|
|
/*==========================================================================
* * Copyright (C) 2000-2002 Microsoft Corporation. All Rights Reserved. * * File: Hashing.cpp * Content: This file contains code to support hashing operations on protocol data * * History: * Date By Reason * ==== == ====== * 07/15/02 simonpow Created * ****************************************************************************/
#include "dnproti.h"
/*********************************************************************************************
** Following is standard code for the SHA1 hashing algo. ** Taken from RFC 3174 (http://www.ietf.org/rfc/rfc3174.txt)
** Minor tweaks have been made to reduce unecessary error checking */
#define SHA1HashSize 20
typedef DWORD uint32_t; typedef BYTE uint8_t; typedef int int_least16_t;
/*
* This structure will hold context information for the SHA-1 * hashing operation */ typedef struct SHA1Context { uint32_t Intermediate_Hash[SHA1HashSize/4]; /* Message Digest */ uint32_t Length_Low; /* Message length in bits */ uint32_t Length_High; /* Message length in bits */ int_least16_t Message_Block_Index; /* Index into message block array */ uint8_t Message_Block[64]; /* 512-bit message blocks */ int Computed; /* Is the digest computed? */ } SHA1Context;
/*
* Function Prototypes */
void SHA1Reset( SHA1Context *); void SHA1Input( SHA1Context *, const uint8_t *, unsigned int); void SHA1Result( SHA1Context *, uint8_t Message_Digest[SHA1HashSize]);
/*
* Define the SHA1 circular left shift macro */ #define SHA1CircularShift(bits,word) \
(((word) << (bits)) | ((word) >> (32-(bits))))
/* Local Function Prototyptes */ void SHA1PadMessage(SHA1Context *); void SHA1ProcessMessageBlock(SHA1Context *);
/*
* SHA1Reset * * Description: * This function will initialize the SHA1Context in preparation * for computing a new SHA1 message digest. */
#undef DPF_MODNAME
#define DPF_MODNAME "SHA1Reset"
void SHA1Reset(SHA1Context *context) { DNASSERT(context);
context->Length_Low = 0; context->Length_High = 0; context->Message_Block_Index = 0;
context->Intermediate_Hash[0] = 0x67452301; context->Intermediate_Hash[1] = 0xEFCDAB89; context->Intermediate_Hash[2] = 0x98BADCFE; context->Intermediate_Hash[3] = 0x10325476; context->Intermediate_Hash[4] = 0xC3D2E1F0;
context->Computed = 0; }
/*
* SHA1Result * * Description: * This function will return the 160-bit message digest into the * Message_Digest array provided by the caller. * NOTE: The first octet of hash is stored in the 0th element, * the last octet of hash in the 19th element. * * Parameters: * context: [in/out] * The context to use to calculate the SHA-1 hash. * Message_Digest: [out] * Where the digest is returned. * */
#undef DPF_MODNAME
#define DPF_MODNAME "SHA1Result"
void SHA1Result( SHA1Context *context, uint8_t Message_Digest[SHA1HashSize]) { int i;
if (!context->Computed) { SHA1PadMessage(context); for(i=0; i<64; ++i) { /* message may be sensitive, clear it out */ context->Message_Block[i] = 0; } context->Length_Low = 0; /* and clear length */ context->Length_High = 0; context->Computed = 1;
}
for(i = 0; i < SHA1HashSize; ++i) { Message_Digest[i] = (uint8_t ) (context->Intermediate_Hash[i>>2] >> 8 * ( 3 - ( i & 0x03 ) )); } }
/*
* SHA1Input * * Description: * This function accepts an array of octets as the next portion * of the message. * * Parameters: * context: [in/out] * The SHA context to update * message_array: [in] * An array of characters representing the next portion of * the message. * length: [in] * The length of the message in message_array * */
#undef DPF_MODNAME
#define DPF_MODNAME "SHA1Input"
void SHA1Input( SHA1Context *context, const uint8_t *message_array, unsigned length) { while(length--) { context->Message_Block[context->Message_Block_Index++] =(*message_array & 0xFF);
context->Length_Low += 8; if (context->Length_Low == 0) { context->Length_High++; DNASSERT(context->Length_High!=0); }
if (context->Message_Block_Index == 64) { SHA1ProcessMessageBlock(context); }
message_array++; } }
/*
* SHA1ProcessMessageBlock * * Description: * This function will process the next 512 bits of the message * stored in the Message_Block array. * * Parameters: * None. * * Returns: * Nothing. * * Comments:
* Many of the variable names in this code, especially the * single character names, were used because those were the * names used in the publication. * * */ void SHA1ProcessMessageBlock(SHA1Context *context) { const uint32_t K[] = { /* Constants defined in SHA-1 */ 0x5A827999, 0x6ED9EBA1, 0x8F1BBCDC, 0xCA62C1D6 }; int t; /* Loop counter */ uint32_t temp; /* Temporary word value */ uint32_t W[80]; /* Word sequence */ uint32_t A, B, C, D, E; /* Word buffers */
/*
* Initialize the first 16 words in the array W */ for(t = 0; t < 16; t++) { W[t] = context->Message_Block[t * 4] << 24; W[t] |= context->Message_Block[t * 4 + 1] << 16; W[t] |= context->Message_Block[t * 4 + 2] << 8; W[t] |= context->Message_Block[t * 4 + 3]; }
for(t = 16; t < 80; t++) { W[t] = SHA1CircularShift(1,W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16]); }
A = context->Intermediate_Hash[0]; B = context->Intermediate_Hash[1]; C = context->Intermediate_Hash[2]; D = context->Intermediate_Hash[3]; E = context->Intermediate_Hash[4];
for(t = 0; t < 20; t++) { temp = SHA1CircularShift(5,A) + ((B & C) | ((~B) & D)) + E + W[t] + K[0]; E = D; D = C; C = SHA1CircularShift(30,B);
B = A; A = temp; }
for(t = 20; t < 40; t++) { temp = SHA1CircularShift(5,A) + (B ^ C ^ D) + E + W[t] + K[1]; E = D; D = C; C = SHA1CircularShift(30,B); B = A; A = temp; }
for(t = 40; t < 60; t++) { temp = SHA1CircularShift(5,A) + ((B & C) | (B & D) | (C & D)) + E + W[t] + K[2]; E = D; D = C; C = SHA1CircularShift(30,B); B = A; A = temp; }
for(t = 60; t < 80; t++) { temp = SHA1CircularShift(5,A) + (B ^ C ^ D) + E + W[t] + K[3]; E = D; D = C; C = SHA1CircularShift(30,B); B = A; A = temp; }
context->Intermediate_Hash[0] += A; context->Intermediate_Hash[1] += B; context->Intermediate_Hash[2] += C; context->Intermediate_Hash[3] += D; context->Intermediate_Hash[4] += E;
context->Message_Block_Index = 0; }
/*
* SHA1PadMessage *
* Description: * According to the standard, the message must be padded to an even * 512 bits. The first padding bit must be a '1'. The last 64 * bits represent the length of the original message. All bits in * between should be 0. This function will pad the message * according to those rules by filling the Message_Block array * accordingly. It will also call the ProcessMessageBlock function * provided appropriately. When it returns, it can be assumed that * the message digest has been computed. * * Parameters: * context: [in/out] * The context to pad * ProcessMessageBlock: [in] * The appropriate SHA*ProcessMessageBlock function * Returns: * Nothing. * */
void SHA1PadMessage(SHA1Context *context) { /*
* Check to see if the current message block is too small to hold * the initial padding bits and length. If so, we will pad the * block, process it, and then continue padding into a second * block. */ if (context->Message_Block_Index > 55) { context->Message_Block[context->Message_Block_Index++] = 0x80; while(context->Message_Block_Index < 64) { context->Message_Block[context->Message_Block_Index++] = 0; }
SHA1ProcessMessageBlock(context);
while(context->Message_Block_Index < 56) { context->Message_Block[context->Message_Block_Index++] = 0; } } else { context->Message_Block[context->Message_Block_Index++] = 0x80; while(context->Message_Block_Index < 56) {
context->Message_Block[context->Message_Block_Index++] = 0; } }
/*
* Store the message length as the last 8 octets */ context->Message_Block[56] = (uint8_t ) (context->Length_High >> 24); context->Message_Block[57] = (uint8_t ) (context->Length_High >> 16); context->Message_Block[58] = (uint8_t ) (context->Length_High >> 8); context->Message_Block[59] = (uint8_t ) (context->Length_High); context->Message_Block[60] = (uint8_t ) (context->Length_Low >> 24); context->Message_Block[61] = (uint8_t ) (context->Length_Low >> 16); context->Message_Block[62] = (uint8_t ) (context->Length_Low >> 8); context->Message_Block[63] = (uint8_t ) (context->Length_Low);
SHA1ProcessMessageBlock(context); }
/*
** Above was all standard SHA1 hash code taken from RFC 3174 **********************************************************************************************/
union HashResult { //all 160 bits of the result
uint8_t val_160[SHA1HashSize]; //the first 64 bits of the result
ULONGLONG val_64; };
/*
** Generate Connect Signature ** ** This takes a session identity, an address hash, and a connect secret and hashes them together to create ** a signature we can pass back to a connecting host that it can use to identify itself */
#undef DPF_MODNAME
#define DPF_MODNAME "GenerateConnectSig"
ULONGLONG GenerateConnectSig(DWORD dwSessID, DWORD dwAddressHash, ULONGLONG ullConnectSecret) { //arrange all the supplied input parameters into a single data block
struct InputBuffer { DWORD dwSessID; DWORD dwAddressHash; ULONGLONG ullConnectSecret; } inputData = { dwSessID, dwAddressHash, ullConnectSecret };
HashResult result; SHA1Context context;
//create a context for the hash and add in the input data
SHA1Reset(&context); SHA1Input(&context, (const uint8_t * ) &inputData, sizeof(inputData)); //get result of the hash and return the first 64 bits as the result
SHA1Result(&context, result.val_160);
DPFX(DPFPREP, 7, "Connect Sig %x-%x", DPFX_OUTPUT_ULL(result.val_64)); return result.val_64; }
#undef DPF_MODNAME
#define DPF_MODNAME "GenerateOutgoingFrameSig"
ULONGLONG GenerateOutgoingFrameSig(PFMD pFMD, ULONGLONG ullSecret) { SHA1Context context; HashResult result; BUFFERDESC * pBuffers=pFMD->SendDataBlock.pBuffers;
//create context for hash and then iterate over all the frames we're going to send
SHA1Reset(&context); for (DWORD dwLoop=0; dwLoop<pFMD->SendDataBlock.dwBufferCount; dwLoop++) { SHA1Input(&context, (const uint8_t * ) pBuffers[dwLoop].pBufferData, pBuffers[dwLoop].dwBufferSize); } //also hash in our secret, and return the first 64 bits of the result
SHA1Input(&context, (const uint8_t * ) &ullSecret, sizeof(ullSecret)); SHA1Result(&context, result.val_160);
DPFX(DPFPREP, 7, "Outgoing Frame Sig %x-%x", DPFX_OUTPUT_ULL(result.val_64)); return result.val_64; }
#undef DPF_MODNAME
#define DPF_MODNAME "GenerateIncomingFrameSig"
ULONGLONG GenerateIncomingFrameSig(BYTE * pbyFrame, DWORD dwFrameSize, ULONGLONG ullSecret) { SHA1Context context; HashResult result;
//create context for hash and add in packet data followed by the secret
SHA1Reset(&context); SHA1Input(&context, (const uint8_t * ) pbyFrame, dwFrameSize); SHA1Input(&context, (const uint8_t * ) &ullSecret, sizeof(ullSecret)); //get result of hash and return its first 64 bits as the result
SHA1Result(&context, result.val_160);
DPFX(DPFPREP, 7, "Incoming Frame Sig %x-%x", DPFX_OUTPUT_ULL(result.val_64)); return result.val_64; }
#undef DPF_MODNAME
#define DPF_MODNAME "GenerateNewSecret"
ULONGLONG GenerateNewSecret(ULONGLONG ullCurrentSecret, ULONGLONG ullSecretModifier) { SHA1Context context; HashResult result;
//create context for hash and combine secret followed by modifier
SHA1Reset(&context); SHA1Input(&context, (const uint8_t * ) &ullCurrentSecret, sizeof(ullCurrentSecret)); SHA1Input(&context, (const uint8_t * ) &ullSecretModifier, sizeof(ullSecretModifier));
//get result and return first 64 bits as the result
SHA1Result(&context, result.val_160);
DPFX(DPFPREP, 5, "Combined current secret %x-%x with modifier %x-%x to create new secret %x-%x", DPFX_OUTPUT_ULL(ullCurrentSecret), DPFX_OUTPUT_ULL(ullSecretModifier), DPFX_OUTPUT_ULL(result.val_64)); return result.val_64; }
#undef DPF_MODNAME
#define DPF_MODNAME "GenerateRemoteSecretModifier"
ULONGLONG GenerateRemoteSecretModifier(BYTE * pbyData, DWORD dwDataSize) { SHA1Context context; HashResult result;
//create context for hash and hash supplied data
SHA1Reset(&context); SHA1Input(&context, (const uint8_t * ) pbyData, dwDataSize); //get result and return first 64 bits as the result
SHA1Result(&context, result.val_160);
DPFX(DPFPREP, 5, "New Remote Secret Modifier %x-%x", DPFX_OUTPUT_ULL(result.val_64)); return result.val_64; }
#undef DPF_MODNAME
#define DPF_MODNAME "GenerateLocalSecretModifier"
ULONGLONG GenerateLocalSecretModifier(BUFFERDESC * pBuffers, DWORD dwNumBuffers) { SHA1Context context; HashResult result;
//create context for hash and hash supplied data
SHA1Reset(&context); for (DWORD dwLoop=0; dwLoop<dwNumBuffers; dwLoop++) { SHA1Input(&context, (const uint8_t * ) pBuffers[dwLoop].pBufferData, pBuffers[dwLoop].dwBufferSize); } //get result and return first 64 bits as the result
SHA1Result(&context, result.val_160);
DPFX(DPFPREP, 5, "New Local Secret Modifier %x-%x", DPFX_OUTPUT_ULL(result.val_64)); return result.val_64; }
|