Leaked source code of windows server 2003
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

518 lines
15 KiB

/*==========================================================================
*
* Copyright (C) 2000-2002 Microsoft Corporation. All Rights Reserved.
*
* File: Hashing.cpp
* Content: This file contains code to support hashing operations on protocol data
*
* History:
* Date By Reason
* ==== == ======
* 07/15/02 simonpow Created
*
****************************************************************************/
#include "dnproti.h"
/*********************************************************************************************
** Following is standard code for the SHA1 hashing algo.
** Taken from RFC 3174 (http://www.ietf.org/rfc/rfc3174.txt)
** Minor tweaks have been made to reduce unecessary error checking
*/
#define SHA1HashSize 20
typedef DWORD uint32_t;
typedef BYTE uint8_t;
typedef int int_least16_t;
/*
* This structure will hold context information for the SHA-1
* hashing operation
*/
typedef struct SHA1Context
{
uint32_t Intermediate_Hash[SHA1HashSize/4]; /* Message Digest */
uint32_t Length_Low; /* Message length in bits */
uint32_t Length_High; /* Message length in bits */
int_least16_t Message_Block_Index; /* Index into message block array */
uint8_t Message_Block[64]; /* 512-bit message blocks */
int Computed; /* Is the digest computed? */
} SHA1Context;
/*
* Function Prototypes
*/
void SHA1Reset( SHA1Context *);
void SHA1Input( SHA1Context *, const uint8_t *, unsigned int);
void SHA1Result( SHA1Context *, uint8_t Message_Digest[SHA1HashSize]);
/*
* Define the SHA1 circular left shift macro
*/
#define SHA1CircularShift(bits,word) \
(((word) << (bits)) | ((word) >> (32-(bits))))
/* Local Function Prototyptes */
void SHA1PadMessage(SHA1Context *);
void SHA1ProcessMessageBlock(SHA1Context *);
/*
* SHA1Reset
*
* Description:
* This function will initialize the SHA1Context in preparation
* for computing a new SHA1 message digest.
*/
#undef DPF_MODNAME
#define DPF_MODNAME "SHA1Reset"
void SHA1Reset(SHA1Context *context)
{
DNASSERT(context);
context->Length_Low = 0;
context->Length_High = 0;
context->Message_Block_Index = 0;
context->Intermediate_Hash[0] = 0x67452301;
context->Intermediate_Hash[1] = 0xEFCDAB89;
context->Intermediate_Hash[2] = 0x98BADCFE;
context->Intermediate_Hash[3] = 0x10325476;
context->Intermediate_Hash[4] = 0xC3D2E1F0;
context->Computed = 0;
}
/*
* SHA1Result
*
* Description:
* This function will return the 160-bit message digest into the
* Message_Digest array provided by the caller.
* NOTE: The first octet of hash is stored in the 0th element,
* the last octet of hash in the 19th element.
*
* Parameters:
* context: [in/out]
* The context to use to calculate the SHA-1 hash.
* Message_Digest: [out]
* Where the digest is returned.
*
*/
#undef DPF_MODNAME
#define DPF_MODNAME "SHA1Result"
void SHA1Result( SHA1Context *context,
uint8_t Message_Digest[SHA1HashSize])
{
int i;
if (!context->Computed)
{
SHA1PadMessage(context);
for(i=0; i<64; ++i)
{
/* message may be sensitive, clear it out */
context->Message_Block[i] = 0;
}
context->Length_Low = 0; /* and clear length */
context->Length_High = 0;
context->Computed = 1;
}
for(i = 0; i < SHA1HashSize; ++i)
{
Message_Digest[i] = (uint8_t ) (context->Intermediate_Hash[i>>2] >> 8 * ( 3 - ( i & 0x03 ) ));
}
}
/*
* SHA1Input
*
* Description:
* This function accepts an array of octets as the next portion
* of the message.
*
* Parameters:
* context: [in/out]
* The SHA context to update
* message_array: [in]
* An array of characters representing the next portion of
* the message.
* length: [in]
* The length of the message in message_array
*
*/
#undef DPF_MODNAME
#define DPF_MODNAME "SHA1Input"
void SHA1Input( SHA1Context *context,
const uint8_t *message_array,
unsigned length)
{
while(length--)
{
context->Message_Block[context->Message_Block_Index++] =(*message_array & 0xFF);
context->Length_Low += 8;
if (context->Length_Low == 0)
{
context->Length_High++;
DNASSERT(context->Length_High!=0);
}
if (context->Message_Block_Index == 64)
{
SHA1ProcessMessageBlock(context);
}
message_array++;
}
}
/*
* SHA1ProcessMessageBlock
*
* Description:
* This function will process the next 512 bits of the message
* stored in the Message_Block array.
*
* Parameters:
* None.
*
* Returns:
* Nothing.
*
* Comments:
* Many of the variable names in this code, especially the
* single character names, were used because those were the
* names used in the publication.
*
*
*/
void SHA1ProcessMessageBlock(SHA1Context *context)
{
const uint32_t K[] = { /* Constants defined in SHA-1 */
0x5A827999,
0x6ED9EBA1,
0x8F1BBCDC,
0xCA62C1D6
};
int t; /* Loop counter */
uint32_t temp; /* Temporary word value */
uint32_t W[80]; /* Word sequence */
uint32_t A, B, C, D, E; /* Word buffers */
/*
* Initialize the first 16 words in the array W
*/
for(t = 0; t < 16; t++)
{
W[t] = context->Message_Block[t * 4] << 24;
W[t] |= context->Message_Block[t * 4 + 1] << 16;
W[t] |= context->Message_Block[t * 4 + 2] << 8;
W[t] |= context->Message_Block[t * 4 + 3];
}
for(t = 16; t < 80; t++)
{
W[t] = SHA1CircularShift(1,W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16]);
}
A = context->Intermediate_Hash[0];
B = context->Intermediate_Hash[1];
C = context->Intermediate_Hash[2];
D = context->Intermediate_Hash[3];
E = context->Intermediate_Hash[4];
for(t = 0; t < 20; t++)
{
temp = SHA1CircularShift(5,A) +
((B & C) | ((~B) & D)) + E + W[t] + K[0];
E = D;
D = C;
C = SHA1CircularShift(30,B);
B = A;
A = temp;
}
for(t = 20; t < 40; t++)
{
temp = SHA1CircularShift(5,A) + (B ^ C ^ D) + E + W[t] + K[1];
E = D;
D = C;
C = SHA1CircularShift(30,B);
B = A;
A = temp;
}
for(t = 40; t < 60; t++)
{
temp = SHA1CircularShift(5,A) +
((B & C) | (B & D) | (C & D)) + E + W[t] + K[2];
E = D;
D = C;
C = SHA1CircularShift(30,B);
B = A;
A = temp;
}
for(t = 60; t < 80; t++)
{
temp = SHA1CircularShift(5,A) + (B ^ C ^ D) + E + W[t] + K[3];
E = D;
D = C;
C = SHA1CircularShift(30,B);
B = A;
A = temp;
}
context->Intermediate_Hash[0] += A;
context->Intermediate_Hash[1] += B;
context->Intermediate_Hash[2] += C;
context->Intermediate_Hash[3] += D;
context->Intermediate_Hash[4] += E;
context->Message_Block_Index = 0;
}
/*
* SHA1PadMessage
*
* Description:
* According to the standard, the message must be padded to an even
* 512 bits. The first padding bit must be a '1'. The last 64
* bits represent the length of the original message. All bits in
* between should be 0. This function will pad the message
* according to those rules by filling the Message_Block array
* accordingly. It will also call the ProcessMessageBlock function
* provided appropriately. When it returns, it can be assumed that
* the message digest has been computed.
*
* Parameters:
* context: [in/out]
* The context to pad
* ProcessMessageBlock: [in]
* The appropriate SHA*ProcessMessageBlock function
* Returns:
* Nothing.
*
*/
void SHA1PadMessage(SHA1Context *context)
{
/*
* Check to see if the current message block is too small to hold
* the initial padding bits and length. If so, we will pad the
* block, process it, and then continue padding into a second
* block.
*/
if (context->Message_Block_Index > 55)
{
context->Message_Block[context->Message_Block_Index++] = 0x80;
while(context->Message_Block_Index < 64)
{
context->Message_Block[context->Message_Block_Index++] = 0;
}
SHA1ProcessMessageBlock(context);
while(context->Message_Block_Index < 56)
{
context->Message_Block[context->Message_Block_Index++] = 0;
}
}
else
{
context->Message_Block[context->Message_Block_Index++] = 0x80;
while(context->Message_Block_Index < 56)
{
context->Message_Block[context->Message_Block_Index++] = 0;
}
}
/*
* Store the message length as the last 8 octets
*/
context->Message_Block[56] = (uint8_t ) (context->Length_High >> 24);
context->Message_Block[57] = (uint8_t ) (context->Length_High >> 16);
context->Message_Block[58] = (uint8_t ) (context->Length_High >> 8);
context->Message_Block[59] = (uint8_t ) (context->Length_High);
context->Message_Block[60] = (uint8_t ) (context->Length_Low >> 24);
context->Message_Block[61] = (uint8_t ) (context->Length_Low >> 16);
context->Message_Block[62] = (uint8_t ) (context->Length_Low >> 8);
context->Message_Block[63] = (uint8_t ) (context->Length_Low);
SHA1ProcessMessageBlock(context);
}
/*
** Above was all standard SHA1 hash code taken from RFC 3174
**********************************************************************************************/
union HashResult
{
//all 160 bits of the result
uint8_t val_160[SHA1HashSize];
//the first 64 bits of the result
ULONGLONG val_64;
};
/*
** Generate Connect Signature
**
** This takes a session identity, an address hash, and a connect secret and hashes them together to create
** a signature we can pass back to a connecting host that it can use to identify itself
*/
#undef DPF_MODNAME
#define DPF_MODNAME "GenerateConnectSig"
ULONGLONG GenerateConnectSig(DWORD dwSessID, DWORD dwAddressHash, ULONGLONG ullConnectSecret)
{
//arrange all the supplied input parameters into a single data block
struct InputBuffer
{
DWORD dwSessID;
DWORD dwAddressHash;
ULONGLONG ullConnectSecret;
} inputData = { dwSessID, dwAddressHash, ullConnectSecret };
HashResult result;
SHA1Context context;
//create a context for the hash and add in the input data
SHA1Reset(&context);
SHA1Input(&context, (const uint8_t * ) &inputData, sizeof(inputData));
//get result of the hash and return the first 64 bits as the result
SHA1Result(&context, result.val_160);
DPFX(DPFPREP, 7, "Connect Sig %x-%x", DPFX_OUTPUT_ULL(result.val_64));
return result.val_64;
}
#undef DPF_MODNAME
#define DPF_MODNAME "GenerateOutgoingFrameSig"
ULONGLONG GenerateOutgoingFrameSig(PFMD pFMD, ULONGLONG ullSecret)
{
SHA1Context context;
HashResult result;
BUFFERDESC * pBuffers=pFMD->SendDataBlock.pBuffers;
//create context for hash and then iterate over all the frames we're going to send
SHA1Reset(&context);
for (DWORD dwLoop=0; dwLoop<pFMD->SendDataBlock.dwBufferCount; dwLoop++)
{
SHA1Input(&context, (const uint8_t * ) pBuffers[dwLoop].pBufferData, pBuffers[dwLoop].dwBufferSize);
}
//also hash in our secret, and return the first 64 bits of the result
SHA1Input(&context, (const uint8_t * ) &ullSecret, sizeof(ullSecret));
SHA1Result(&context, result.val_160);
DPFX(DPFPREP, 7, "Outgoing Frame Sig %x-%x", DPFX_OUTPUT_ULL(result.val_64));
return result.val_64;
}
#undef DPF_MODNAME
#define DPF_MODNAME "GenerateIncomingFrameSig"
ULONGLONG GenerateIncomingFrameSig(BYTE * pbyFrame, DWORD dwFrameSize, ULONGLONG ullSecret)
{
SHA1Context context;
HashResult result;
//create context for hash and add in packet data followed by the secret
SHA1Reset(&context);
SHA1Input(&context, (const uint8_t * ) pbyFrame, dwFrameSize);
SHA1Input(&context, (const uint8_t * ) &ullSecret, sizeof(ullSecret));
//get result of hash and return its first 64 bits as the result
SHA1Result(&context, result.val_160);
DPFX(DPFPREP, 7, "Incoming Frame Sig %x-%x", DPFX_OUTPUT_ULL(result.val_64));
return result.val_64;
}
#undef DPF_MODNAME
#define DPF_MODNAME "GenerateNewSecret"
ULONGLONG GenerateNewSecret(ULONGLONG ullCurrentSecret, ULONGLONG ullSecretModifier)
{
SHA1Context context;
HashResult result;
//create context for hash and combine secret followed by modifier
SHA1Reset(&context);
SHA1Input(&context, (const uint8_t * ) &ullCurrentSecret, sizeof(ullCurrentSecret));
SHA1Input(&context, (const uint8_t * ) &ullSecretModifier, sizeof(ullSecretModifier));
//get result and return first 64 bits as the result
SHA1Result(&context, result.val_160);
DPFX(DPFPREP, 5, "Combined current secret %x-%x with modifier %x-%x to create new secret %x-%x",
DPFX_OUTPUT_ULL(ullCurrentSecret), DPFX_OUTPUT_ULL(ullSecretModifier), DPFX_OUTPUT_ULL(result.val_64));
return result.val_64;
}
#undef DPF_MODNAME
#define DPF_MODNAME "GenerateRemoteSecretModifier"
ULONGLONG GenerateRemoteSecretModifier(BYTE * pbyData, DWORD dwDataSize)
{
SHA1Context context;
HashResult result;
//create context for hash and hash supplied data
SHA1Reset(&context);
SHA1Input(&context, (const uint8_t * ) pbyData, dwDataSize);
//get result and return first 64 bits as the result
SHA1Result(&context, result.val_160);
DPFX(DPFPREP, 5, "New Remote Secret Modifier %x-%x", DPFX_OUTPUT_ULL(result.val_64));
return result.val_64;
}
#undef DPF_MODNAME
#define DPF_MODNAME "GenerateLocalSecretModifier"
ULONGLONG GenerateLocalSecretModifier(BUFFERDESC * pBuffers, DWORD dwNumBuffers)
{
SHA1Context context;
HashResult result;
//create context for hash and hash supplied data
SHA1Reset(&context);
for (DWORD dwLoop=0; dwLoop<dwNumBuffers; dwLoop++)
{
SHA1Input(&context, (const uint8_t * ) pBuffers[dwLoop].pBufferData, pBuffers[dwLoop].dwBufferSize);
}
//get result and return first 64 bits as the result
SHA1Result(&context, result.val_160);
DPFX(DPFPREP, 5, "New Local Secret Modifier %x-%x", DPFX_OUTPUT_ULL(result.val_64));
return result.val_64;
}