Leaked source code of windows server 2003
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1241 lines
34 KiB

/*++
Copyright (c) 1997-2002 Microsoft Corporation
Module Name:
gart8x.c
Abstract:
Routines for querying and setting the AMD GART aperture
Author:
John Vert (jvert) 10/30/1997
Revision History:
--*/
/*
******************************************************************************
* Archive File : $Archive: /Drivers/OS/Hammer/AGP/XP/amdagp/Gart8x.c $
*
* $History: Gart8x.c $
*
*
******************************************************************************
*/
#include "amdagp8x.h"
//
// Local function prototypes
//
NTSTATUS
AgpAMDCreateGart(
IN PAGP_AMD_EXTENSION AgpContext,
IN ULONG MinimumPages
);
NTSTATUS
AgpAMDSetRate(
IN PVOID AgpContext,
IN ULONG AgpRate
);
NTSTATUS
AgpAMDFindRangeInGart(
IN PGART_PTE StartPte,
IN PGART_PTE EndPte,
IN ULONG Length,
IN BOOLEAN SearchBackward,
IN ULONG SearchState,
OUT PGART_PTE *GartPte
);
NTSTATUS
AgpAMDFlushPages(
IN PAGP_AMD_EXTENSION AgpContext,
IN PMDL Mdl
);
void
AgpInitializeChipset(
IN PAGP_AMD_EXTENSION AgpContext
);
PAGP_FLUSH_PAGES AgpFlushPages = AgpAMDFlushPages;
#ifdef ALLOC_PRAGMA
#pragma alloc_text(PAGE, AgpDisableAperture)
#pragma alloc_text(PAGE, AgpQueryAperture)
#pragma alloc_text(PAGE, AgpReserveMemory)
#pragma alloc_text(PAGE, AgpReleaseMemory)
#pragma alloc_text(PAGE, AgpAMDCreateGart)
#pragma alloc_text(PAGE, AgpMapMemory)
#pragma alloc_text(PAGE, AgpUnMapMemory)
#pragma alloc_text(PAGE, AgpAMDFindRangeInGart)
#pragma alloc_text(PAGE, AgpFindFreeRun)
#pragma alloc_text(PAGE, AgpGetMappedPages)
#endif
extern ULONG DeviceID;
extern ULONG AgpLokarSlotID;
extern ULONG AgpHammerSlotID;
//
// Function Name: AgpQueryAperture()
//
// Description:
// Queries the current size of the GART aperture.
// Optionally returns the possible GART settings.
//
// Parameters:
// AgpContext - Supplies the AGP context.
// CurrentBase - Returns the current physical address of the GART.
// CurrentSizeInPages - Returns the current GART size.
// ApertureRequirements - if present, returns the possible GART settings.
//
// Return:
// STATUS_SUCCESS on success, otherwise STATUS_UNSUCCESSFUL.
//
NTSTATUS
AgpQueryAperture( IN PAGP_AMD_EXTENSION AgpContext,
OUT PHYSICAL_ADDRESS *CurrentBase,
OUT ULONG *CurrentSizeInPages,
OUT OPTIONAL PIO_RESOURCE_LIST *pApertureRequirements )
{
ULONG ApBase;
ULONG ApSize;
ULONG AgpSizeIndex;
PIO_RESOURCE_LIST Requirements;
ULONG i;
ULONG Length;
PAGED_CODE();
//
// Get the current APBASE and APSIZE settings
//
ReadAMDConfig(AgpLokarSlotID, &ApBase, APBASE_OFFSET, sizeof(ApBase));
ReadAMDConfig(AgpHammerSlotID, &ApSize, GART_APSIZE_OFFSET, sizeof(ApSize));
ASSERT(ApBase != 0);
CurrentBase->QuadPart = ApBase & PCI_ADDRESS_MEMORY_ADDRESS_MASK;
//
// Convert APSIZE into the actual size of the aperture
//
AgpSizeIndex = (ULONG)(ApSize & APH_SIZE_MASK) >> 1;
*CurrentSizeInPages = (0x0001 << (AgpSizeIndex + 25)) / PAGE_SIZE;
//
// Remember the current aperture settings
//
AgpContext->ApertureStart.QuadPart = CurrentBase->QuadPart;
AgpContext->ApertureLength = *CurrentSizeInPages * PAGE_SIZE;
if (pApertureRequirements != NULL) {
//
// Lokar supports 6 different aperture sizes, all must be
// naturally aligned. Start with the largest aperture and
// work downwards so that we get the biggest possible aperture.
//
Requirements = ExAllocatePoolWithTag(PagedPool,
sizeof(IO_RESOURCE_LIST) + (AP_SIZE_COUNT-1)*sizeof(IO_RESOURCE_DESCRIPTOR),
'RpgA');
if (Requirements == NULL) {
return(STATUS_INSUFFICIENT_RESOURCES);
}
Requirements->Version = Requirements->Revision = 1;
Requirements->Count = AP_SIZE_COUNT;
Length = AP_MAX_SIZE;
for (i=0; i<AP_SIZE_COUNT; i++) {
Requirements->Descriptors[i].Option = IO_RESOURCE_ALTERNATIVE;
Requirements->Descriptors[i].Type = CmResourceTypeMemory;
Requirements->Descriptors[i].ShareDisposition = CmResourceShareDeviceExclusive;
Requirements->Descriptors[i].Flags = CM_RESOURCE_MEMORY_READ_WRITE | CM_RESOURCE_MEMORY_PREFETCHABLE;
Requirements->Descriptors[i].u.Memory.Length = Length;
Requirements->Descriptors[i].u.Memory.Alignment = Length;
Requirements->Descriptors[i].u.Memory.MinimumAddress.QuadPart = 0;
Requirements->Descriptors[i].u.Memory.MaximumAddress.QuadPart = (ULONG)-1;
Length = Length/2;
}
*pApertureRequirements = Requirements;
}
return(STATUS_SUCCESS);
}
//
// Function Name: AgpSetAperture()
//
// Description:
// Sets the GART aperture to the supplied settings.
//
// Parameters:
// AgpContext - Supplies the AGP context.
// NewBase - Supplies the new physical memory base for the GART.
// NewSizeInPages - Supplies the new size for the GART.
//
// Return:
// STATUS_SUCCESS on success, otherwise STATUS_INVALID_PARAMETER.
//
NTSTATUS
AgpSetAperture( IN PAGP_AMD_EXTENSION AgpContext,
IN PHYSICAL_ADDRESS NewBase,
IN ULONG NewSizeInPages )
{
ULONG AphSizeNew, AplSizeNew, ApSizeOld;
ULONG ApBase;
//
// Reprogram Special Target settings when the chip
// is powered off, but ignore rate changes as those were already
// applied during MasterInit
//
if (AgpContext->SpecialTarget & ~AGP_FLAG_SPECIAL_RESERVE) {
AgpSpecialTarget(AgpContext,
AgpContext->SpecialTarget &
~AGP_FLAG_SPECIAL_RESERVE);
}
//
// If the new settings match the current settings, leave everything
// alone.
//
if ((NewBase.QuadPart == AgpContext->ApertureStart.QuadPart) &&
(NewSizeInPages == AgpContext->ApertureLength / PAGE_SIZE)) {
// Re-initialize when the chip is powered off
if (AgpContext->Gart != NULL) {
AgpInitializeChipset(AgpContext);
}
return(STATUS_SUCCESS);
}
//
// Figure out the new APSIZE setting, make sure it is valid.
//
switch (NewSizeInPages) {
case 32 * 1024 * 1024 / PAGE_SIZE:
AphSizeNew = APH_SIZE_32MB;
AplSizeNew = APL_SIZE_32MB;
break;
case 64 * 1024 * 1024 / PAGE_SIZE:
AphSizeNew = APH_SIZE_64MB;
AplSizeNew = APL_SIZE_64MB;
break;
case 128 * 1024 * 1024 / PAGE_SIZE:
AphSizeNew = APH_SIZE_128MB;
AplSizeNew = APL_SIZE_128MB;
break;
case 256 * 1024 * 1024 / PAGE_SIZE:
AphSizeNew = APH_SIZE_256MB;
AplSizeNew = APL_SIZE_256MB;
break;
case 512 * 1024 * 1024 / PAGE_SIZE:
AphSizeNew = APH_SIZE_512MB;
AplSizeNew = APL_SIZE_512MB;
break;
case 1024 * 1024 * 1024 / PAGE_SIZE:
AphSizeNew = APH_SIZE_1024MB;
AplSizeNew = APL_SIZE_1024MB;
break;
default:
AGPLOG(AGP_CRITICAL,
("AgpSetAperture - invalid GART size of %lx pages specified, aperture at %I64X.\n",
NewSizeInPages,
NewBase.QuadPart));
ASSERT(FALSE);
return(STATUS_INVALID_PARAMETER);
}
//
// Make sure the supplied size is aligned on the appropriate boundary.
//
ASSERT(NewBase.HighPart == 0);
ASSERT((NewBase.QuadPart & ((NewSizeInPages * PAGE_SIZE) - 1)) == 0);
if ((NewBase.QuadPart & ((NewSizeInPages * PAGE_SIZE) - 1)) != 0 ) {
AGPLOG(AGP_CRITICAL,
("AgpSetAperture - invalid base %I64X specified for GART aperture of %lx pages\n",
NewBase.QuadPart,
NewSizeInPages));
return(STATUS_INVALID_PARAMETER);
}
//
// Need to reset the hardware to match the supplied settings
//
// Write APSIZE first, as this will enable the correct bits in APBASE that need to
// be written next.
//
ReadAMDConfig(AgpHammerSlotID, &ApSizeOld, GART_APSIZE_OFFSET, sizeof(ApSizeOld));
ApSizeOld &= (~APH_SIZE_MASK);
AphSizeNew |= ApSizeOld;
WriteAMDConfig(AgpHammerSlotID, &AphSizeNew, GART_APSIZE_OFFSET, sizeof(AphSizeNew));
ReadAMDConfig(AgpLokarSlotID, &ApSizeOld, AMD_APERTURE_SIZE_OFFSET, sizeof(ApSizeOld));
ApSizeOld &= (~APL_SIZE_MASK);
AplSizeNew |= ApSizeOld;
WriteAMDConfig(AgpLokarSlotID, &AplSizeNew, AMD_APERTURE_SIZE_OFFSET, sizeof(AplSizeNew));
//
// Now we can update APBASE
//
ApBase = NewBase.LowPart & APBASE_ADDRESS_MASK;
WriteAMDConfig(AgpLokarSlotID, &ApBase, APBASE_OFFSET, sizeof(ApBase));
ApBase >>= GART_APBASE_SHIFT;
WriteAMDConfig(AgpHammerSlotID, &ApBase, GART_APBASE_OFFSET, sizeof(ApBase));
#ifdef DEBUG2
//
// Read back what we wrote, make sure it worked
//
{
ULONG DbgBase;
UCHAR DbgSize;
ReadAMDConfig(AgpHammerSlotID, &DbgSize, GART_APSIZE_OFFSET, sizeof(DbgSize));
ReadAMDConfig(AgpHammerSlotID, &DbgBase, GART_APBASE_OFFSET, sizeof(DbgBase));
ASSERT(DbgSize == AphSizeNew);
ASSERT(DbgBase == ApBase);
}
#endif
//
// Update our extension to reflect the new GART setting
//
AgpContext->ApertureStart = NewBase;
AgpContext->ApertureLength = NewSizeInPages * PAGE_SIZE;
//
// If the GART has been allocated, rewrite the GART Directory Base Address
//
if (AgpContext->Gart != NULL) {
AgpInitializeChipset(AgpContext);
}
return(STATUS_SUCCESS);
}
//
// Function Name: AgpDisableAperture()
//
// Description:
// Disables the GART aperture so that this resource is available
// for other devices.
//
// Parameters:
// AgpContext - Supplies the AGP context.
//
// Return:
// None.
//
VOID
AgpDisableAperture( IN PAGP_AMD_EXTENSION AgpContext )
{
ULONG ConfigData;
//
// Disable the aperture
//
ReadAMDConfig(AgpHammerSlotID, &ConfigData, GART_APSIZE_OFFSET, sizeof(ConfigData));
ConfigData &= ~GART_ENABLE_BIT;
WriteAMDConfig(AgpHammerSlotID, &ConfigData, GART_APSIZE_OFFSET, sizeof(ConfigData));
//
// Nuke the Gart! (It's meaningless now...)
//
if (AgpContext->Gart != NULL) {
MmFreeContiguousMemory(AgpContext->Gart);
AgpContext->Gart = NULL;
AgpContext->GartLength = 0;
}
}
//
// Function Name: AgpReserveMemory()
//
// Description:
// Reserves a range of memory in the GART.
//
// Parameters:
// AgpContext - Supplies the AGP context.
// Range - Supplies the AGP_RANGE structure.
// AGPLIB will have filled in NumberOfPages and Type.
// This routine will fill in MemoryBase and Context.
//
// Return:
// STATUS_SUCCESS on success, otherwise NTSTATUS.
//
NTSTATUS
AgpReserveMemory( IN PAGP_AMD_EXTENSION AgpContext,
IN OUT AGP_RANGE *Range )
{
ULONG Index;
ULONG NewState;
NTSTATUS Status;
PGART_PTE FoundRange;
BOOLEAN Backwards;
PAGED_CODE();
ASSERT((Range->Type == MmNonCached) ||
(Range->Type == MmWriteCombined) ||
(Range->Type == MmHardwareCoherentCached));
if (Range->NumberOfPages > (AgpContext->ApertureLength / PAGE_SIZE)) {
return STATUS_INSUFFICIENT_RESOURCES;
}
//
// If we have not allocated our GART yet, now is the time to do so
//
if (AgpContext->Gart == NULL) {
ASSERT(AgpContext->GartLength == 0);
Status = AgpAMDCreateGart(AgpContext, Range->NumberOfPages);
if (!NT_SUCCESS(Status)) {
AGPLOG(AGP_CRITICAL,
("AgpAMDCreateGart failed %08lx to create GART of size %lx\n",
Status,
AgpContext->ApertureLength));
return(Status);
}
}
ASSERT(AgpContext->GartLength != 0);
//
// Now that we have a GART, try and find enough contiguous entries to satisfy
// the request. Requests for uncached memory will scan from high addresses to
// low addresses. Requests for write-combined memory will scan from low addresses
// to high addresses. We will use a first-fit algorithm to try and keep the allocations
// packed and contiguous.
//
Backwards = (Range->Type == MmNonCached) ? TRUE : FALSE;
Status = AgpAMDFindRangeInGart(&AgpContext->Gart[0],
&AgpContext->Gart[(AgpContext->GartLength / sizeof(GART_PTE)) - 1],
Range->NumberOfPages,
Backwards,
GART_ENTRY_FREE,
&FoundRange);
if (!NT_SUCCESS(Status)) {
//
// A big enough chunk was not found.
//
AGPLOG(AGP_CRITICAL,
("AgpReserveMemory - Could not find %d contiguous free pages of type %d in GART at %08lx\n",
Range->NumberOfPages,
Range->Type,
AgpContext->Gart));
//
// This is where we could try and grow the GART
//
return(STATUS_INSUFFICIENT_RESOURCES);
}
AGPLOG(AGP_NOISE,
("AgpReserveMemory - reserved %d pages at GART PTE %08lx\n",
Range->NumberOfPages,
FoundRange));
//
// Set these pages to reserved
//
if (Range->Type == MmNonCached) {
NewState = GART_ENTRY_RESERVED_UC;
} else if (Range->Type == MmWriteCombined) {
NewState = GART_ENTRY_RESERVED_WC;
} else {
NewState = GART_ENTRY_RESERVED_CC;
}
for (Index = 0;Index < Range->NumberOfPages; Index++) {
ASSERT(FoundRange[Index].Soft.State == GART_ENTRY_FREE);
FoundRange[Index].AsUlong = 0;
FoundRange[Index].Soft.State = NewState;
}
Range->MemoryBase.QuadPart = AgpContext->ApertureStart.QuadPart + (FoundRange - &AgpContext->Gart[0]) * PAGE_SIZE;
Range->Context = FoundRange;
ASSERT(Range->MemoryBase.HighPart == 0);
AGPLOG(AGP_NOISE,
("AgpReserveMemory - reserved memory handle %lx at PA %08lx\n",
FoundRange,
Range->MemoryBase.LowPart));
DisplayStatus(0x40);
return(STATUS_SUCCESS);
}
//
// Function Name: AgpReleaseMemory()
//
// Description:
// Releases memory previously reserved with AgpReserveMemory.
//
// Parameters:
// AgpContext - Supplies the AGP context.
// Range - Supplies the range to be released.
//
// Return:
// STATUS_SUCCESS.
//
NTSTATUS
AgpReleaseMemory( IN PAGP_AMD_EXTENSION AgpContext,
IN PAGP_RANGE Range )
{
PGART_PTE Pte;
for (Pte = Range->Context;
Pte < (PGART_PTE)Range->Context + Range->NumberOfPages;
Pte++)
{
//
// Go through and free all the PTEs. None of these should still
// be valid at this point.
//
if (Range->Type == MmNonCached) {
ASSERT(Pte->Soft.State == GART_ENTRY_RESERVED_UC);
} else if (Range->Type == MmWriteCombined) {
ASSERT(Pte->Soft.State == GART_ENTRY_RESERVED_WC);
} else {
ASSERT(Pte->Soft.State == GART_ENTRY_RESERVED_CC);
}
Pte->Soft.State = GART_ENTRY_FREE;
}
Range->MemoryBase.QuadPart = 0;
DisplayStatus(0x50);
return(STATUS_SUCCESS);
}
//
// Function Name: AgpAMDCreateGart()
//
// Description:
// Allocates and initializes an empty GART. The current implementation
// attempts to allocate the entire GART on the first reserve call.
//
// Parameters:
// AgpContext - Supplies the AGP context.
// MinimumPages - Supplies the minimum size (in pages) of the GART
// to be created.
//
// Return:
// STATUS_SUCCESS on success, otherwise NTSTATUS.
//
NTSTATUS
AgpAMDCreateGart( IN PAGP_AMD_EXTENSION AgpContext,
IN ULONG MinimumPages )
{
PGART_PTE Gart;
ULONG GartLength;
PHYSICAL_ADDRESS GartPhysical;
PHYSICAL_ADDRESS HighestPhysical;
PHYSICAL_ADDRESS LowestPhysical;
PHYSICAL_ADDRESS BoundaryPhysical;
LONG PageCount;
LONG Index;
PAGED_CODE();
//
// Try and get a chunk of contiguous memory big enough to map the
// entire aperture from the favored memory range.
//
GartLength = BYTES_TO_PAGES(AgpContext->ApertureLength) * sizeof(GART_PTE);
LowestPhysical.QuadPart = 0;
HighestPhysical.QuadPart = 0xFFFFFFFF;
BoundaryPhysical.QuadPart = 0;
Gart = MmAllocateContiguousMemorySpecifyCache(GartLength, LowestPhysical,
HighestPhysical, BoundaryPhysical,
MmNonCached);
if (Gart == NULL) {
AGPLOG(AGP_CRITICAL,
("AgpAMDCreateGart - MmAllocateContiguousMemory %lx failed\n",
GartLength));
return(STATUS_INSUFFICIENT_RESOURCES);
}
//
// We successfully allocated a contiguous chunk of memory.
// It should be page aligned already.
//
ASSERT(((ULONG_PTR)Gart & (PAGE_SIZE-1)) == 0);
//
// Get the physical address.
//
GartPhysical = MmGetPhysicalAddress(Gart);
AGPLOG(AGP_NOISE,
("AgpAMDCreateGart - GART of length %lx created at VA %08lx, PA %08lx\n",
GartLength,
Gart,
GartPhysical.LowPart));
ASSERT(GartPhysical.HighPart == 0);
ASSERT((GartPhysical.LowPart & (PAGE_SIZE-1)) == 0);
//
// Initialize all the PTEs to free
//
PageCount = GartLength / sizeof(GART_PTE);
for (Index = 0;Index < PageCount; Index++) {
Gart[Index].AsUlong = 0;
Gart[Index].Soft.State = GART_ENTRY_FREE;
}
//
// Update our extension to reflect the current state.
//
AgpContext->Gart = Gart;
AgpContext->GartLength = GartLength;
AgpContext->GartPhysical = GartPhysical;
//
// Initialize Registers for AGP operation
//
AgpInitializeChipset(AgpContext);
DisplayStatus(0x30);
return(STATUS_SUCCESS);
}
//
// Function Name: AgpMapMemory()
//
// Description:
// Maps physical memory into the GART somewhere in the specified range.
//
// Parameters:
// AgpContext - Supplies the AGP context.
// Range - Supplies the AGP range that the memory should be mapped into.
// Mdl - Supplies the MDL describing the physical pages to be mapped.
// OffsetInPages - Supplies the offset into the reserved range where the
// mapping should begin.
// MemoryBase - Returns the physical memory in the aperture where the
// pages were mapped.
//
// Return:
// STATUS_SUCCESS on success, otherwise STATUS_INSUFFICIENT_RESOURCES.
//
NTSTATUS
AgpMapMemory( IN PAGP_AMD_EXTENSION AgpContext,
IN PAGP_RANGE Range,
IN PMDL Mdl,
IN ULONG OffsetInPages,
OUT PHYSICAL_ADDRESS *MemoryBase )
{
ULONG PageCount, Index;
ULONG TargetState;
PPFN_NUMBER Page;
BOOLEAN Backwards;
GART_PTE NewPte;
PGART_PTE Pte, StartPte;
PAGED_CODE();
ASSERT(Mdl->Next == NULL);
StartPte = Range->Context;
PageCount = BYTES_TO_PAGES(Mdl->ByteCount);
ASSERT(PageCount + OffsetInPages <= Range->NumberOfPages);
ASSERT(PageCount > 0);
if (Range->Type == MmNonCached) {
TargetState = GART_ENTRY_RESERVED_UC;
} else if (Range->Type == MmWriteCombined) {
TargetState = GART_ENTRY_RESERVED_WC;
} else {
TargetState = GART_ENTRY_RESERVED_CC;
}
Pte = StartPte + OffsetInPages;
//
// We have a suitable range, now fill it in with the supplied MDL.
//
NewPte.AsUlong = 0;
if (Range->Type == MmNonCached) {
NewPte.Soft.State = GART_ENTRY_VALID_UC;
} else if (Range->Type == MmWriteCombined) {
NewPte.Soft.State = GART_ENTRY_VALID_WC;
} else {
NewPte.Soft.State = GART_ENTRY_VALID_CC;
}
Page = (PPFN_NUMBER)(Mdl + 1);
AGPLOG(AGP_NOISE,
("AgpMapMemory - mapped %d pages at Page %08lx\n",
PageCount,
*Page));
for (Index = 0;Index < PageCount; Index++) {
ASSERT(Pte[Index].Soft.State == TargetState);
#ifndef _WIN64
NewPte.Hard.PageLow = *Page++;
#else
NewPte.Hard.PageLow = (ULONG)*Page;
NewPte.Hard.PageHigh = (ULONG)(*Page++ >> 20);
#endif
Pte[Index].AsUlong = NewPte.AsUlong;
ASSERT(Pte[Index].Hard.Valid == 1);
}
//
// We have filled in all the PTEs invalidate the caches on all processors.
//
KeInvalidateAllCaches();
NewPte.AsUlong = *(volatile ULONG *)&Pte[PageCount-1].AsUlong;
MemoryBase->QuadPart = Range->MemoryBase.QuadPart + (Pte - StartPte) * PAGE_SIZE;
DisplayStatus(0x60);
return(STATUS_SUCCESS);
}
//
// Function Name: AgpUnMapMemory()
//
// Description:
// Unmaps previously mapped memory in the GART.
//
// Parameters:
// AgpContext - Supplies the AGP context.
// Range - Supplies the AGP range that the memory should be mapped into.
// NumberOfPages - Supplies the number of pages in the range to be freed.
// OffsetInPages - Supplies the offset into the range where the freeing
// should begin.
//
// Return:
// STATUS_SUCCESS.
//
NTSTATUS
AgpUnMapMemory( IN PAGP_AMD_EXTENSION AgpContext,
IN PAGP_RANGE AgpRange,
IN ULONG NumberOfPages,
IN ULONG OffsetInPages )
{
ULONG Index;
PGART_PTE Pte, StartPte;
PGART_PTE LastChanged=NULL;
ULONG NewState;
PAGED_CODE();
ASSERT(OffsetInPages + NumberOfPages <= AgpRange->NumberOfPages);
StartPte = AgpRange->Context;
Pte = &StartPte[OffsetInPages];
if (AgpRange->Type == MmNonCached) {
NewState = GART_ENTRY_RESERVED_UC;
} else if (AgpRange->Type == MmWriteCombined) {
NewState = GART_ENTRY_RESERVED_WC;
} else {
NewState = GART_ENTRY_RESERVED_CC;
}
for (Index = 0;Index < NumberOfPages; Index++) {
if (Pte[Index].Hard.Valid) {
Pte[Index].Soft.State = NewState;
LastChanged = &Pte[Index];
} else {
//
// This page is not mapped, just skip it.
//
AGPLOG(AGP_NOISE,
("AgpUnMapMemory - PTE %08lx (%08lx) not mapped\n",
Pte,
Pte[Index].AsUlong));
ASSERT(Pte[Index].Soft.State == NewState);
}
}
//
// We have invalidated all the PTEs. Read back the last one we wrote
// in order to flush the write buffers.
//
KeInvalidateAllCaches();
if (LastChanged != NULL) {
ULONG Temp;
Temp = *(volatile ULONG *)(&LastChanged->AsUlong);
}
DisplayStatus(0x70);
return(STATUS_SUCCESS);
}
//
// Function Name: AgpAMDFlushPages()
//
// Description:
// Flushes specified pages in the GART.
//
// Parameters:
// AgpContext - Supplies the AGP context.
// Mdl - Supplies the MDL describing the physical pages to be flushed.
//
// Return:
// None.
//
NTSTATUS
AgpAMDFlushPages( IN PAGP_AMD_EXTENSION AgpContext,
IN PMDL Mdl )
{
ULONG CacheInvalidate = 1;
ULONG PTEerrorClear = PTE_ERROR_BIT;
WriteAMDConfig(AgpHammerSlotID, &CacheInvalidate, GART_CONTROL_OFFSET, sizeof(CacheInvalidate));
do { // wait until cache invalidate bit resets
ReadAMDConfig(AgpHammerSlotID, &CacheInvalidate, GART_CONTROL_OFFSET, sizeof(CacheInvalidate));
if (CacheInvalidate & PTE_ERROR_BIT)
{
AGPLOG(AGP_NOISE,
("AgpAMDFlushPages - PTE Error set\n"));
WriteAMDConfig(AgpHammerSlotID, &PTEerrorClear, GART_CONTROL_OFFSET, sizeof(PTEerrorClear));
}
} while (CacheInvalidate & CACHE_INVALIDATE_BIT);
DisplayStatus(0x80);
return STATUS_SUCCESS;
}
//
// Function Name: AgpInitializeChipset()
//
// Description:
// Initializes parameters in the Northbridge for AGP.
//
// Parameters:
// AgpContext - Supplies the AGP context.
//
// Return:
// None.
//
void
AgpInitializeChipset( IN PAGP_AMD_EXTENSION AgpContext )
{
ULONG ConfigData;
// Update GART Directory Base Address Registers
WriteAMDConfig(AgpLokarSlotID, &AgpContext->GartPhysical.LowPart,
AMD_GART_POINTER_LOW_OFFSET, sizeof(AgpContext->GartPhysical.LowPart));
WriteAMDConfig(AgpLokarSlotID, &AgpContext->GartPhysical.HighPart,
AMD_GART_POINTER_HIGH_OFFSET, sizeof(AgpContext->GartPhysical.HighPart));
ConfigData = (AgpContext->GartPhysical.LowPart >> 8);
ConfigData |= (AgpContext->GartPhysical.HighPart << 24);
WriteAMDConfig(AgpHammerSlotID, &ConfigData, GART_TABLE_OFFSET, sizeof(ConfigData));
// Enable GART
ReadAMDConfig(AgpHammerSlotID, &ConfigData, GART_APSIZE_OFFSET, sizeof(ConfigData));
ConfigData |= GART_ENABLE_BIT;
WriteAMDConfig(AgpHammerSlotID, &ConfigData, GART_APSIZE_OFFSET, sizeof(ConfigData));
}
//
// Function Name: AgpAMDFindRangeInGart()
//
// Description:
// Finds a contiguous range in the GART. This routine can
// search either from the beginning of the GART forwards or
// the end of the GART backwards.
//
// Parameters:
// StartPte - Supplies the first GART PTE to search.
// EndPte - Supplies the last GART PTE to search.
// Length - Supplies the number of contiguous free entries to search for.
// SearchBackward - TRUE indicates that the search should begin
// at EndIndex and search backwards. FALSE indicates that the
// search should begin at StartIndex and search forwards
// SearchState - Supplies the PTE state to look for.
// GartPte - Returns pointer to GART table entry if range is found.
//
// Return:
// STATUS_SUCCESS if a suitable range is found.
// Otherwise STATUS_INSUFFICIENT_RESOURCES if no suitable range exists.
//
NTSTATUS
AgpAMDFindRangeInGart( IN PGART_PTE StartPte,
IN PGART_PTE EndPte,
IN ULONG Length,
IN BOOLEAN SearchBackward,
IN ULONG SearchState,
OUT PGART_PTE *GartPte )
{
PGART_PTE Current, Last;
LONG Delta;
ULONG Found;
PAGED_CODE();
ASSERT(EndPte >= StartPte);
ASSERT(Length <= (ULONG)(EndPte - StartPte + 1));
ASSERT(Length != 0);
if (SearchBackward) {
Current = EndPte;
Last = StartPte-1;
Delta = -1;
} else {
Current = StartPte;
Last = EndPte+1;
Delta = 1;
}
Found = 0;
while (Current != Last) {
if (Current->Soft.State == SearchState) {
if (++Found == Length) {
//
// A suitable range was found, return it
//
if (SearchBackward) {
*GartPte = Current;
return(STATUS_SUCCESS);
} else {
*GartPte = Current - Length + 1;
return(STATUS_SUCCESS);
}
}
} else {
Found = 0;
}
Current += Delta;
}
//
// A suitable range was not found.
//
*GartPte = NULL;
return(STATUS_INSUFFICIENT_RESOURCES);
}
//
// Function Name: AgpFindFreeRun()
//
// Description:
// Finds the first contiguous run of free pages in the specified
// part of the reserved range.
//
// Parameters:
// AgpContext - Supplies the AGP context.
// AgpRange - Supplies the AGP range.
// NumberOfPages - Supplies the size of the region to be searched for free pages.
// OffsetInPages - Supplies the start of the region to be searched for free pages.
// FreePages - Returns the length of the first contiguous run of free pages.
// FreeOffset - Returns the start of the first contiguous run of free pages.
//
// Return:
// None. FreePages == 0 if there are no free pages in the specified range.
//
VOID
AgpFindFreeRun( IN PVOID AgpContext,
IN PAGP_RANGE AgpRange,
IN ULONG NumberOfPages,
IN ULONG OffsetInPages,
OUT ULONG *FreePages,
OUT ULONG *FreeOffset )
{
PGART_PTE Pte;
ULONG Index;
Pte = (PGART_PTE)(AgpRange->Context) + OffsetInPages;
//
// Find the first free PTE
//
for (Index = 0; Index < NumberOfPages; Index++) {
if (Pte[Index].Hard.Valid == 0) {
//
// Found a free PTE, count the contiguous ones.
//
*FreeOffset = Index + OffsetInPages;
*FreePages = 0;
while ((Index<NumberOfPages) && (Pte[Index].Hard.Valid == 0)) {
*FreePages += 1;
++Index;
}
return;
}
}
//
// No free PTEs in the specified range
//
*FreePages = 0;
return;
}
//
// Function Name: AgpGetMappedPages()
//
// Description:
// Returns the list of physical pages mapped into the specified
// range in the GART.
//
// Parameters:
// AgpContext - Supplies the AGP context.
// AgpRange - Supplies the AGP range.
// NumberOfPages - Supplies the number of pages to be returned.
// OffsetInPages - Supplies the start of the region.
// Mdl - Returns the list of physical pages mapped in the specified range.
//
// Return:
// None.
//
VOID
AgpGetMappedPages( IN PVOID AgpContext,
IN PAGP_RANGE AgpRange,
IN ULONG NumberOfPages,
IN ULONG OffsetInPages,
OUT PMDL Mdl )
{
PGART_PTE Pte;
PPFN_NUMBER Pages;
ULONG Index;
ASSERT(NumberOfPages * PAGE_SIZE == Mdl->ByteCount);
Pages = (PPFN_NUMBER)(Mdl + 1);
Pte = (PGART_PTE)(AgpRange->Context) + OffsetInPages;
for (Index = 0; Index < NumberOfPages; Index++) {
ASSERT(Pte[Index].Hard.Valid == 1);
Pages[Index] = Pte[Index].Hard.PageLow;
}
return;
}
NTSTATUS
AgpSpecialTarget(
IN IN PAGP_AMD_EXTENSION AgpContext,
IN ULONGLONG DeviceFlags
)
/*++
Routine Description:
This routine makes "special" tweaks to the AGP chipset
Arguments:
AgpContext - Supplies the AGP context
DeviceFlags - Flags indicating what tweaks to perform
Return Value:
STATUS_SUCCESS, or error
--*/
{
NTSTATUS Status;
//
// Should we change the AGP rate?
//
if (DeviceFlags & AGP_FLAG_SPECIAL_RESERVE) {
Status = AgpAMDSetRate(AgpContext,
(ULONG)((DeviceFlags & AGP_FLAG_SPECIAL_RESERVE)
>> AGP_FLAG_SET_RATE_SHIFT));
if (!NT_SUCCESS(Status)) {
return Status;
}
}
//
// Add more tweaks here...
//
//
// Remember Special Target settings so we can reprogram
// them if the chip is powered off
//
AgpContext->SpecialTarget |= DeviceFlags;
return STATUS_SUCCESS;
}
NTSTATUS
AgpAMDSetRate(
IN IN PAGP_AMD_EXTENSION AgpContext,
IN ULONG AgpRate
)
/*++
Routine Description:
This routine sets the AGP rate
Arguments:
AgpContext - Supplies the AGP context
AgpRate - Rate to set
note: this routine assumes that AGP has already been enabled, and that
whatever rate we've been asked to set is supported by master
Return Value:
STATUS_SUCCESS, or error status
--*/
{
NTSTATUS Status;
ULONG TargetEnable;
ULONG MasterEnable;
PCI_AGP_CAPABILITY TargetCap;
PCI_AGP_CAPABILITY MasterCap;
BOOLEAN ReverseInit;
//
// Read capabilities
//
Status = AgpLibGetPciDeviceCapability(AGP_GART_BUS_ID, AgpLokarSlotID, &TargetCap);
if (!NT_SUCCESS(Status)) {
AGPLOG(AGP_WARNING, ("AGPAMDSetRate: AgpLibGetPciDeviceCapability "
"failed %08lx\n", Status));
return Status;
}
Status = AgpLibGetMasterCapability(AgpContext, &MasterCap);
if (!NT_SUCCESS(Status)) {
AGPLOG(AGP_WARNING, ("AGPAMDSetRate: AgpLibGetMasterCapability "
"failed %08lx\n", Status));
return Status;
}
//
// Verify the requested rate is supported by both master and target
//
if (!(AgpRate & TargetCap.AGPStatus.Rate & MasterCap.AGPStatus.Rate)) {
return STATUS_INVALID_PARAMETER;
}
//
// Disable AGP while the pull the rug out from underneath
//
TargetEnable = TargetCap.AGPCommand.AGPEnable;
TargetCap.AGPCommand.AGPEnable = 0;
Status = AgpLibSetPciDeviceCapability(AGP_GART_BUS_ID, AgpLokarSlotID, &TargetCap);
if (!NT_SUCCESS(Status)) {
AGPLOG(AGP_WARNING,
("AGPAMDSetRate: AgpLibSetPciDeviceCapability %08lx for "
"Target failed %08lx\n",
&TargetCap,
Status));
return Status;
}
MasterEnable = MasterCap.AGPCommand.AGPEnable;
MasterCap.AGPCommand.AGPEnable = 0;
Status = AgpLibSetMasterCapability(AgpContext, &MasterCap);
if (!NT_SUCCESS(Status)) {
AGPLOG(AGP_WARNING,
("AGPAMDSetRate: AgpLibSetMasterCapability %08lx failed "
"%08lx\n",
&MasterCap,
Status));
return Status;
}
//
// Fire up AGP with new rate
//
ReverseInit =
(AgpContext->SpecialTarget & AGP_FLAG_REVERSE_INITIALIZATION) ==
AGP_FLAG_REVERSE_INITIALIZATION;
if (ReverseInit) {
MasterCap.AGPStatus.Rate = AgpRate;
MasterCap.AGPCommand.AGPEnable = MasterEnable;
Status = AgpLibSetMasterCapability(AgpContext, &MasterCap);
if (!NT_SUCCESS(Status)) {
AGPLOG(AGP_WARNING,
("AGPAMDSetRate: AgpLibSetMasterCapability %08lx failed "
"%08lx\n",
&MasterCap,
Status));
}
}
TargetCap.AGPStatus.Rate = AgpRate;
TargetCap.AGPCommand.AGPEnable = TargetEnable;
Status = AgpLibSetPciDeviceCapability(AGP_GART_BUS_ID, AgpLokarSlotID, &TargetCap);
if (!NT_SUCCESS(Status)) {
AGPLOG(AGP_WARNING,
("AGPAMDSetRate: AgpLibSetPciDeviceCapability %08lx for "
"Target failed %08lx\n",
&TargetCap,
Status));
return Status;
}
if (!ReverseInit) {
MasterCap.AGPStatus.Rate = AgpRate;
MasterCap.AGPCommand.AGPEnable = MasterEnable;
Status = AgpLibSetMasterCapability(AgpContext, &MasterCap);
if (!NT_SUCCESS(Status)) {
AGPLOG(AGP_WARNING,
("AGPAMDSetRate: AgpLibSetMasterCapability %08lx failed "
"%08lx\n",
&MasterCap,
Status));
}
}
return Status;
}