|
|
/*++
Copyright (c) 1997-2002 Microsoft Corporation
Module Name:
gart8x.c
Abstract:
Routines for querying and setting the AMD GART aperture
Author:
John Vert (jvert) 10/30/1997
Revision History:
--*/
/*
****************************************************************************** * Archive File : $Archive: /Drivers/OS/Hammer/AGP/XP/amdagp/Gart8x.c $ * * $History: Gart8x.c $ * * ****************************************************************************** */
#include "amdagp8x.h"
//
// Local function prototypes
//
NTSTATUS AgpAMDCreateGart( IN PAGP_AMD_EXTENSION AgpContext, IN ULONG MinimumPages );
NTSTATUS AgpAMDSetRate( IN PVOID AgpContext, IN ULONG AgpRate );
NTSTATUS AgpAMDFindRangeInGart( IN PGART_PTE StartPte, IN PGART_PTE EndPte, IN ULONG Length, IN BOOLEAN SearchBackward, IN ULONG SearchState, OUT PGART_PTE *GartPte );
NTSTATUS AgpAMDFlushPages( IN PAGP_AMD_EXTENSION AgpContext, IN PMDL Mdl );
void AgpInitializeChipset( IN PAGP_AMD_EXTENSION AgpContext );
PAGP_FLUSH_PAGES AgpFlushPages = AgpAMDFlushPages;
#ifdef ALLOC_PRAGMA
#pragma alloc_text(PAGE, AgpDisableAperture)
#pragma alloc_text(PAGE, AgpQueryAperture)
#pragma alloc_text(PAGE, AgpReserveMemory)
#pragma alloc_text(PAGE, AgpReleaseMemory)
#pragma alloc_text(PAGE, AgpAMDCreateGart)
#pragma alloc_text(PAGE, AgpMapMemory)
#pragma alloc_text(PAGE, AgpUnMapMemory)
#pragma alloc_text(PAGE, AgpAMDFindRangeInGart)
#pragma alloc_text(PAGE, AgpFindFreeRun)
#pragma alloc_text(PAGE, AgpGetMappedPages)
#endif
extern ULONG DeviceID; extern ULONG AgpLokarSlotID; extern ULONG AgpHammerSlotID;
//
// Function Name: AgpQueryAperture()
//
// Description:
// Queries the current size of the GART aperture.
// Optionally returns the possible GART settings.
//
// Parameters:
// AgpContext - Supplies the AGP context.
// CurrentBase - Returns the current physical address of the GART.
// CurrentSizeInPages - Returns the current GART size.
// ApertureRequirements - if present, returns the possible GART settings.
//
// Return:
// STATUS_SUCCESS on success, otherwise STATUS_UNSUCCESSFUL.
//
NTSTATUS AgpQueryAperture( IN PAGP_AMD_EXTENSION AgpContext, OUT PHYSICAL_ADDRESS *CurrentBase, OUT ULONG *CurrentSizeInPages, OUT OPTIONAL PIO_RESOURCE_LIST *pApertureRequirements ) { ULONG ApBase; ULONG ApSize; ULONG AgpSizeIndex; PIO_RESOURCE_LIST Requirements; ULONG i; ULONG Length;
PAGED_CODE(); //
// Get the current APBASE and APSIZE settings
//
ReadAMDConfig(AgpLokarSlotID, &ApBase, APBASE_OFFSET, sizeof(ApBase)); ReadAMDConfig(AgpHammerSlotID, &ApSize, GART_APSIZE_OFFSET, sizeof(ApSize));
ASSERT(ApBase != 0); CurrentBase->QuadPart = ApBase & PCI_ADDRESS_MEMORY_ADDRESS_MASK;
//
// Convert APSIZE into the actual size of the aperture
//
AgpSizeIndex = (ULONG)(ApSize & APH_SIZE_MASK) >> 1; *CurrentSizeInPages = (0x0001 << (AgpSizeIndex + 25)) / PAGE_SIZE;
//
// Remember the current aperture settings
//
AgpContext->ApertureStart.QuadPart = CurrentBase->QuadPart; AgpContext->ApertureLength = *CurrentSizeInPages * PAGE_SIZE;
if (pApertureRequirements != NULL) { //
// Lokar supports 6 different aperture sizes, all must be
// naturally aligned. Start with the largest aperture and
// work downwards so that we get the biggest possible aperture.
//
Requirements = ExAllocatePoolWithTag(PagedPool, sizeof(IO_RESOURCE_LIST) + (AP_SIZE_COUNT-1)*sizeof(IO_RESOURCE_DESCRIPTOR), 'RpgA'); if (Requirements == NULL) { return(STATUS_INSUFFICIENT_RESOURCES); } Requirements->Version = Requirements->Revision = 1; Requirements->Count = AP_SIZE_COUNT; Length = AP_MAX_SIZE; for (i=0; i<AP_SIZE_COUNT; i++) { Requirements->Descriptors[i].Option = IO_RESOURCE_ALTERNATIVE; Requirements->Descriptors[i].Type = CmResourceTypeMemory; Requirements->Descriptors[i].ShareDisposition = CmResourceShareDeviceExclusive; Requirements->Descriptors[i].Flags = CM_RESOURCE_MEMORY_READ_WRITE | CM_RESOURCE_MEMORY_PREFETCHABLE;
Requirements->Descriptors[i].u.Memory.Length = Length; Requirements->Descriptors[i].u.Memory.Alignment = Length; Requirements->Descriptors[i].u.Memory.MinimumAddress.QuadPart = 0; Requirements->Descriptors[i].u.Memory.MaximumAddress.QuadPart = (ULONG)-1;
Length = Length/2; } *pApertureRequirements = Requirements;
} return(STATUS_SUCCESS); }
//
// Function Name: AgpSetAperture()
//
// Description:
// Sets the GART aperture to the supplied settings.
//
// Parameters:
// AgpContext - Supplies the AGP context.
// NewBase - Supplies the new physical memory base for the GART.
// NewSizeInPages - Supplies the new size for the GART.
//
// Return:
// STATUS_SUCCESS on success, otherwise STATUS_INVALID_PARAMETER.
//
NTSTATUS AgpSetAperture( IN PAGP_AMD_EXTENSION AgpContext, IN PHYSICAL_ADDRESS NewBase, IN ULONG NewSizeInPages ) { ULONG AphSizeNew, AplSizeNew, ApSizeOld; ULONG ApBase;
//
// Reprogram Special Target settings when the chip
// is powered off, but ignore rate changes as those were already
// applied during MasterInit
//
if (AgpContext->SpecialTarget & ~AGP_FLAG_SPECIAL_RESERVE) { AgpSpecialTarget(AgpContext, AgpContext->SpecialTarget & ~AGP_FLAG_SPECIAL_RESERVE); }
//
// If the new settings match the current settings, leave everything
// alone.
//
if ((NewBase.QuadPart == AgpContext->ApertureStart.QuadPart) && (NewSizeInPages == AgpContext->ApertureLength / PAGE_SIZE)) { // Re-initialize when the chip is powered off
if (AgpContext->Gart != NULL) { AgpInitializeChipset(AgpContext); } return(STATUS_SUCCESS); }
//
// Figure out the new APSIZE setting, make sure it is valid.
//
switch (NewSizeInPages) { case 32 * 1024 * 1024 / PAGE_SIZE: AphSizeNew = APH_SIZE_32MB; AplSizeNew = APL_SIZE_32MB; break; case 64 * 1024 * 1024 / PAGE_SIZE: AphSizeNew = APH_SIZE_64MB; AplSizeNew = APL_SIZE_64MB; break; case 128 * 1024 * 1024 / PAGE_SIZE: AphSizeNew = APH_SIZE_128MB; AplSizeNew = APL_SIZE_128MB; break; case 256 * 1024 * 1024 / PAGE_SIZE: AphSizeNew = APH_SIZE_256MB; AplSizeNew = APL_SIZE_256MB; break; case 512 * 1024 * 1024 / PAGE_SIZE: AphSizeNew = APH_SIZE_512MB; AplSizeNew = APL_SIZE_512MB; break; case 1024 * 1024 * 1024 / PAGE_SIZE: AphSizeNew = APH_SIZE_1024MB; AplSizeNew = APL_SIZE_1024MB; break; default: AGPLOG(AGP_CRITICAL, ("AgpSetAperture - invalid GART size of %lx pages specified, aperture at %I64X.\n", NewSizeInPages, NewBase.QuadPart)); ASSERT(FALSE); return(STATUS_INVALID_PARAMETER); }
//
// Make sure the supplied size is aligned on the appropriate boundary.
//
ASSERT(NewBase.HighPart == 0); ASSERT((NewBase.QuadPart & ((NewSizeInPages * PAGE_SIZE) - 1)) == 0); if ((NewBase.QuadPart & ((NewSizeInPages * PAGE_SIZE) - 1)) != 0 ) { AGPLOG(AGP_CRITICAL, ("AgpSetAperture - invalid base %I64X specified for GART aperture of %lx pages\n", NewBase.QuadPart, NewSizeInPages)); return(STATUS_INVALID_PARAMETER); }
//
// Need to reset the hardware to match the supplied settings
//
// Write APSIZE first, as this will enable the correct bits in APBASE that need to
// be written next.
//
ReadAMDConfig(AgpHammerSlotID, &ApSizeOld, GART_APSIZE_OFFSET, sizeof(ApSizeOld)); ApSizeOld &= (~APH_SIZE_MASK); AphSizeNew |= ApSizeOld; WriteAMDConfig(AgpHammerSlotID, &AphSizeNew, GART_APSIZE_OFFSET, sizeof(AphSizeNew));
ReadAMDConfig(AgpLokarSlotID, &ApSizeOld, AMD_APERTURE_SIZE_OFFSET, sizeof(ApSizeOld)); ApSizeOld &= (~APL_SIZE_MASK); AplSizeNew |= ApSizeOld; WriteAMDConfig(AgpLokarSlotID, &AplSizeNew, AMD_APERTURE_SIZE_OFFSET, sizeof(AplSizeNew));
//
// Now we can update APBASE
//
ApBase = NewBase.LowPart & APBASE_ADDRESS_MASK; WriteAMDConfig(AgpLokarSlotID, &ApBase, APBASE_OFFSET, sizeof(ApBase)); ApBase >>= GART_APBASE_SHIFT; WriteAMDConfig(AgpHammerSlotID, &ApBase, GART_APBASE_OFFSET, sizeof(ApBase));
#ifdef DEBUG2
//
// Read back what we wrote, make sure it worked
//
{ ULONG DbgBase; UCHAR DbgSize;
ReadAMDConfig(AgpHammerSlotID, &DbgSize, GART_APSIZE_OFFSET, sizeof(DbgSize)); ReadAMDConfig(AgpHammerSlotID, &DbgBase, GART_APBASE_OFFSET, sizeof(DbgBase)); ASSERT(DbgSize == AphSizeNew); ASSERT(DbgBase == ApBase); } #endif
//
// Update our extension to reflect the new GART setting
//
AgpContext->ApertureStart = NewBase; AgpContext->ApertureLength = NewSizeInPages * PAGE_SIZE;
//
// If the GART has been allocated, rewrite the GART Directory Base Address
//
if (AgpContext->Gart != NULL) { AgpInitializeChipset(AgpContext); }
return(STATUS_SUCCESS); }
//
// Function Name: AgpDisableAperture()
//
// Description:
// Disables the GART aperture so that this resource is available
// for other devices.
//
// Parameters:
// AgpContext - Supplies the AGP context.
//
// Return:
// None.
//
VOID AgpDisableAperture( IN PAGP_AMD_EXTENSION AgpContext ) { ULONG ConfigData;
//
// Disable the aperture
//
ReadAMDConfig(AgpHammerSlotID, &ConfigData, GART_APSIZE_OFFSET, sizeof(ConfigData)); ConfigData &= ~GART_ENABLE_BIT; WriteAMDConfig(AgpHammerSlotID, &ConfigData, GART_APSIZE_OFFSET, sizeof(ConfigData));
//
// Nuke the Gart! (It's meaningless now...)
//
if (AgpContext->Gart != NULL) { MmFreeContiguousMemory(AgpContext->Gart); AgpContext->Gart = NULL; AgpContext->GartLength = 0; } }
//
// Function Name: AgpReserveMemory()
//
// Description:
// Reserves a range of memory in the GART.
//
// Parameters:
// AgpContext - Supplies the AGP context.
// Range - Supplies the AGP_RANGE structure.
// AGPLIB will have filled in NumberOfPages and Type.
// This routine will fill in MemoryBase and Context.
//
// Return:
// STATUS_SUCCESS on success, otherwise NTSTATUS.
//
NTSTATUS AgpReserveMemory( IN PAGP_AMD_EXTENSION AgpContext, IN OUT AGP_RANGE *Range ) { ULONG Index; ULONG NewState; NTSTATUS Status; PGART_PTE FoundRange; BOOLEAN Backwards;
PAGED_CODE();
ASSERT((Range->Type == MmNonCached) || (Range->Type == MmWriteCombined) || (Range->Type == MmHardwareCoherentCached));
if (Range->NumberOfPages > (AgpContext->ApertureLength / PAGE_SIZE)) { return STATUS_INSUFFICIENT_RESOURCES; }
//
// If we have not allocated our GART yet, now is the time to do so
//
if (AgpContext->Gart == NULL) { ASSERT(AgpContext->GartLength == 0); Status = AgpAMDCreateGart(AgpContext, Range->NumberOfPages); if (!NT_SUCCESS(Status)) { AGPLOG(AGP_CRITICAL, ("AgpAMDCreateGart failed %08lx to create GART of size %lx\n", Status, AgpContext->ApertureLength)); return(Status); } } ASSERT(AgpContext->GartLength != 0);
//
// Now that we have a GART, try and find enough contiguous entries to satisfy
// the request. Requests for uncached memory will scan from high addresses to
// low addresses. Requests for write-combined memory will scan from low addresses
// to high addresses. We will use a first-fit algorithm to try and keep the allocations
// packed and contiguous.
//
Backwards = (Range->Type == MmNonCached) ? TRUE : FALSE; Status = AgpAMDFindRangeInGart(&AgpContext->Gart[0], &AgpContext->Gart[(AgpContext->GartLength / sizeof(GART_PTE)) - 1], Range->NumberOfPages, Backwards, GART_ENTRY_FREE, &FoundRange);
if (!NT_SUCCESS(Status)) { //
// A big enough chunk was not found.
//
AGPLOG(AGP_CRITICAL, ("AgpReserveMemory - Could not find %d contiguous free pages of type %d in GART at %08lx\n", Range->NumberOfPages, Range->Type, AgpContext->Gart));
//
// This is where we could try and grow the GART
//
return(STATUS_INSUFFICIENT_RESOURCES); }
AGPLOG(AGP_NOISE, ("AgpReserveMemory - reserved %d pages at GART PTE %08lx\n", Range->NumberOfPages, FoundRange));
//
// Set these pages to reserved
//
if (Range->Type == MmNonCached) { NewState = GART_ENTRY_RESERVED_UC; } else if (Range->Type == MmWriteCombined) { NewState = GART_ENTRY_RESERVED_WC; } else { NewState = GART_ENTRY_RESERVED_CC; }
for (Index = 0;Index < Range->NumberOfPages; Index++) { ASSERT(FoundRange[Index].Soft.State == GART_ENTRY_FREE); FoundRange[Index].AsUlong = 0; FoundRange[Index].Soft.State = NewState; }
Range->MemoryBase.QuadPart = AgpContext->ApertureStart.QuadPart + (FoundRange - &AgpContext->Gart[0]) * PAGE_SIZE; Range->Context = FoundRange;
ASSERT(Range->MemoryBase.HighPart == 0); AGPLOG(AGP_NOISE, ("AgpReserveMemory - reserved memory handle %lx at PA %08lx\n", FoundRange, Range->MemoryBase.LowPart));
DisplayStatus(0x40); return(STATUS_SUCCESS); }
//
// Function Name: AgpReleaseMemory()
//
// Description:
// Releases memory previously reserved with AgpReserveMemory.
//
// Parameters:
// AgpContext - Supplies the AGP context.
// Range - Supplies the range to be released.
//
// Return:
// STATUS_SUCCESS.
//
NTSTATUS AgpReleaseMemory( IN PAGP_AMD_EXTENSION AgpContext, IN PAGP_RANGE Range ) { PGART_PTE Pte;
for (Pte = Range->Context; Pte < (PGART_PTE)Range->Context + Range->NumberOfPages; Pte++) { //
// Go through and free all the PTEs. None of these should still
// be valid at this point.
//
if (Range->Type == MmNonCached) { ASSERT(Pte->Soft.State == GART_ENTRY_RESERVED_UC); } else if (Range->Type == MmWriteCombined) { ASSERT(Pte->Soft.State == GART_ENTRY_RESERVED_WC); } else { ASSERT(Pte->Soft.State == GART_ENTRY_RESERVED_CC); } Pte->Soft.State = GART_ENTRY_FREE; }
Range->MemoryBase.QuadPart = 0;
DisplayStatus(0x50); return(STATUS_SUCCESS); }
//
// Function Name: AgpAMDCreateGart()
//
// Description:
// Allocates and initializes an empty GART. The current implementation
// attempts to allocate the entire GART on the first reserve call.
//
// Parameters:
// AgpContext - Supplies the AGP context.
// MinimumPages - Supplies the minimum size (in pages) of the GART
// to be created.
//
// Return:
// STATUS_SUCCESS on success, otherwise NTSTATUS.
//
NTSTATUS AgpAMDCreateGart( IN PAGP_AMD_EXTENSION AgpContext, IN ULONG MinimumPages ) { PGART_PTE Gart; ULONG GartLength; PHYSICAL_ADDRESS GartPhysical; PHYSICAL_ADDRESS HighestPhysical; PHYSICAL_ADDRESS LowestPhysical; PHYSICAL_ADDRESS BoundaryPhysical; LONG PageCount; LONG Index;
PAGED_CODE();
//
// Try and get a chunk of contiguous memory big enough to map the
// entire aperture from the favored memory range.
//
GartLength = BYTES_TO_PAGES(AgpContext->ApertureLength) * sizeof(GART_PTE); LowestPhysical.QuadPart = 0; HighestPhysical.QuadPart = 0xFFFFFFFF; BoundaryPhysical.QuadPart = 0;
Gart = MmAllocateContiguousMemorySpecifyCache(GartLength, LowestPhysical, HighestPhysical, BoundaryPhysical, MmNonCached); if (Gart == NULL) { AGPLOG(AGP_CRITICAL, ("AgpAMDCreateGart - MmAllocateContiguousMemory %lx failed\n", GartLength)); return(STATUS_INSUFFICIENT_RESOURCES); } //
// We successfully allocated a contiguous chunk of memory.
// It should be page aligned already.
//
ASSERT(((ULONG_PTR)Gart & (PAGE_SIZE-1)) == 0);
//
// Get the physical address.
//
GartPhysical = MmGetPhysicalAddress(Gart); AGPLOG(AGP_NOISE, ("AgpAMDCreateGart - GART of length %lx created at VA %08lx, PA %08lx\n", GartLength, Gart, GartPhysical.LowPart)); ASSERT(GartPhysical.HighPart == 0); ASSERT((GartPhysical.LowPart & (PAGE_SIZE-1)) == 0);
//
// Initialize all the PTEs to free
//
PageCount = GartLength / sizeof(GART_PTE); for (Index = 0;Index < PageCount; Index++) { Gart[Index].AsUlong = 0; Gart[Index].Soft.State = GART_ENTRY_FREE; }
//
// Update our extension to reflect the current state.
//
AgpContext->Gart = Gart; AgpContext->GartLength = GartLength; AgpContext->GartPhysical = GartPhysical;
//
// Initialize Registers for AGP operation
//
AgpInitializeChipset(AgpContext);
DisplayStatus(0x30); return(STATUS_SUCCESS); }
//
// Function Name: AgpMapMemory()
//
// Description:
// Maps physical memory into the GART somewhere in the specified range.
//
// Parameters:
// AgpContext - Supplies the AGP context.
// Range - Supplies the AGP range that the memory should be mapped into.
// Mdl - Supplies the MDL describing the physical pages to be mapped.
// OffsetInPages - Supplies the offset into the reserved range where the
// mapping should begin.
// MemoryBase - Returns the physical memory in the aperture where the
// pages were mapped.
//
// Return:
// STATUS_SUCCESS on success, otherwise STATUS_INSUFFICIENT_RESOURCES.
//
NTSTATUS AgpMapMemory( IN PAGP_AMD_EXTENSION AgpContext, IN PAGP_RANGE Range, IN PMDL Mdl, IN ULONG OffsetInPages, OUT PHYSICAL_ADDRESS *MemoryBase ) { ULONG PageCount, Index; ULONG TargetState; PPFN_NUMBER Page; BOOLEAN Backwards; GART_PTE NewPte; PGART_PTE Pte, StartPte;
PAGED_CODE();
ASSERT(Mdl->Next == NULL);
StartPte = Range->Context; PageCount = BYTES_TO_PAGES(Mdl->ByteCount); ASSERT(PageCount + OffsetInPages <= Range->NumberOfPages); ASSERT(PageCount > 0);
if (Range->Type == MmNonCached) { TargetState = GART_ENTRY_RESERVED_UC; } else if (Range->Type == MmWriteCombined) { TargetState = GART_ENTRY_RESERVED_WC; } else { TargetState = GART_ENTRY_RESERVED_CC; }
Pte = StartPte + OffsetInPages;
//
// We have a suitable range, now fill it in with the supplied MDL.
//
NewPte.AsUlong = 0; if (Range->Type == MmNonCached) { NewPte.Soft.State = GART_ENTRY_VALID_UC; } else if (Range->Type == MmWriteCombined) { NewPte.Soft.State = GART_ENTRY_VALID_WC; } else { NewPte.Soft.State = GART_ENTRY_VALID_CC; }
Page = (PPFN_NUMBER)(Mdl + 1);
AGPLOG(AGP_NOISE, ("AgpMapMemory - mapped %d pages at Page %08lx\n", PageCount, *Page));
for (Index = 0;Index < PageCount; Index++) { ASSERT(Pte[Index].Soft.State == TargetState); #ifndef _WIN64
NewPte.Hard.PageLow = *Page++; #else
NewPte.Hard.PageLow = (ULONG)*Page; NewPte.Hard.PageHigh = (ULONG)(*Page++ >> 20); #endif
Pte[Index].AsUlong = NewPte.AsUlong; ASSERT(Pte[Index].Hard.Valid == 1); }
//
// We have filled in all the PTEs invalidate the caches on all processors.
//
KeInvalidateAllCaches(); NewPte.AsUlong = *(volatile ULONG *)&Pte[PageCount-1].AsUlong;
MemoryBase->QuadPart = Range->MemoryBase.QuadPart + (Pte - StartPte) * PAGE_SIZE;
DisplayStatus(0x60); return(STATUS_SUCCESS); }
//
// Function Name: AgpUnMapMemory()
//
// Description:
// Unmaps previously mapped memory in the GART.
//
// Parameters:
// AgpContext - Supplies the AGP context.
// Range - Supplies the AGP range that the memory should be mapped into.
// NumberOfPages - Supplies the number of pages in the range to be freed.
// OffsetInPages - Supplies the offset into the range where the freeing
// should begin.
//
// Return:
// STATUS_SUCCESS.
//
NTSTATUS AgpUnMapMemory( IN PAGP_AMD_EXTENSION AgpContext, IN PAGP_RANGE AgpRange, IN ULONG NumberOfPages, IN ULONG OffsetInPages ) { ULONG Index; PGART_PTE Pte, StartPte; PGART_PTE LastChanged=NULL; ULONG NewState;
PAGED_CODE();
ASSERT(OffsetInPages + NumberOfPages <= AgpRange->NumberOfPages);
StartPte = AgpRange->Context; Pte = &StartPte[OffsetInPages];
if (AgpRange->Type == MmNonCached) { NewState = GART_ENTRY_RESERVED_UC; } else if (AgpRange->Type == MmWriteCombined) { NewState = GART_ENTRY_RESERVED_WC; } else { NewState = GART_ENTRY_RESERVED_CC; }
for (Index = 0;Index < NumberOfPages; Index++) { if (Pte[Index].Hard.Valid) { Pte[Index].Soft.State = NewState; LastChanged = &Pte[Index]; } else { //
// This page is not mapped, just skip it.
//
AGPLOG(AGP_NOISE, ("AgpUnMapMemory - PTE %08lx (%08lx) not mapped\n", Pte, Pte[Index].AsUlong)); ASSERT(Pte[Index].Soft.State == NewState); } }
//
// We have invalidated all the PTEs. Read back the last one we wrote
// in order to flush the write buffers.
//
KeInvalidateAllCaches(); if (LastChanged != NULL) { ULONG Temp; Temp = *(volatile ULONG *)(&LastChanged->AsUlong); }
DisplayStatus(0x70); return(STATUS_SUCCESS); }
//
// Function Name: AgpAMDFlushPages()
//
// Description:
// Flushes specified pages in the GART.
//
// Parameters:
// AgpContext - Supplies the AGP context.
// Mdl - Supplies the MDL describing the physical pages to be flushed.
//
// Return:
// None.
//
NTSTATUS AgpAMDFlushPages( IN PAGP_AMD_EXTENSION AgpContext, IN PMDL Mdl ) { ULONG CacheInvalidate = 1; ULONG PTEerrorClear = PTE_ERROR_BIT;
WriteAMDConfig(AgpHammerSlotID, &CacheInvalidate, GART_CONTROL_OFFSET, sizeof(CacheInvalidate));
do { // wait until cache invalidate bit resets
ReadAMDConfig(AgpHammerSlotID, &CacheInvalidate, GART_CONTROL_OFFSET, sizeof(CacheInvalidate)); if (CacheInvalidate & PTE_ERROR_BIT) { AGPLOG(AGP_NOISE, ("AgpAMDFlushPages - PTE Error set\n")); WriteAMDConfig(AgpHammerSlotID, &PTEerrorClear, GART_CONTROL_OFFSET, sizeof(PTEerrorClear)); }
} while (CacheInvalidate & CACHE_INVALIDATE_BIT);
DisplayStatus(0x80);
return STATUS_SUCCESS; }
//
// Function Name: AgpInitializeChipset()
//
// Description:
// Initializes parameters in the Northbridge for AGP.
//
// Parameters:
// AgpContext - Supplies the AGP context.
//
// Return:
// None.
//
void AgpInitializeChipset( IN PAGP_AMD_EXTENSION AgpContext ) { ULONG ConfigData;
// Update GART Directory Base Address Registers
WriteAMDConfig(AgpLokarSlotID, &AgpContext->GartPhysical.LowPart, AMD_GART_POINTER_LOW_OFFSET, sizeof(AgpContext->GartPhysical.LowPart)); WriteAMDConfig(AgpLokarSlotID, &AgpContext->GartPhysical.HighPart, AMD_GART_POINTER_HIGH_OFFSET, sizeof(AgpContext->GartPhysical.HighPart)); ConfigData = (AgpContext->GartPhysical.LowPart >> 8); ConfigData |= (AgpContext->GartPhysical.HighPart << 24); WriteAMDConfig(AgpHammerSlotID, &ConfigData, GART_TABLE_OFFSET, sizeof(ConfigData));
// Enable GART
ReadAMDConfig(AgpHammerSlotID, &ConfigData, GART_APSIZE_OFFSET, sizeof(ConfigData)); ConfigData |= GART_ENABLE_BIT; WriteAMDConfig(AgpHammerSlotID, &ConfigData, GART_APSIZE_OFFSET, sizeof(ConfigData)); }
//
// Function Name: AgpAMDFindRangeInGart()
//
// Description:
// Finds a contiguous range in the GART. This routine can
// search either from the beginning of the GART forwards or
// the end of the GART backwards.
//
// Parameters:
// StartPte - Supplies the first GART PTE to search.
// EndPte - Supplies the last GART PTE to search.
// Length - Supplies the number of contiguous free entries to search for.
// SearchBackward - TRUE indicates that the search should begin
// at EndIndex and search backwards. FALSE indicates that the
// search should begin at StartIndex and search forwards
// SearchState - Supplies the PTE state to look for.
// GartPte - Returns pointer to GART table entry if range is found.
//
// Return:
// STATUS_SUCCESS if a suitable range is found.
// Otherwise STATUS_INSUFFICIENT_RESOURCES if no suitable range exists.
//
NTSTATUS AgpAMDFindRangeInGart( IN PGART_PTE StartPte, IN PGART_PTE EndPte, IN ULONG Length, IN BOOLEAN SearchBackward, IN ULONG SearchState, OUT PGART_PTE *GartPte ) { PGART_PTE Current, Last; LONG Delta; ULONG Found;
PAGED_CODE();
ASSERT(EndPte >= StartPte); ASSERT(Length <= (ULONG)(EndPte - StartPte + 1)); ASSERT(Length != 0);
if (SearchBackward) { Current = EndPte; Last = StartPte-1; Delta = -1; } else { Current = StartPte; Last = EndPte+1; Delta = 1; }
Found = 0;
while (Current != Last) { if (Current->Soft.State == SearchState) { if (++Found == Length) { //
// A suitable range was found, return it
//
if (SearchBackward) { *GartPte = Current; return(STATUS_SUCCESS); } else { *GartPte = Current - Length + 1; return(STATUS_SUCCESS); } } } else { Found = 0; } Current += Delta; }
//
// A suitable range was not found.
//
*GartPte = NULL; return(STATUS_INSUFFICIENT_RESOURCES); }
//
// Function Name: AgpFindFreeRun()
//
// Description:
// Finds the first contiguous run of free pages in the specified
// part of the reserved range.
//
// Parameters:
// AgpContext - Supplies the AGP context.
// AgpRange - Supplies the AGP range.
// NumberOfPages - Supplies the size of the region to be searched for free pages.
// OffsetInPages - Supplies the start of the region to be searched for free pages.
// FreePages - Returns the length of the first contiguous run of free pages.
// FreeOffset - Returns the start of the first contiguous run of free pages.
//
// Return:
// None. FreePages == 0 if there are no free pages in the specified range.
//
VOID AgpFindFreeRun( IN PVOID AgpContext, IN PAGP_RANGE AgpRange, IN ULONG NumberOfPages, IN ULONG OffsetInPages, OUT ULONG *FreePages, OUT ULONG *FreeOffset ) { PGART_PTE Pte; ULONG Index; Pte = (PGART_PTE)(AgpRange->Context) + OffsetInPages;
//
// Find the first free PTE
//
for (Index = 0; Index < NumberOfPages; Index++) { if (Pte[Index].Hard.Valid == 0) { //
// Found a free PTE, count the contiguous ones.
//
*FreeOffset = Index + OffsetInPages; *FreePages = 0; while ((Index<NumberOfPages) && (Pte[Index].Hard.Valid == 0)) { *FreePages += 1; ++Index; } return; } }
//
// No free PTEs in the specified range
//
*FreePages = 0; return;
}
//
// Function Name: AgpGetMappedPages()
//
// Description:
// Returns the list of physical pages mapped into the specified
// range in the GART.
//
// Parameters:
// AgpContext - Supplies the AGP context.
// AgpRange - Supplies the AGP range.
// NumberOfPages - Supplies the number of pages to be returned.
// OffsetInPages - Supplies the start of the region.
// Mdl - Returns the list of physical pages mapped in the specified range.
//
// Return:
// None.
//
VOID AgpGetMappedPages( IN PVOID AgpContext, IN PAGP_RANGE AgpRange, IN ULONG NumberOfPages, IN ULONG OffsetInPages, OUT PMDL Mdl ) { PGART_PTE Pte; PPFN_NUMBER Pages; ULONG Index; ASSERT(NumberOfPages * PAGE_SIZE == Mdl->ByteCount);
Pages = (PPFN_NUMBER)(Mdl + 1); Pte = (PGART_PTE)(AgpRange->Context) + OffsetInPages;
for (Index = 0; Index < NumberOfPages; Index++) { ASSERT(Pte[Index].Hard.Valid == 1); Pages[Index] = Pte[Index].Hard.PageLow; }
return; }
NTSTATUS AgpSpecialTarget( IN IN PAGP_AMD_EXTENSION AgpContext, IN ULONGLONG DeviceFlags ) /*++
Routine Description:
This routine makes "special" tweaks to the AGP chipset
Arguments:
AgpContext - Supplies the AGP context
DeviceFlags - Flags indicating what tweaks to perform
Return Value:
STATUS_SUCCESS, or error
--*/ { NTSTATUS Status;
//
// Should we change the AGP rate?
//
if (DeviceFlags & AGP_FLAG_SPECIAL_RESERVE) {
Status = AgpAMDSetRate(AgpContext, (ULONG)((DeviceFlags & AGP_FLAG_SPECIAL_RESERVE) >> AGP_FLAG_SET_RATE_SHIFT)); if (!NT_SUCCESS(Status)) { return Status; } }
//
// Add more tweaks here...
//
//
// Remember Special Target settings so we can reprogram
// them if the chip is powered off
//
AgpContext->SpecialTarget |= DeviceFlags;
return STATUS_SUCCESS; }
NTSTATUS AgpAMDSetRate( IN IN PAGP_AMD_EXTENSION AgpContext, IN ULONG AgpRate ) /*++
Routine Description:
This routine sets the AGP rate
Arguments:
AgpContext - Supplies the AGP context
AgpRate - Rate to set
note: this routine assumes that AGP has already been enabled, and that whatever rate we've been asked to set is supported by master
Return Value:
STATUS_SUCCESS, or error status
--*/ { NTSTATUS Status; ULONG TargetEnable; ULONG MasterEnable; PCI_AGP_CAPABILITY TargetCap; PCI_AGP_CAPABILITY MasterCap; BOOLEAN ReverseInit;
//
// Read capabilities
//
Status = AgpLibGetPciDeviceCapability(AGP_GART_BUS_ID, AgpLokarSlotID, &TargetCap);
if (!NT_SUCCESS(Status)) { AGPLOG(AGP_WARNING, ("AGPAMDSetRate: AgpLibGetPciDeviceCapability " "failed %08lx\n", Status)); return Status; }
Status = AgpLibGetMasterCapability(AgpContext, &MasterCap);
if (!NT_SUCCESS(Status)) { AGPLOG(AGP_WARNING, ("AGPAMDSetRate: AgpLibGetMasterCapability " "failed %08lx\n", Status)); return Status; }
//
// Verify the requested rate is supported by both master and target
//
if (!(AgpRate & TargetCap.AGPStatus.Rate & MasterCap.AGPStatus.Rate)) { return STATUS_INVALID_PARAMETER; }
//
// Disable AGP while the pull the rug out from underneath
//
TargetEnable = TargetCap.AGPCommand.AGPEnable; TargetCap.AGPCommand.AGPEnable = 0;
Status = AgpLibSetPciDeviceCapability(AGP_GART_BUS_ID, AgpLokarSlotID, &TargetCap); if (!NT_SUCCESS(Status)) { AGPLOG(AGP_WARNING, ("AGPAMDSetRate: AgpLibSetPciDeviceCapability %08lx for " "Target failed %08lx\n", &TargetCap, Status)); return Status; } MasterEnable = MasterCap.AGPCommand.AGPEnable; MasterCap.AGPCommand.AGPEnable = 0;
Status = AgpLibSetMasterCapability(AgpContext, &MasterCap); if (!NT_SUCCESS(Status)) { AGPLOG(AGP_WARNING, ("AGPAMDSetRate: AgpLibSetMasterCapability %08lx failed " "%08lx\n", &MasterCap, Status)); return Status; }
//
// Fire up AGP with new rate
//
ReverseInit = (AgpContext->SpecialTarget & AGP_FLAG_REVERSE_INITIALIZATION) == AGP_FLAG_REVERSE_INITIALIZATION; if (ReverseInit) { MasterCap.AGPStatus.Rate = AgpRate; MasterCap.AGPCommand.AGPEnable = MasterEnable; Status = AgpLibSetMasterCapability(AgpContext, &MasterCap); if (!NT_SUCCESS(Status)) { AGPLOG(AGP_WARNING, ("AGPAMDSetRate: AgpLibSetMasterCapability %08lx failed " "%08lx\n", &MasterCap, Status)); } }
TargetCap.AGPStatus.Rate = AgpRate; TargetCap.AGPCommand.AGPEnable = TargetEnable; Status = AgpLibSetPciDeviceCapability(AGP_GART_BUS_ID, AgpLokarSlotID, &TargetCap); if (!NT_SUCCESS(Status)) { AGPLOG(AGP_WARNING, ("AGPAMDSetRate: AgpLibSetPciDeviceCapability %08lx for " "Target failed %08lx\n", &TargetCap, Status)); return Status; }
if (!ReverseInit) { MasterCap.AGPStatus.Rate = AgpRate; MasterCap.AGPCommand.AGPEnable = MasterEnable; Status = AgpLibSetMasterCapability(AgpContext, &MasterCap); if (!NT_SUCCESS(Status)) { AGPLOG(AGP_WARNING, ("AGPAMDSetRate: AgpLibSetMasterCapability %08lx failed " "%08lx\n", &MasterCap, Status)); } }
return Status; }
|