// on a '.', x0 = 1. If (M0, N0) lands on a '?', x0 rounds up or down,
// depending on what flips have been done to normalize the line.
//
// For the end point, if (M1, N1) lands on an 'x', x1 =
// floor((M0 + dM) / 16) + 1. If (M1, N1) lands on a '.', x1 =
// floor((M0 + dM)). If (M1, N1) lands on a '?', x1 rounds up or down,
// depending on what flips have been done to normalize the line.
//
// Lines of exactly slope one require a special case for both the start
// and end. For example, if the line ends such that (M1, N1) is (9, 1),
// the line has gone exactly through (8, 0) -- which may be considered
// to be part of 'x' because of rounding! So slopes of exactly slope
// one going through (8, 0) must also be considered as belonging in 'x'
// when an x value of 1/2 is supposed to round up in value.
//
//
// Calculate x0, x1:
//
N1 = FXFRAC(N0 + dN);
M1 = FXFRAC(M0 + dM);
x1 = LFLOOR(M0 + dM);
//
// Line runs left-to-right
//
//
// Compute x1
//
x1--;
if (M1 > 0)
{
if (N1 == 0)
{
if (LROUND(M1, fl & HW_X_ROUND_DOWN))
x1++;
}
else if (ABS((LONG) (N1 - F/2)) <= (LONG) M1)
{
x1++;
}
}
if ((fl & (FL_SOL_FLIP_SLOPE_ONE | HW_X_ROUND_DOWN))
== (FL_SOL_FLIP_SLOPE_ONE | HW_X_ROUND_DOWN))
{
//
// Have to special-case diagonal lines going through our
// the point exactly equidistant between two horizontal
// Pixels, if we're supposed to round x=1/2 down:
//
if ((M1 > 0) && (N1 == M1 + 8))
x1--;
if ((M0 > 0) && (N0 == M0 + 8))
{
x0 = 0;
goto left_to_right_compute_y0;
}
}
//
// Compute x0:
//
x0 = 0;
if (M0 > 0)
{
if (N0 == 0)
{
if (LROUND(M0, fl & HW_X_ROUND_DOWN))
x0 = 1;
}
else if (ABS((LONG) (N0 - F/2)) <= (LONG) M0)
{
x0 = 1;
}
}
left_to_right_compute_y0:
//**********************************************************************
// Calculate the start Pixel.
//***********************************************************************
//
// We now compute y0 and adjust the error term. We know x0, and we know
// the current formula for the Pixels to be lit on the line:
//
// dN * x + eqGamma
// y(x) = floor( ---------------- )
// dM
//
// The remainder of this expression is the new error term at (x0, y0).
// Since x0 is going to be either 0 or 1, we don't actually have to do a
// multiply or divide to compute y0. Finally, we subtract dM from the
// new error term so that it is in the range [-dM, 0).
//
y0 = 0;
if ((eqGamma >= 0) &&
(eqGamma >= (dM - (dN & (-(LONG) x0)))))
{
y0 = 1;
}
//
// check to see if the line is NULL, this should only happen
// with a line of slope = 1.
//
if (x1 < x0) {
pDDALine->cPels = 0;
bReturn = TRUE;
goto GIQEnd;
}
//*******************************************************************
//
// Must perform rectangular clipping
//
//*******************************************************************
if (prclClip != (PRECTL) NULL)
{
ULONG y1;
LONG xRight;
LONG xLeft;
LONG yBottom;
LONG yTop;
LONGLONG euq;
LONGLONG eq;
LONGLONG eqBeta;
RECTL rclClip;
//
// Note that y0 and y1 are actually the lower and upper bounds,
// respectively, of the y coordinates of the line (the line may
// have actually shrunk due to first/last pel clipping).
//
// Also note that x0, y0 are not necessarily zero.
//
RECTL* prcl = &prclClip[(fl & FL_SOL_RECTLCLIP_MASK)];
//
// take flip_h into account
//
if (fl & FL_SOL_FLIP_H) {
if (fl & FL_SOL_FLIP_D) {
rclClip.top = -prcl->bottom + 1;
rclClip.bottom = -prcl->top + 1;
rclClip.left = prcl->left;
rclClip.right = prcl->right;
} else {
rclClip.left = -prcl->right + 1;
rclClip.right = -prcl->left + 1;
rclClip.top = prcl->top;
rclClip.bottom = prcl->bottom;
}
} else {
rclClip.left = prcl->left;
rclClip.right = prcl->right;
rclClip.top = prcl->top;
rclClip.bottom = prcl->bottom;
}
//
// Normalize to the same point we've normalized for the DDA
// calculations:
//
xRight = rclClip.right - x;
xLeft = rclClip.left - x;
yBottom = rclClip.bottom - y;
yTop = rclClip.top - y;
#if DBG_LINE
if (DbgLine >= 2) {
DbgPrint("Clipping line to rect %li,%li to %li,%li\n",
rclClip.left,
rclClip.top,
rclClip.right,
rclClip.bottom);
DbgPrint("Clipping Parameters: xLeft %li xRight %li yBottom %li yTop %li\n",
xLeft,
xRight,
yBottom,
yTop);
DbgPrint("normalized line before clip, x = %li, y = %li, x0 = %li, x1 = %li, y0 = %li\n",
x,y,x0,x1,y0);
DbgPrint("Line Params: dM = %li, dN = %li, eqGamma = %lx\n",dM,dN,(ULONG)eqGamma);
}
#endif
if (yBottom <= (LONG) y0 ||
xRight <= (LONG) x0 ||
xLeft > (LONG) x1)
{
Totally_Clipped:
#if DBG_LINE
if (DbgLine >= 2) {
DbgPrint("Line is totally clipped\n");
}
#endif
pDDALine->cPels = 0;
bReturn = TRUE;
goto GIQEnd;
}
if ((LONG) x1 >= xRight)
{
x1 = xRight - 1;
#if DBG_LINE
if (DbgLine >= 2) {
DbgPrint("Line clip x1 to %li\n",x1);
}
#endif
}
//
// We have to know the correct y1, which we haven't bothered to
// calculate up until now. This multiply and divide is quite
// expensive; we could replace it with code similar to that which
// we used for computing y0.
//
// The reason why we need the actual value, and not an upper
// bounds guess like y1 = LFLOOR(dM) + 2 is that we have to be
// careful when calculating x(y) that y0 <= y <= y1, otherwise
// we can overflow on the divide (which, needless to say, is very
// bad).
//
eqBeta = ~eqGamma;
euq = Int32x32To64(x1, dN);
euq += eqGamma;
y1 = DIV(euq, dM);
#if DBG_LINE
if (DbgLine >= 2) {
DbgPrint("Clipping: calculated y1 = %li eqBeta = 0x%lx 0x%lx\n",y1,(LONG)(eqBeta>>32),(ULONG)eqBeta);
}
#endif
//
// check for y1 less than the top of the clip rect
//
if (yTop > (LONG) y1)
goto Totally_Clipped;
//
// check for y1 > the bottom of the clip rect, clip if true
//
if (yBottom <= (LONG) y1)
{
y1 = yBottom;
euq = Int32x32To64(y1, dM);
euq += eqBeta;
x1 = DIV(euq,dN);
#if DBG_LINE
if (DbgLine >= 2) {
DbgPrint("Clipped y1 to %li, x1 = %li\n",y1,x1);
}
#endif
}
//
// At this point, we've taken care of calculating the intercepts
// with the right and bottom edges. Now we work on the left and
// top edges:
//
if (xLeft > (LONG) x0)
{
x0 = xLeft;
euq = Int32x32To64(x0, dN);
euq += eqGamma;
y0 = DIV(euq, dM);
if (yBottom <= (LONG) y0)
goto Totally_Clipped;
#if DBG_LINE
if (DbgLine >= 2) {
DbgPrint("Clipped x0 to %li, y0 = %li\n",x0,y0);
}
#endif
}
//
// check for y0 less than the top of the clip rect, clip if true
//
if (yTop > (LONG) y0)
{
y0 = yTop;
euq = Int32x32To64(y0, dM);
euq += eqBeta;
x0 = DIV(euq, dN) + 1;
if (xRight <= (LONG) x0)
goto Totally_Clipped;
#if DBG_LINE
if (DbgLine >= 2) {
DbgPrint("Clipped y0 to %li, x0 = %li\n",y0,x0);
}
#endif
}
euq = Int32x32To64(x0,dN);
eq = Int32x32To64(y0,dM);
euq -= eq;
eqGamma += euq;
eqGamma -= dM;
#if DBG_LINE
if (DbgLine >= 2) {
DbgPrint("Clipped line: x0 = %li, x1 = %li, y0 = %li, y1 = %li\n",
x0,
x1,
y0,
y1);
DbgPrint("eqGamma = %lx\n",eqGamma);
}
if (x0 > x1) {
DbgPrint("Clip Error: x0 > x1\n");
DbgPrint(" pptxStart = %li.%li, %li.%li\n",
pptfxStart->x >> 4,
pptfxStart->x & 0x0f,
pptfxStart->y >> 4,
pptfxStart->y & 0x0f);
DbgPrint(" pptxEnd = %li.%li, %li.%li\n",
pptfxEnd->x >> 4,
pptfxEnd->x & 0x0f,
pptfxEnd->y >> 4,
pptfxEnd->y & 0x0f);
DbgPrint(" prclClip = 0x%lx\n",prclClip);
DbgPrint(" x0 = %li\n",x0);
DbgPrint(" y0 = %li\n",y0);
DbgPrint(" x1 = %li\n",x1);
DbgPrint(" y1 = %li\n",y1);
DbgPrint(" dM = %li\n",dM);
DbgPrint(" dN = %li\n",dN);
DbgPrint(" lGamma = %li\n",lGamma);
DbgPrint(" Clipping line to rect %li,%li to %li,%li\n",
rclClip.left,
rclClip.top,
rclClip.right,
rclClip.bottom);
}
#endif
ASSERTGDI(x0 <= x1, "Improper rectangle clip");
} else {
//
// adjust lGamma
//
eqGamma += (dN & (-x0));
eqGamma -= dM;
if (eqGamma >= 0)
{
eqGamma -= dM;
}
}
//
// END of simple clipping
//
//
// Undo our flips to get the start coordinate:
//
x += x0;
y += y0;
if (fl & FL_SOL_FLIP_D)
{
register LONG lTmp;
lTmp = x; x = y; y = lTmp;
}
if (fl & FL_SOL_FLIP_V)
{
y = -y;
}
if (fl & FL_SOL_FLIP_H)
{
x = -x;
}
/***********************************************************************\
* Return the Bresenham terms:
\***********************************************************************/
//
// check values
//
pDDALine->ulFlags = fl;
pDDALine->ptlStart.x = x;
pDDALine->ptlStart.y = y;
pDDALine->cPels = x1 - x0 + 1; // NOTE: You'll have to check if cPels <= 0!
pDDALine->dMajor = dM;
pDDALine->dMinor = dN;
pDDALine->lErrorTerm = (LONG) eqGamma;
pDDALine->xInc = 1;
bReturn = TRUE;
//
// end routine
//
GIQEnd:
return(bReturn);
}