|
|
/*++
Copyright(c) 1999-2002 Microsoft Corporation
Module Name:
minidump.c
Abstract:
Minidump user-mode crashdump support.
Author:
Matthew D Hendel (math) 20-Aug-1999
--*/
#include "pch.cpp"
#include <limits.h>
#include <dbgver.h>
PINTERNAL_MODULE ModuleContainingAddress( IN PINTERNAL_PROCESS Process, IN ULONG64 Address ) { PINTERNAL_MODULE Module; PLIST_ENTRY ModuleEntry;
ModuleEntry = Process->ModuleList.Flink; while ( ModuleEntry != &Process->ModuleList ) {
Module = CONTAINING_RECORD (ModuleEntry, INTERNAL_MODULE, ModulesLink); ModuleEntry = ModuleEntry->Flink;
if (Address >= Module->BaseOfImage && Address < Module->BaseOfImage + Module->SizeOfImage) { return Module; } }
return NULL; }
VOID ScanMemoryForModuleRefs( IN PMINIDUMP_STATE Dump, IN PINTERNAL_PROCESS Process, IN BOOL DoRead, IN ULONG64 Base, IN ULONG Size, IN PVOID MemBuffer, IN MEMBLOCK_TYPE TypeOfMemory, IN BOOL FilterContent ) { PVOID CurMem; ULONG64 CurPtr; ULONG Done;
// We only want to scan certain kinds of memory.
if (TypeOfMemory != MEMBLOCK_STACK && TypeOfMemory != MEMBLOCK_STORE && TypeOfMemory != MEMBLOCK_DATA_SEG && TypeOfMemory != MEMBLOCK_INDIRECT) { return; } // If the base address is not pointer-size aligned
// we can't easily assume that this is a meaningful
// area of memory to scan for references. Normal
// stack and store addresses will always be pointer
// size aligned so this should only reject invalid
// addresses.
if (!Base || !Size || (Base & (Dump->PtrSize - 1))) { return; }
if (DoRead) { if (Dump->SysProv-> ReadVirtual(Dump->ProcessHandle, Base, MemBuffer, Size, &Done) != S_OK) { return; } } else { Done = Size; }
CurMem = MemBuffer; Done /= Dump->PtrSize; while (Done-- > 0) { PINTERNAL_MODULE Module; BOOL InAny;
CurPtr = GenGetPointer(Dump, CurMem); // An IA64 backing store can contain PFS values
// that must be preserved in order to allow stack walking.
// The high two bits of PFS are the privilege level, which
// should always be 0y11 for user-mode code so we use this
// as a marker to look for PFS entries.
// There is also a NAT collection flush at every 0x1F8
// offset. These values cannot be filtered.
if (Dump->CpuType == IMAGE_FILE_MACHINE_IA64 && TypeOfMemory == MEMBLOCK_STORE) { if ((Base & 0x1f8) == 0x1f8 || (CurPtr & 0xc000000000000000UI64) == 0xc000000000000000UI64) { goto Next; } } InAny = FALSE;
if (Module = ModuleContainingAddress(Process, CurPtr)) { Module->WriteFlags |= ModuleReferencedByMemory; InAny = TRUE; }
// If the current pointer is not a module reference
// or an internal reference for a thread stack or store,
// filter it.
if (FilterContent && !InAny) {
PINTERNAL_THREAD Thread; PLIST_ENTRY ThreadEntry;
ThreadEntry = Process->ThreadList.Flink; while ( ThreadEntry != &Process->ThreadList ) {
Thread = CONTAINING_RECORD (ThreadEntry, INTERNAL_THREAD, ThreadsLink); ThreadEntry = ThreadEntry->Flink;
if ((CurPtr >= Thread->StackEnd && CurPtr < Thread->StackBase) || (CurPtr >= Thread->BackingStoreBase && CurPtr < Thread->BackingStoreBase + Thread->BackingStoreSize)) { InAny = TRUE; break; } }
if (!InAny) { GenSetPointer(Dump, CurMem, 0); } }
Next: CurMem = (PUCHAR)CurMem + Dump->PtrSize; Base += Dump->PtrSize; } }
HRESULT WriteAtOffset( IN PMINIDUMP_STATE Dump, ULONG Offset, PVOID Buffer, ULONG BufferSize ) { HRESULT Status;
if ((Status = Dump->OutProv-> Seek(FILE_BEGIN, Offset, NULL)) == S_OK) { Status = Dump->OutProv-> WriteAll(Buffer, BufferSize); }
return Status; }
HRESULT WriteOther( IN PMINIDUMP_STATE Dump, IN PMINIDUMP_STREAM_INFO StreamInfo, IN PVOID Buffer, IN ULONG SizeOfBuffer, OUT ULONG * BufferRva ) { HRESULT Status; ULONG Rva;
ASSERT (Buffer != NULL); ASSERT (SizeOfBuffer != 0);
//
// If it's larger than we've allocated space for, fail.
//
Rva = StreamInfo->RvaForCurOther;
if (Rva + SizeOfBuffer > StreamInfo->RvaOfOther + StreamInfo->SizeOfOther) {
return E_INVALIDARG; }
//
// Set location to point at which we want to write and write.
//
if ((Status = Dump->OutProv-> Seek(FILE_BEGIN, Rva, NULL)) == S_OK) { if ((Status = Dump->OutProv-> WriteAll(Buffer, SizeOfBuffer)) == S_OK) { if (BufferRva) { *BufferRva = Rva; } StreamInfo->RvaForCurOther += SizeOfBuffer; } }
return Status; }
HRESULT WriteMemory( IN PMINIDUMP_STATE Dump, IN PMINIDUMP_STREAM_INFO StreamInfo, IN PVOID Buffer, IN ULONG64 StartOfRegion, IN ULONG SizeOfRegion, OUT ULONG * MemoryDataRva OPTIONAL ) { HRESULT Status; ULONG DataRva; ULONG ListRva; ULONG SizeOfMemoryDescriptor; MINIDUMP_MEMORY_DESCRIPTOR Descriptor;
ASSERT ( StreamInfo != NULL ); ASSERT ( Buffer != NULL ); ASSERT ( StartOfRegion != 0 ); ASSERT ( SizeOfRegion != 0 );
//
// Writing a memory entry is a little different. When a memory entry
// is written we need a descriptor in the memory list describing the
// memory written AND a variable-sized entry in the MEMORY_DATA region
// with the actual data.
//
ListRva = StreamInfo->RvaForCurMemoryDescriptor; DataRva = StreamInfo->RvaForCurMemoryData; SizeOfMemoryDescriptor = sizeof (MINIDUMP_MEMORY_DESCRIPTOR);
//
// If we overflowed either the memory list or the memory data
// regions, fail.
//
if ( ( ListRva + SizeOfMemoryDescriptor > StreamInfo->RvaOfMemoryDescriptors + StreamInfo->SizeOfMemoryDescriptors) || ( DataRva + SizeOfRegion > StreamInfo->RvaOfMemoryData + StreamInfo->SizeOfMemoryData ) ) {
return E_INVALIDARG; }
//
// First, write the data to the MEMORY_DATA region.
//
if ((Status = Dump->OutProv-> Seek(FILE_BEGIN, DataRva, NULL)) != S_OK || (Status = Dump->OutProv-> WriteAll(Buffer, SizeOfRegion)) != S_OK) { return Status; }
//
// Then update the memory descriptor in the MEMORY_LIST region.
//
Descriptor.StartOfMemoryRange = StartOfRegion; Descriptor.Memory.DataSize = SizeOfRegion; Descriptor.Memory.Rva = DataRva;
if ((Status = Dump->OutProv-> Seek(FILE_BEGIN, ListRva, NULL)) != S_OK || (Status = Dump->OutProv-> WriteAll(&Descriptor, SizeOfMemoryDescriptor)) != S_OK) { return Status; }
//
// Update both the List Rva and the Data Rva and return the
// the Data Rva.
//
StreamInfo->RvaForCurMemoryDescriptor += SizeOfMemoryDescriptor; StreamInfo->RvaForCurMemoryData += SizeOfRegion;
if ( MemoryDataRva ) { *MemoryDataRva = DataRva; }
return S_OK; }
HRESULT WriteMemoryFromProcess( IN PMINIDUMP_STATE Dump, IN PMINIDUMP_STREAM_INFO StreamInfo, IN PINTERNAL_PROCESS Process, IN ULONG64 BaseOfRegion, IN ULONG SizeOfRegion, IN BOOL FilterContent, IN MEMBLOCK_TYPE TypeOfMemory, OUT ULONG * MemoryDataRva OPTIONAL ) { HRESULT Status; PVOID Buffer;
Buffer = AllocMemory ( Dump, SizeOfRegion ); if (!Buffer) { return E_OUTOFMEMORY; }
if ((Status = Dump->SysProv-> ReadAllVirtual(Dump->ProcessHandle, BaseOfRegion, Buffer, SizeOfRegion)) == S_OK) {
if (FilterContent) { ScanMemoryForModuleRefs(Dump, Process, FALSE, BaseOfRegion, SizeOfRegion, Buffer, TypeOfMemory, TRUE); } Status = WriteMemory (Dump, StreamInfo, Buffer, BaseOfRegion, SizeOfRegion, MemoryDataRva); }
FreeMemory(Dump, Buffer); return Status; }
HRESULT WriteThread( IN PMINIDUMP_STATE Dump, IN PMINIDUMP_STREAM_INFO StreamInfo, IN LPVOID ThreadData, IN ULONG SizeOfThreadData, OUT ULONG * ThreadDataRva OPTIONAL ) { HRESULT Status; ULONG Rva;
ASSERT (StreamInfo); ASSERT (ThreadData);
Rva = StreamInfo->RvaForCurThread;
if ( Rva + SizeOfThreadData > StreamInfo->RvaOfThreadList + StreamInfo->SizeOfThreadList ) {
return E_INVALIDARG; }
if ((Status = Dump->OutProv-> Seek(FILE_BEGIN, Rva, NULL)) != S_OK || (Status = Dump->OutProv-> WriteAll(ThreadData, SizeOfThreadData)) != S_OK) { return Status; }
if ( ThreadDataRva ) { *ThreadDataRva = Rva; } StreamInfo->RvaForCurThread += SizeOfThreadData;
return S_OK; }
HRESULT WriteStringToPool( IN PMINIDUMP_STATE Dump, IN PMINIDUMP_STREAM_INFO StreamInfo, IN PWSTR String, OUT ULONG * StringRva ) { HRESULT Status; ULONG32 StringLen; ULONG SizeOfString; ULONG Rva;
ASSERT (String); ASSERT (sizeof (ULONG32) == sizeof (MINIDUMP_STRING));
StringLen = GenStrLengthW(String) * sizeof (WCHAR); SizeOfString = sizeof (MINIDUMP_STRING) + StringLen + sizeof (WCHAR); Rva = StreamInfo->RvaForCurString;
if ( Rva + SizeOfString > StreamInfo->RvaOfStringPool + StreamInfo->SizeOfStringPool ) {
return E_INVALIDARG; }
if ((Status = Dump->OutProv-> Seek(FILE_BEGIN, Rva, NULL)) != S_OK || (Status = Dump->OutProv-> WriteAll(&StringLen, sizeof(StringLen))) != S_OK) { return Status; }
//
// Include the trailing '\000'.
//
StringLen += sizeof (WCHAR); if ((Status = Dump->OutProv-> WriteAll(String, StringLen)) != S_OK) { return Status; }
if ( StringRva ) { *StringRva = Rva; }
StreamInfo->RvaForCurString += SizeOfString;
return S_OK; }
HRESULT WriteModule ( IN PMINIDUMP_STATE Dump, IN PMINIDUMP_STREAM_INFO StreamInfo, IN PMINIDUMP_MODULE Module, OUT ULONG * ModuleRva ) { HRESULT Status; ULONG Rva; ULONG SizeOfModule;
ASSERT (StreamInfo); ASSERT (Module);
SizeOfModule = sizeof (MINIDUMP_MODULE); Rva = StreamInfo->RvaForCurModule;
if ( Rva + SizeOfModule > StreamInfo->RvaOfModuleList + StreamInfo->SizeOfModuleList ) {
return E_INVALIDARG; }
if ((Status = Dump->OutProv-> Seek(FILE_BEGIN, Rva, NULL)) != S_OK || (Status = Dump->OutProv-> WriteAll(Module, SizeOfModule)) != S_OK) { return Status; }
if ( ModuleRva ) { *ModuleRva = Rva; }
StreamInfo->RvaForCurModule += SizeOfModule;
return S_OK; }
HRESULT WriteUnloadedModule ( IN PMINIDUMP_STATE Dump, IN PMINIDUMP_STREAM_INFO StreamInfo, IN PMINIDUMP_UNLOADED_MODULE Module, OUT ULONG * ModuleRva ) { HRESULT Status; ULONG Rva; ULONG SizeOfModule;
ASSERT (StreamInfo); ASSERT (Module);
SizeOfModule = sizeof (*Module); Rva = StreamInfo->RvaForCurUnloadedModule;
if ( Rva + SizeOfModule > StreamInfo->RvaOfUnloadedModuleList + StreamInfo->SizeOfUnloadedModuleList ) {
return E_INVALIDARG; }
if ((Status = Dump->OutProv-> Seek(FILE_BEGIN, Rva, NULL)) != S_OK || (Status = Dump->OutProv-> WriteAll(Module, SizeOfModule)) != S_OK) { return Status; }
if ( ModuleRva ) { *ModuleRva = Rva; }
StreamInfo->RvaForCurUnloadedModule += SizeOfModule;
return S_OK; }
HRESULT WriteThreadList( IN PMINIDUMP_STATE Dump, IN PMINIDUMP_STREAM_INFO StreamInfo, IN PINTERNAL_PROCESS Process ) { HRESULT Status; ULONG StackMemoryRva; ULONG StoreMemoryRva; ULONG ContextRva; MINIDUMP_THREAD_EX DumpThread; PINTERNAL_THREAD Thread; ULONG NumberOfThreads; PLIST_ENTRY Entry;
ASSERT (Process); ASSERT (StreamInfo);
//
// Write the thread count.
//
NumberOfThreads = Process->NumberOfThreadsToWrite;
if ((Status = Dump->OutProv-> Seek(FILE_BEGIN, StreamInfo->RvaOfThreadList, NULL)) != S_OK || (Status = Dump->OutProv-> WriteAll(&NumberOfThreads, sizeof(NumberOfThreads))) != S_OK) { return Status; }
StreamInfo->RvaForCurThread += sizeof(NumberOfThreads);
//
// Iterate over the thread list writing the description,
// context and memory for each thread.
//
Entry = Process->ThreadList.Flink; while ( Entry != &Process->ThreadList ) {
Thread = CONTAINING_RECORD (Entry, INTERNAL_THREAD, ThreadsLink); Entry = Entry->Flink;
//
// Only write the threads that have been flagged to be written.
//
if (IsFlagClear (Thread->WriteFlags, ThreadWriteThread)) { continue; }
//
// Write the context if it was flagged to be written.
//
if (IsFlagSet (Thread->WriteFlags, ThreadWriteContext)) {
//
// Write the thread context to the OTHER stream.
//
if ((Status = WriteOther (Dump, StreamInfo, Thread->ContextBuffer, Dump->ContextSize, &ContextRva)) != S_OK) { return Status; }
} else {
ContextRva = 0; }
//
// Write the stack if it was flagged to be written.
//
if (IsFlagSet (Thread->WriteFlags, ThreadWriteStack)) {
//
// Write the stack memory data; write it directly from the image.
//
if ((Status = WriteMemoryFromProcess(Dump, StreamInfo, Process, Thread->StackEnd, (ULONG) (Thread->StackBase - Thread->StackEnd), IsFlagSet(Dump->DumpType, MiniDumpFilterMemory), MEMBLOCK_STACK, &StackMemoryRva)) != S_OK) { return Status; }
} else {
StackMemoryRva = 0; }
//
// Write the backing store if it was flagged to be written.
// A newly created thread's backing store may be empty
// so handle the case of zero size.
//
if (IsFlagSet (Thread->WriteFlags, ThreadWriteBackingStore) && Thread->BackingStoreSize) {
//
// Write the store memory data; write it directly from the image.
//
if ((Status = WriteMemoryFromProcess(Dump, StreamInfo, Process, Thread->BackingStoreBase, Thread->BackingStoreSize, IsFlagSet(Dump->DumpType, MiniDumpFilterMemory), MEMBLOCK_STORE, &StoreMemoryRva )) != S_OK) { return Status; }
} else {
StoreMemoryRva = 0; }
//
// Build the dump thread.
//
DumpThread.ThreadId = Thread->ThreadId; DumpThread.SuspendCount = Thread->SuspendCount; DumpThread.PriorityClass = Thread->PriorityClass; DumpThread.Priority = Thread->Priority; DumpThread.Teb = Thread->Teb;
//
// Stack offset and size.
//
DumpThread.Stack.StartOfMemoryRange = Thread->StackEnd; DumpThread.Stack.Memory.DataSize = (ULONG) ( Thread->StackBase - Thread->StackEnd ); DumpThread.Stack.Memory.Rva = StackMemoryRva;
//
// Backing store offset and size.
//
DumpThread.BackingStore.StartOfMemoryRange = Thread->BackingStoreBase; DumpThread.BackingStore.Memory.DataSize = Thread->BackingStoreSize; DumpThread.BackingStore.Memory.Rva = StoreMemoryRva;
//
// Context offset and size.
//
DumpThread.ThreadContext.DataSize = Dump->ContextSize; DumpThread.ThreadContext.Rva = ContextRva;
//
// Write the dump thread to the threads region.
//
if ((Status = WriteThread (Dump, StreamInfo, &DumpThread, StreamInfo->ThreadStructSize, NULL)) != S_OK) { return Status; } }
return S_OK; }
HRESULT WriteModuleList( IN PMINIDUMP_STATE Dump, IN PMINIDUMP_STREAM_INFO StreamInfo, IN PINTERNAL_PROCESS Process ) { HRESULT Status; MINIDUMP_MODULE DumpModule; ULONG StringRva; ULONG CvRecordRva; ULONG MiscRecordRva; PLIST_ENTRY Entry; PINTERNAL_MODULE Module; ULONG32 NumberOfModules;
ASSERT (Process); ASSERT (StreamInfo);
NumberOfModules = Process->NumberOfModulesToWrite;
if ((Status = Dump->OutProv-> Seek(FILE_BEGIN, StreamInfo->RvaForCurModule, NULL)) != S_OK || (Status = Dump->OutProv-> WriteAll(&NumberOfModules, sizeof(NumberOfModules))) != S_OK) { return Status; }
StreamInfo->RvaForCurModule += sizeof (NumberOfModules);
//
// Iterate through the module list writing the module name, module entry
// and module debug info to the dump file.
//
Entry = Process->ModuleList.Flink; while ( Entry != &Process->ModuleList ) {
Module = CONTAINING_RECORD (Entry, INTERNAL_MODULE, ModulesLink); Entry = Entry->Flink;
//
// If we are not to write information for this module, just continue.
//
if (IsFlagClear (Module->WriteFlags, ModuleWriteModule)) { continue; }
//
// Write module name.
//
if ((Status = WriteStringToPool (Dump, StreamInfo, Module->SavePath, &StringRva)) != S_OK) { return Status; }
//
// Write CvRecord for a module into the OTHER region.
//
if ( IsFlagSet (Module->WriteFlags, ModuleWriteCvRecord) && Module->CvRecord != NULL && Module->SizeOfCvRecord != 0 ) {
if ((Status = WriteOther (Dump, StreamInfo, Module->CvRecord, Module->SizeOfCvRecord, &CvRecordRva)) != S_OK) { return Status; }
} else {
CvRecordRva = 0; }
if ( IsFlagSet (Module->WriteFlags, ModuleWriteMiscRecord) && Module->MiscRecord != NULL && Module->SizeOfMiscRecord != 0 ) {
if ((Status = WriteOther (Dump, StreamInfo, Module->MiscRecord, Module->SizeOfMiscRecord, &MiscRecordRva)) != S_OK) { return Status; }
} else {
MiscRecordRva = 0; }
DumpModule.BaseOfImage = Module->BaseOfImage; DumpModule.SizeOfImage = Module->SizeOfImage; DumpModule.CheckSum = Module->CheckSum; DumpModule.TimeDateStamp = Module->TimeDateStamp; DumpModule.VersionInfo = Module->VersionInfo; DumpModule.CvRecord.Rva = CvRecordRva; DumpModule.CvRecord.DataSize = Module->SizeOfCvRecord; DumpModule.MiscRecord.Rva = MiscRecordRva; DumpModule.MiscRecord.DataSize = Module->SizeOfMiscRecord; DumpModule.ModuleNameRva = StringRva; DumpModule.Reserved0 = 0; DumpModule.Reserved1 = 0;
//
// Write the module entry itself.
//
if ((Status = WriteModule (Dump, StreamInfo, &DumpModule, NULL)) != S_OK) { return Status; } }
return S_OK; }
HRESULT WriteUnloadedModuleList( IN PMINIDUMP_STATE Dump, IN PMINIDUMP_STREAM_INFO StreamInfo, IN PINTERNAL_PROCESS Process ) { HRESULT Status; MINIDUMP_UNLOADED_MODULE_LIST DumpModuleList; MINIDUMP_UNLOADED_MODULE DumpModule; ULONG StringRva; PLIST_ENTRY Entry; PINTERNAL_UNLOADED_MODULE Module; ULONG32 NumberOfModules;
ASSERT (Process); ASSERT (StreamInfo);
if (IsListEmpty(&Process->UnloadedModuleList)) { // Nothing to write.
return S_OK; } NumberOfModules = Process->NumberOfUnloadedModules;
if ((Status = Dump->OutProv-> Seek(FILE_BEGIN, StreamInfo->RvaForCurUnloadedModule, NULL)) != S_OK) { return Status; }
DumpModuleList.SizeOfHeader = sizeof(DumpModuleList); DumpModuleList.SizeOfEntry = sizeof(DumpModule); DumpModuleList.NumberOfEntries = NumberOfModules; if ((Status = Dump->OutProv-> WriteAll(&DumpModuleList, sizeof(DumpModuleList))) != S_OK) { return Status; }
StreamInfo->RvaForCurUnloadedModule += sizeof (DumpModuleList);
//
// Iterate through the module list writing the module name, module entry
// and module debug info to the dump file.
//
Entry = Process->UnloadedModuleList.Flink; while ( Entry != &Process->UnloadedModuleList ) {
Module = CONTAINING_RECORD (Entry, INTERNAL_UNLOADED_MODULE, ModulesLink); Entry = Entry->Flink;
//
// Write module name.
//
if ((Status = WriteStringToPool (Dump, StreamInfo, Module->Path, &StringRva)) != S_OK) { return Status; }
DumpModule.BaseOfImage = Module->BaseOfImage; DumpModule.SizeOfImage = Module->SizeOfImage; DumpModule.CheckSum = Module->CheckSum; DumpModule.TimeDateStamp = Module->TimeDateStamp; DumpModule.ModuleNameRva = StringRva;
//
// Write the module entry itself.
//
if ((Status = WriteUnloadedModule(Dump, StreamInfo, &DumpModule, NULL)) != S_OK) { return Status; } }
return S_OK; }
#define FUNCTION_TABLE_ALIGNMENT 8
HRESULT WriteFunctionTableList( IN PMINIDUMP_STATE Dump, IN PMINIDUMP_STREAM_INFO StreamInfo, IN PINTERNAL_PROCESS Process ) { HRESULT Status; MINIDUMP_FUNCTION_TABLE_STREAM TableStream; MINIDUMP_FUNCTION_TABLE_DESCRIPTOR DumpTable; PLIST_ENTRY Entry; PINTERNAL_FUNCTION_TABLE Table; RVA PrevRva, Rva;
ASSERT (Process); ASSERT (StreamInfo);
if (IsListEmpty(&Process->FunctionTableList)) { // Nothing to write.
return S_OK; } Rva = StreamInfo->RvaOfFunctionTableList; if ((Status = Dump->OutProv-> Seek(FILE_BEGIN, Rva, NULL)) != S_OK) { return Status; }
TableStream.SizeOfHeader = sizeof(TableStream); TableStream.SizeOfDescriptor = sizeof(DumpTable); TableStream.SizeOfNativeDescriptor = Dump->FuncTableSize; TableStream.SizeOfFunctionEntry = Dump->FuncTableEntrySize; TableStream.NumberOfDescriptors = Process->NumberOfFunctionTables; // Ensure that the actual descriptors are 8-byte aligned in
// the overall file.
Rva += sizeof(TableStream); PrevRva = Rva; Rva = (Rva + FUNCTION_TABLE_ALIGNMENT - 1) & ~(FUNCTION_TABLE_ALIGNMENT - 1); TableStream.SizeOfAlignPad = Rva - PrevRva;
if ((Status = Dump->OutProv-> WriteAll(&TableStream, sizeof(TableStream))) != S_OK) { return Status; }
//
// Iterate through the function table list
// and write out the table data.
//
Entry = Process->FunctionTableList.Flink; while ( Entry != &Process->FunctionTableList ) {
Table = CONTAINING_RECORD (Entry, INTERNAL_FUNCTION_TABLE, TableLink); Entry = Entry->Flink;
// Move to aligned RVA.
if ((Status = Dump->OutProv-> Seek(FILE_BEGIN, Rva, NULL)) != S_OK) { return Status; }
DumpTable.MinimumAddress = Table->MinimumAddress; DumpTable.MaximumAddress = Table->MaximumAddress; DumpTable.BaseAddress = Table->BaseAddress; DumpTable.EntryCount = Table->EntryCount; Rva += sizeof(DumpTable) + Dump->FuncTableSize + Dump->FuncTableEntrySize * Table->EntryCount; PrevRva = Rva; Rva = (Rva + FUNCTION_TABLE_ALIGNMENT - 1) & ~(FUNCTION_TABLE_ALIGNMENT - 1); DumpTable.SizeOfAlignPad = Rva - PrevRva; if ((Status = Dump->OutProv-> WriteAll(&DumpTable, sizeof(DumpTable))) != S_OK || (Status = Dump->OutProv-> WriteAll(Table->RawTable, Dump->FuncTableSize)) != S_OK || (Status = Dump->OutProv-> WriteAll(Table->RawEntries, Dump->FuncTableEntrySize * Table->EntryCount)) != S_OK) { return Status; } }
return S_OK; }
HRESULT WriteMemoryBlocks( IN PMINIDUMP_STATE Dump, IN PMINIDUMP_STREAM_INFO StreamInfo, IN PINTERNAL_PROCESS Process ) { HRESULT Status; PLIST_ENTRY ScanEntry; PVA_RANGE Scan;
ScanEntry = Process->MemoryBlocks.Flink; while (ScanEntry != &Process->MemoryBlocks) { Scan = CONTAINING_RECORD(ScanEntry, VA_RANGE, NextLink); ScanEntry = Scan->NextLink.Flink; if ((Status = WriteMemoryFromProcess(Dump, StreamInfo, Process, Scan->Start, Scan->Size, FALSE, Scan->Type, NULL)) != S_OK) { return Status; } }
return S_OK; }
HRESULT CalculateSizeForThreads( IN PMINIDUMP_STATE Dump, IN PINTERNAL_PROCESS Process, IN OUT MINIDUMP_STREAM_INFO * StreamInfo ) { ULONG SizeOfContexts; ULONG SizeOfMemRegions; ULONG SizeOfThreads; ULONG SizeOfMemoryDescriptors; ULONG NumberOfThreads; ULONG NumberOfMemRegions; PINTERNAL_THREAD Thread; PLIST_ENTRY Entry;
ASSERT (Process); ASSERT (StreamInfo);
NumberOfThreads = 0; NumberOfMemRegions = 0; SizeOfContexts = 0; SizeOfMemRegions = 0;
// If no backing store information is written a normal
// MINIDUMP_THREAD can be used, otherwise a MINIDUMP_THREAD_EX
// is required.
StreamInfo->ThreadStructSize = sizeof(MINIDUMP_THREAD);
Entry = Process->ThreadList.Flink; while ( Entry != &Process->ThreadList ) {
Thread = CONTAINING_RECORD (Entry, INTERNAL_THREAD, ThreadsLink); Entry = Entry->Flink;
//
// Do we need to write any information for this thread at all?
//
if (IsFlagClear (Thread->WriteFlags, ThreadWriteThread)) { continue; }
NumberOfThreads++;
//
// Write a context for this thread?
//
if (IsFlagSet (Thread->WriteFlags, ThreadWriteContext)) { SizeOfContexts += Dump->ContextSize; }
//
// Write a stack for this thread?
//
if (IsFlagSet (Thread->WriteFlags, ThreadWriteStack)) { NumberOfMemRegions++; SizeOfMemRegions += (ULONG) (Thread->StackBase - Thread->StackEnd); } //
// Write the backing store for this thread?
//
if (IsFlagSet (Thread->WriteFlags, ThreadWriteBackingStore)) { // A newly created thread's backing store may be empty
// so handle the case of zero size.
if (Thread->BackingStoreSize) { NumberOfMemRegions++; SizeOfMemRegions += Thread->BackingStoreSize; } // We still need a THREAD_EX as this is a platform
// which supports backing store.
StreamInfo->ThreadStructSize = sizeof(MINIDUMP_THREAD_EX); }
// Write an instruction window for this thread?
if (IsFlagSet (Thread->WriteFlags, ThreadWriteInstructionWindow)) { GenGetThreadInstructionWindow(Dump, Process, Thread); }
// Write thread data for this thread?
if (IsFlagSet (Thread->WriteFlags, ThreadWriteThreadData) && Thread->SizeOfTeb) { GenAddTebMemory(Dump, Process, Thread); } }
Process->NumberOfThreadsToWrite = NumberOfThreads; //
// Nobody should have allocated memory from the thread list region yet.
//
ASSERT (StreamInfo->SizeOfThreadList == 0);
SizeOfThreads = NumberOfThreads * StreamInfo->ThreadStructSize; SizeOfMemoryDescriptors = NumberOfMemRegions * sizeof (MINIDUMP_MEMORY_DESCRIPTOR);
StreamInfo->SizeOfThreadList += sizeof (ULONG32); StreamInfo->SizeOfThreadList += SizeOfThreads;
StreamInfo->SizeOfOther += SizeOfContexts; StreamInfo->SizeOfMemoryData += SizeOfMemRegions; StreamInfo->SizeOfMemoryDescriptors += SizeOfMemoryDescriptors;
return S_OK; }
HRESULT CalculateSizeForModules( IN PMINIDUMP_STATE Dump, IN PINTERNAL_PROCESS Process, IN OUT MINIDUMP_STREAM_INFO * StreamInfo )
/*++
Routine Description:
Calculate amount of space needed in the string pool, the memory table and the module list table for module information.
Arguments:
Process - Minidump process information.
StreamInfo - The stream size information for this dump.
--*/
{ ULONG NumberOfModules; ULONG SizeOfDebugInfo; ULONG SizeOfStringData; PINTERNAL_MODULE Module; PLIST_ENTRY Entry;
ASSERT (Process); ASSERT (StreamInfo);
NumberOfModules = 0; SizeOfDebugInfo = 0; SizeOfStringData = 0;
Entry = Process->ModuleList.Flink; while ( Entry != &Process->ModuleList ) {
Module = CONTAINING_RECORD (Entry, INTERNAL_MODULE, ModulesLink); Entry = Entry->Flink;
if (IsFlagClear (Module->WriteFlags, ModuleWriteModule)) { continue; }
NumberOfModules++; SizeOfStringData += (GenStrLengthW(Module->SavePath) + 1) * sizeof(WCHAR); SizeOfStringData += sizeof ( MINIDUMP_STRING );
//
// Add in the sizes of both the CV and MISC records.
//
if (IsFlagSet (Module->WriteFlags, ModuleWriteCvRecord)) { SizeOfDebugInfo += Module->SizeOfCvRecord; } if (IsFlagSet (Module->WriteFlags, ModuleWriteMiscRecord)) { SizeOfDebugInfo += Module->SizeOfMiscRecord; }
//
// Add the module data sections if requested.
//
if (IsFlagSet (Module->WriteFlags, ModuleWriteDataSeg)) { GenGetDataContributors(Dump, Process, Module); } }
Process->NumberOfModulesToWrite = NumberOfModules; ASSERT (StreamInfo->SizeOfModuleList == 0);
StreamInfo->SizeOfModuleList += sizeof (MINIDUMP_MODULE_LIST); StreamInfo->SizeOfModuleList += (NumberOfModules * sizeof (MINIDUMP_MODULE));
StreamInfo->SizeOfStringPool += SizeOfStringData; StreamInfo->SizeOfOther += SizeOfDebugInfo;
return S_OK; }
HRESULT CalculateSizeForUnloadedModules( IN PINTERNAL_PROCESS Process, IN OUT MINIDUMP_STREAM_INFO * StreamInfo ) { ULONG SizeOfStringData; PINTERNAL_UNLOADED_MODULE Module; PLIST_ENTRY Entry;
ASSERT (Process); ASSERT (StreamInfo);
SizeOfStringData = 0;
Entry = Process->UnloadedModuleList.Flink; while ( Entry != &Process->UnloadedModuleList ) {
Module = CONTAINING_RECORD (Entry, INTERNAL_UNLOADED_MODULE, ModulesLink); Entry = Entry->Flink;
SizeOfStringData += (GenStrLengthW(Module->Path) + 1) * sizeof(WCHAR); SizeOfStringData += sizeof ( MINIDUMP_STRING ); }
ASSERT (StreamInfo->SizeOfUnloadedModuleList == 0);
StreamInfo->SizeOfUnloadedModuleList += sizeof (MINIDUMP_UNLOADED_MODULE_LIST); StreamInfo->SizeOfUnloadedModuleList += (Process->NumberOfUnloadedModules * sizeof (MINIDUMP_UNLOADED_MODULE));
StreamInfo->SizeOfStringPool += SizeOfStringData;
return S_OK; }
HRESULT CalculateSizeForFunctionTables( IN PMINIDUMP_STATE Dump, IN PINTERNAL_PROCESS Process, IN OUT MINIDUMP_STREAM_INFO * StreamInfo ) { ULONG SizeOfTableData; PINTERNAL_FUNCTION_TABLE Table; PLIST_ENTRY Entry;
ASSERT (Process); ASSERT (StreamInfo);
SizeOfTableData = 0;
Entry = Process->FunctionTableList.Flink; while ( Entry != &Process->FunctionTableList ) {
Table = CONTAINING_RECORD (Entry, INTERNAL_FUNCTION_TABLE, TableLink); Entry = Entry->Flink;
// Alignment space is required as the structures
// in the stream must be properly aligned.
SizeOfTableData += FUNCTION_TABLE_ALIGNMENT + sizeof(MINIDUMP_FUNCTION_TABLE_DESCRIPTOR) + Dump->FuncTableSize + Table->EntryCount * Dump->FuncTableEntrySize; }
ASSERT (StreamInfo->SizeOfFunctionTableList == 0);
StreamInfo->SizeOfFunctionTableList += sizeof (MINIDUMP_FUNCTION_TABLE_STREAM) + SizeOfTableData;
return S_OK; }
HRESULT WriteDirectoryEntry( IN PMINIDUMP_STATE Dump, IN ULONG StreamType, IN ULONG RvaOfDir, IN SIZE_T SizeOfDir ) { MINIDUMP_DIRECTORY Dir;
//
// Do not write empty streams.
//
if (SizeOfDir == 0) { return S_OK; }
//
// The maximum size of a directory is a ULONG.
//
if (SizeOfDir > _UI32_MAX) { return E_INVALIDARG; }
Dir.StreamType = StreamType; Dir.Location.Rva = RvaOfDir; Dir.Location.DataSize = (ULONG) SizeOfDir;
return Dump->OutProv-> WriteAll(&Dir, sizeof(Dir)); }
VOID ScanContextForModuleRefs( IN PMINIDUMP_STATE Dump, IN PINTERNAL_PROCESS Process, IN PINTERNAL_THREAD Thread ) { ULONG NumReg; PUCHAR Reg; PINTERNAL_MODULE Module;
Reg = (PUCHAR)Thread->ContextBuffer + Dump->RegScanOffset; NumReg = Dump->RegScanCount;
while (NumReg-- > 0) { ULONG64 CurPtr;
CurPtr = GenGetPointer(Dump, Reg); Reg += Dump->PtrSize; if (Module = ModuleContainingAddress(Process, CurPtr)) { Module->WriteFlags |= ModuleReferencedByMemory; } } } HRESULT FilterOrScanMemory( IN PMINIDUMP_STATE Dump, IN PINTERNAL_PROCESS Process, IN PVOID MemBuffer ) { PINTERNAL_THREAD Thread; PLIST_ENTRY ThreadEntry;
//
// Scan the stack and backing store
// memory for every thread.
//
ThreadEntry = Process->ThreadList.Flink; while ( ThreadEntry != &Process->ThreadList ) {
Thread = CONTAINING_RECORD (ThreadEntry, INTERNAL_THREAD, ThreadsLink); ThreadEntry = ThreadEntry->Flink;
ScanContextForModuleRefs(Dump, Process, Thread); ScanMemoryForModuleRefs(Dump, Process, TRUE, Thread->StackEnd, (ULONG)(Thread->StackBase - Thread->StackEnd), MemBuffer, MEMBLOCK_STACK, FALSE); ScanMemoryForModuleRefs(Dump, Process, TRUE, Thread->BackingStoreBase, Thread->BackingStoreSize, MemBuffer, MEMBLOCK_STORE, FALSE); }
return S_OK; }
#define IND_CAPTURE_SIZE (Dump->PageSize / 4)
#define PRE_IND_CAPTURE_SIZE (IND_CAPTURE_SIZE / 4)
HRESULT AddIndirectMemory( IN PMINIDUMP_STATE Dump, IN PINTERNAL_PROCESS Process, IN ULONG64 Base, IN ULONG Size, IN PVOID MemBuffer ) { HRESULT Status = S_OK; PVOID CurMem; ULONG Done;
// If the base address is not pointer-size aligned
// we can't easily assume that this is a meaningful
// area of memory to scan for references. Normal
// stack and store addresses will always be pointer
// size aligned so this should only reject invalid
// addresses.
if (!Base || !Size || (Base & (Dump->PtrSize - 1))) { return S_OK; }
if ((Status = Dump->SysProv-> ReadVirtual(Dump->ProcessHandle, Base, MemBuffer, Size, &Done)) != S_OK) { return Status; }
CurMem = MemBuffer; Done /= Dump->PtrSize; while (Done-- > 0) {
ULONG64 Start; HRESULT OneStatus; //
// How much memory to save behind the pointer is an
// interesting question. The reference could be to
// an arbitrary amount of data, so we want to save
// a good chunk, but we don't want to end up saving
// full memory.
// Instead, pick an arbitrary size -- 1/4 of a page --
// and save some before and after the pointer.
//
Start = GenGetPointer(Dump, CurMem); // If it's a pointer into an image assume doesn't
// need to be stored via this mechanism as it's either
// code, which will be mapped later; or data, which can
// be saved with MiniDumpWithDataSegs.
if (!ModuleContainingAddress(Process, Start)) { if (Start < PRE_IND_CAPTURE_SIZE) { Start = 0; } else { Start -= PRE_IND_CAPTURE_SIZE; } if ((OneStatus = GenAddMemoryBlock(Dump, Process, MEMBLOCK_INDIRECT, Start, IND_CAPTURE_SIZE)) != S_OK) { Status = OneStatus; } }
CurMem = (PUCHAR)CurMem + Dump->PtrSize; }
return Status; }
HRESULT AddIndirectlyReferencedMemory( IN PMINIDUMP_STATE Dump, IN PINTERNAL_PROCESS Process, IN PVOID MemBuffer ) { HRESULT Status; PINTERNAL_THREAD Thread; PLIST_ENTRY ThreadEntry;
//
// Scan the stack and backing store
// memory for every thread.
//
ThreadEntry = Process->ThreadList.Flink; while ( ThreadEntry != &Process->ThreadList ) {
Thread = CONTAINING_RECORD (ThreadEntry, INTERNAL_THREAD, ThreadsLink); ThreadEntry = ThreadEntry->Flink;
if ((Status = AddIndirectMemory(Dump, Process, Thread->StackEnd, (ULONG)(Thread->StackBase - Thread->StackEnd), MemBuffer)) != S_OK) { return Status; } if ((Status = AddIndirectMemory(Dump, Process, Thread->BackingStoreBase, Thread->BackingStoreSize, MemBuffer)) != S_OK) { return Status; } }
return S_OK; }
HRESULT PostProcessInfo( IN PMINIDUMP_STATE Dump, IN PINTERNAL_PROCESS Process ) { PVOID MemBuffer; HRESULT Status = S_OK;
MemBuffer = AllocMemory(Dump, Process->MaxStackOrStoreSize); if (!MemBuffer) { return E_OUTOFMEMORY; } if (Dump->DumpType & (MiniDumpFilterMemory | MiniDumpScanMemory)) { Status = FilterOrScanMemory(Dump, Process, MemBuffer); }
if (Status == S_OK && (Dump->DumpType & MiniDumpWithIndirectlyReferencedMemory)) { // Indirect memory is not crucial to the dump so
// ignore any failures.
AddIndirectlyReferencedMemory(Dump, Process, MemBuffer); }
FreeMemory(Dump, MemBuffer); return Status; }
HRESULT ExecuteCallbacks( IN PMINIDUMP_STATE Dump, IN PINTERNAL_PROCESS Process ) { PINTERNAL_MODULE Module; PINTERNAL_THREAD Thread; PLIST_ENTRY Entry; MINIDUMP_CALLBACK_INPUT CallbackInput; MINIDUMP_CALLBACK_OUTPUT CallbackOutput;
ASSERT ( Process != NULL );
Thread = NULL; Module = NULL;
//
// If there are no callbacks to call, then we are done.
//
if ( Dump->CallbackRoutine == NULL ) { return S_OK; }
CallbackInput.ProcessHandle = Dump->ProcessHandle; CallbackInput.ProcessId = Dump->ProcessId;
//
// Call callbacks for each module.
//
CallbackInput.CallbackType = ModuleCallback;
Entry = Process->ModuleList.Flink; while ( Entry != &Process->ModuleList ) {
Module = CONTAINING_RECORD (Entry, INTERNAL_MODULE, ModulesLink); Entry = Entry->Flink;
CallbackInput.Module.FullPath = Module->FullPath; CallbackInput.Module.BaseOfImage = Module->BaseOfImage; CallbackInput.Module.SizeOfImage = Module->SizeOfImage; CallbackInput.Module.CheckSum = Module->CheckSum; CallbackInput.Module.TimeDateStamp = Module->TimeDateStamp; CopyMemory (&CallbackInput.Module.VersionInfo, &Module->VersionInfo, sizeof (CallbackInput.Module.VersionInfo) ); CallbackInput.Module.CvRecord = Module->CvRecord; CallbackInput.Module.SizeOfCvRecord = Module->SizeOfCvRecord; CallbackInput.Module.MiscRecord = Module->MiscRecord; CallbackInput.Module.SizeOfMiscRecord = Module->SizeOfMiscRecord;
CallbackOutput.ModuleWriteFlags = Module->WriteFlags;
if (!Dump->CallbackRoutine (Dump->CallbackParam, &CallbackInput, &CallbackOutput)) { // If the callback returned FALSE, quit now.
return E_ABORT; }
// Don't turn on any flags that weren't originally set.
Module->WriteFlags &= CallbackOutput.ModuleWriteFlags; }
Module = NULL;
//
// Call callbacks for each thread.
//
if (Dump->BackingStore) { CallbackInput.CallbackType = ThreadExCallback; } else { CallbackInput.CallbackType = ThreadCallback; }
Entry = Process->ThreadList.Flink; while ( Entry != &Process->ThreadList ) {
Thread = CONTAINING_RECORD (Entry, INTERNAL_THREAD, ThreadsLink); Entry = Entry->Flink;
CallbackInput.ThreadEx.ThreadId = Thread->ThreadId; CallbackInput.ThreadEx.ThreadHandle = Thread->ThreadHandle; CallbackInput.ThreadEx.Context = *(PCONTEXT)Thread->ContextBuffer; CallbackInput.ThreadEx.SizeOfContext = Dump->ContextSize; CallbackInput.ThreadEx.StackBase = Thread->StackBase; CallbackInput.ThreadEx.StackEnd = Thread->StackEnd; CallbackInput.ThreadEx.BackingStoreBase = Thread->BackingStoreBase; CallbackInput.ThreadEx.BackingStoreEnd = Thread->BackingStoreBase + Thread->BackingStoreSize;
CallbackOutput.ThreadWriteFlags = Thread->WriteFlags;
if (!Dump->CallbackRoutine (Dump->CallbackParam, &CallbackInput, &CallbackOutput)) { // If the callback returned FALSE, quit now.
return E_ABORT; }
// Don't turn on any flags that weren't originally set.
Thread->WriteFlags &= CallbackOutput.ThreadWriteFlags; }
Thread = NULL;
//
// Call callbacks to include memory.
//
CallbackInput.CallbackType = MemoryCallback;
for (;;) {
CallbackOutput.MemoryBase = 0; CallbackOutput.MemorySize = 0;
if (!Dump->CallbackRoutine (Dump->CallbackParam, &CallbackInput, &CallbackOutput) || !CallbackOutput.MemorySize) { // If the callback returned FALSE there is no more memory.
break; }
GenAddMemoryBlock(Dump, Process, MEMBLOCK_MEM_CALLBACK, CallbackOutput.MemoryBase, CallbackOutput.MemorySize); }
return S_OK; }
HRESULT WriteSystemInfo( IN PMINIDUMP_STATE Dump, IN PMINIDUMP_STREAM_INFO StreamInfo ) { HRESULT Status; MINIDUMP_SYSTEM_INFO SystemInfo; WCHAR CSDVersionW [128]; RVA StringRva; ULONG Length;
StringRva = 0;
//
// First, get the CPU information.
//
if ((Status = Dump->SysProv-> GetCpuInfo(&SystemInfo.ProcessorArchitecture, &SystemInfo.ProcessorLevel, &SystemInfo.ProcessorRevision, &SystemInfo.NumberOfProcessors, &SystemInfo.Cpu)) != S_OK) { return Status; }
//
// Next get OS Information.
//
SystemInfo.ProductType = (UCHAR)Dump->OsProductType; SystemInfo.MajorVersion = Dump->OsMajor; SystemInfo.MinorVersion = Dump->OsMinor; SystemInfo.BuildNumber = Dump->OsBuildNumber; SystemInfo.PlatformId = Dump->OsPlatformId; SystemInfo.SuiteMask = Dump->OsSuiteMask; SystemInfo.Reserved2 = 0;
if ((Status = Dump->SysProv-> GetOsCsdString(CSDVersionW, ARRAY_COUNT(CSDVersionW))) != S_OK) { return Status; }
Length = (GenStrLengthW(CSDVersionW) + 1) * sizeof(WCHAR);
if ( Length != StreamInfo->VersionStringLength ) {
//
// If this fails it means that since the OS lied to us about the
// size of the string. Very bad, we should investigate.
//
ASSERT ( FALSE ); return E_INVALIDARG; }
if ((Status = WriteStringToPool (Dump, StreamInfo, CSDVersionW, &StringRva)) != S_OK) { return Status; }
SystemInfo.CSDVersionRva = StringRva;
ASSERT ( sizeof (SystemInfo) == StreamInfo->SizeOfSystemInfo );
return WriteAtOffset (Dump, StreamInfo->RvaOfSystemInfo, &SystemInfo, sizeof (SystemInfo)); }
HRESULT CalculateSizeForSystemInfo( IN PMINIDUMP_STATE Dump, IN OUT MINIDUMP_STREAM_INFO * StreamInfo ) { HRESULT Status; WCHAR CSDVersionW [128]; ULONG Length;
if ((Status = Dump->SysProv-> GetOsCsdString(CSDVersionW, ARRAY_COUNT(CSDVersionW))) != S_OK) { return Status; } Length = (GenStrLengthW(CSDVersionW) + 1) * sizeof(WCHAR);
StreamInfo->SizeOfSystemInfo = sizeof (MINIDUMP_SYSTEM_INFO); StreamInfo->SizeOfStringPool += Length; StreamInfo->SizeOfStringPool += sizeof (MINIDUMP_STRING); StreamInfo->VersionStringLength = Length;
return S_OK; }
HRESULT WriteMiscInfo( IN PMINIDUMP_STATE Dump, IN PMINIDUMP_STREAM_INFO StreamInfo, IN PINTERNAL_PROCESS Process ) { MINIDUMP_MISC_INFO MiscInfo;
ZeroMemory(&MiscInfo, sizeof(MiscInfo)); MiscInfo.SizeOfInfo = sizeof(MiscInfo); MiscInfo.Flags1 |= MINIDUMP_MISC1_PROCESS_ID; MiscInfo.ProcessId = Process->ProcessId;
if (Process->TimesValid) { MiscInfo.Flags1 |= MINIDUMP_MISC1_PROCESS_TIMES; MiscInfo.ProcessCreateTime = Process->CreateTime; MiscInfo.ProcessUserTime = Process->UserTime; MiscInfo.ProcessKernelTime = Process->KernelTime; } return WriteAtOffset(Dump, StreamInfo->RvaOfMiscInfo, &MiscInfo, sizeof(MiscInfo)); }
void PostProcessMemoryBlocks( IN PMINIDUMP_STATE Dump, IN PINTERNAL_PROCESS Process ) { PINTERNAL_THREAD Thread; PLIST_ENTRY ThreadEntry;
//
// Remove any overlap with thread stacks and backing stores.
//
ThreadEntry = Process->ThreadList.Flink; while ( ThreadEntry != &Process->ThreadList ) {
Thread = CONTAINING_RECORD (ThreadEntry, INTERNAL_THREAD, ThreadsLink); ThreadEntry = ThreadEntry->Flink;
GenRemoveMemoryRange(Dump, Process, Thread->StackEnd, (ULONG)(Thread->StackBase - Thread->StackEnd)); GenRemoveMemoryRange(Dump, Process, Thread->BackingStoreBase, Thread->BackingStoreSize); } }
HRESULT CalculateStreamInfo( IN PMINIDUMP_STATE Dump, IN PINTERNAL_PROCESS Process, OUT PMINIDUMP_STREAM_INFO StreamInfo, IN BOOL ExceptionPresent, IN PMINIDUMP_USER_STREAM UserStreamArray, IN ULONG UserStreamCount ) { ULONG i; HRESULT Status; ULONG NumberOfStreams; ULONG SizeOfDirectory; ULONG SizeOfUserStreams;
ASSERT ( Process != NULL ); ASSERT ( StreamInfo != NULL );
ZeroMemory (StreamInfo, sizeof (*StreamInfo));
if ( ExceptionPresent ) { NumberOfStreams = NUMBER_OF_STREAMS + UserStreamCount; } else { NumberOfStreams = NUMBER_OF_STREAMS + UserStreamCount - 1; } if (Dump->DumpType & MiniDumpWithHandleData) { NumberOfStreams++; } if (!IsListEmpty(&Process->UnloadedModuleList)) { NumberOfStreams++; } // Add a stream for dynamic function tables if some were found.
if (!IsListEmpty(&Process->FunctionTableList)) { NumberOfStreams++; }
SizeOfDirectory = sizeof (MINIDUMP_DIRECTORY) * NumberOfStreams;
StreamInfo->NumberOfStreams = NumberOfStreams;
StreamInfo->RvaOfHeader = 0;
StreamInfo->SizeOfHeader = sizeof (MINIDUMP_HEADER);
StreamInfo->RvaOfDirectory = StreamInfo->RvaOfHeader + StreamInfo->SizeOfHeader;
StreamInfo->SizeOfDirectory = SizeOfDirectory;
StreamInfo->RvaOfSystemInfo = StreamInfo->RvaOfDirectory + StreamInfo->SizeOfDirectory;
if ((Status = CalculateSizeForSystemInfo(Dump, StreamInfo)) != S_OK) { return Status; }
StreamInfo->RvaOfMiscInfo = StreamInfo->RvaOfSystemInfo + StreamInfo->SizeOfSystemInfo; StreamInfo->RvaOfException = StreamInfo->RvaOfMiscInfo + sizeof(MINIDUMP_MISC_INFO);
//
// If an exception is present, reserve enough space for the exception
// and for the excepting thread's context in the Other stream.
//
if ( ExceptionPresent ) { StreamInfo->SizeOfException = sizeof (MINIDUMP_EXCEPTION_STREAM); StreamInfo->SizeOfOther += Dump->ContextSize; }
StreamInfo->RvaOfThreadList = StreamInfo->RvaOfException + StreamInfo->SizeOfException; StreamInfo->RvaForCurThread = StreamInfo->RvaOfThreadList;
if ((Status = CalculateSizeForThreads(Dump, Process, StreamInfo)) != S_OK) { return Status; }
if ((Status = CalculateSizeForModules(Dump, Process, StreamInfo)) != S_OK) { return Status; }
if (!IsListEmpty(&Process->UnloadedModuleList)) { if ((Status = CalculateSizeForUnloadedModules(Process, StreamInfo)) != S_OK) { return Status; } }
if (!IsListEmpty(&Process->FunctionTableList)) { if ((Status = CalculateSizeForFunctionTables(Dump, Process, StreamInfo)) != S_OK) { return Status; } }
if ((Dump->DumpType & MiniDumpWithProcessThreadData) && Process->SizeOfPeb) { GenAddPebMemory(Dump, Process); } PostProcessMemoryBlocks(Dump, Process); // Add in any extra memory blocks.
StreamInfo->SizeOfMemoryData += Process->SizeOfMemoryBlocks; StreamInfo->SizeOfMemoryDescriptors += Process->NumberOfMemoryBlocks * sizeof(MINIDUMP_MEMORY_DESCRIPTOR);
StreamInfo->RvaOfModuleList = StreamInfo->RvaOfThreadList + StreamInfo->SizeOfThreadList; StreamInfo->RvaForCurModule = StreamInfo->RvaOfModuleList;
StreamInfo->RvaOfUnloadedModuleList = StreamInfo->RvaOfModuleList + StreamInfo->SizeOfModuleList; StreamInfo->RvaForCurUnloadedModule = StreamInfo->RvaOfUnloadedModuleList;
// If there aren't any function tables the size will be zero
// and the RVA will just end up being the RVA after
// the module list.
StreamInfo->RvaOfFunctionTableList = StreamInfo->RvaOfUnloadedModuleList + StreamInfo->SizeOfUnloadedModuleList;
StreamInfo->RvaOfStringPool = StreamInfo->RvaOfFunctionTableList + StreamInfo->SizeOfFunctionTableList; StreamInfo->RvaForCurString = StreamInfo->RvaOfStringPool; StreamInfo->RvaOfOther = StreamInfo->RvaOfStringPool + StreamInfo->SizeOfStringPool; StreamInfo->RvaForCurOther = StreamInfo->RvaOfOther;
SizeOfUserStreams = 0;
for (i = 0; i < UserStreamCount; i++) {
SizeOfUserStreams += (ULONG) UserStreamArray[i].BufferSize; }
StreamInfo->RvaOfUserStreams = StreamInfo->RvaOfOther + StreamInfo->SizeOfOther; StreamInfo->SizeOfUserStreams = SizeOfUserStreams;
//
// Minidumps with full memory must put the raw memory
// data at the end of the dump so that it's easy to
// avoid mapping it when the dump is mapped. There's
// no problem with putting the memory data at the end
// of the dump in all the other cases so just always
// put the memory data at the end of the dump.
//
// One other benefit of having the raw data at the end
// is that we can safely assume that everything except
// the raw memory data will fit in the first 4GB of
// the file so we don't need to use 64-bit file offsets
// for everything.
//
// In the full memory case no other memory should have
// been saved so far as stacks, data segs and so on
// will automatically be included in the full memory
// information. If something was saved it'll throw off
// the dump writing as full memory descriptors are generated
// on the fly at write time rather than being precached.
// If other descriptors and memory blocks have been written
// out everything will be wrong.
// Full-memory descriptors are also 64-bit and do not
// match the 32-bit descriptors written elsewhere.
//
if ((Dump->DumpType & MiniDumpWithFullMemory) && (StreamInfo->SizeOfMemoryDescriptors > 0 || StreamInfo->SizeOfMemoryData > 0)) { return E_INVALIDARG; } StreamInfo->SizeOfMemoryDescriptors += (Dump->DumpType & MiniDumpWithFullMemory) ? sizeof (MINIDUMP_MEMORY64_LIST) : sizeof (MINIDUMP_MEMORY_LIST); StreamInfo->RvaOfMemoryDescriptors = StreamInfo->RvaOfUserStreams + StreamInfo->SizeOfUserStreams; StreamInfo->RvaForCurMemoryDescriptor = StreamInfo->RvaOfMemoryDescriptors;
StreamInfo->RvaOfMemoryData = StreamInfo->RvaOfMemoryDescriptors + StreamInfo->SizeOfMemoryDescriptors; StreamInfo->RvaForCurMemoryData = StreamInfo->RvaOfMemoryData;
//
// Handle data cannot easily be sized beforehand so it's
// also streamed in at write time. In a partial dump
// it'll come after the memory data. In a full dump
// it'll come before it.
//
StreamInfo->RvaOfHandleData = StreamInfo->RvaOfMemoryData + StreamInfo->SizeOfMemoryData; return S_OK; }
HRESULT WriteHeader( IN PMINIDUMP_STATE Dump, IN PMINIDUMP_STREAM_INFO StreamInfo ) { HRESULT Status; MINIDUMP_HEADER Header;
Header.Signature = MINIDUMP_SIGNATURE; // Encode an implementation-specific version into the high word
// of the version to make it clear what version of the code
// was used to generate a dump.
Header.Version = (MINIDUMP_VERSION & 0xffff) | ((VER_PRODUCTMAJORVERSION & 0xf) << 28) | ((VER_PRODUCTMINORVERSION & 0xf) << 24) | ((VER_PRODUCTBUILD & 0xff) << 16); Header.NumberOfStreams = StreamInfo->NumberOfStreams; Header.StreamDirectoryRva = StreamInfo->RvaOfDirectory; // If there were any partial failures during the
// dump generation set the checksum to indicate that.
// The checksum field was never used before so
// we're stealing it for a somewhat related purpose.
Header.CheckSum = Dump->AccumStatus; Header.Flags = Dump->DumpType;
//
// Store the time of dump generation.
//
if ((Status = Dump->SysProv-> GetCurrentTimeDate((PULONG)&Header.TimeDateStamp)) != S_OK) { return Status; } ASSERT (sizeof (Header) == StreamInfo->SizeOfHeader);
return WriteAtOffset (Dump, StreamInfo->RvaOfHeader, &Header, sizeof (Header)); }
HRESULT WriteDirectoryTable( IN PMINIDUMP_STATE Dump, IN PMINIDUMP_STREAM_INFO StreamInfo, IN PINTERNAL_PROCESS Process, IN PMINIDUMP_USER_STREAM UserStreamArray, IN ULONG UserStreamCount ) { HRESULT Status; ULONG i; ULONG Offset;
if ((Status = WriteDirectoryEntry (Dump, StreamInfo->ThreadStructSize == sizeof(MINIDUMP_THREAD_EX) ? ThreadExListStream : ThreadListStream, StreamInfo->RvaOfThreadList, StreamInfo->SizeOfThreadList)) != S_OK) { return Status; }
if ((Status = WriteDirectoryEntry (Dump, ModuleListStream, StreamInfo->RvaOfModuleList, StreamInfo->SizeOfModuleList)) != S_OK) { return Status; }
if (!IsListEmpty(&Process->UnloadedModuleList)) { if ((Status = WriteDirectoryEntry (Dump, UnloadedModuleListStream, StreamInfo->RvaOfUnloadedModuleList, StreamInfo->SizeOfUnloadedModuleList)) != S_OK) { return Status; } }
if (!IsListEmpty(&Process->FunctionTableList)) { if ((Status = WriteDirectoryEntry (Dump, FunctionTableStream, StreamInfo->RvaOfFunctionTableList, StreamInfo->SizeOfFunctionTableList)) != S_OK) { return Status; } }
if ((Status = WriteDirectoryEntry (Dump, (Dump->DumpType & MiniDumpWithFullMemory) ? Memory64ListStream : MemoryListStream, StreamInfo->RvaOfMemoryDescriptors, StreamInfo->SizeOfMemoryDescriptors)) != S_OK) { return Status; }
//
// Write exception directory entry.
//
if ((Status = WriteDirectoryEntry (Dump, ExceptionStream, StreamInfo->RvaOfException, StreamInfo->SizeOfException)) != S_OK) { return Status; }
//
// Write system info entry.
//
if ((Status = WriteDirectoryEntry (Dump, SystemInfoStream, StreamInfo->RvaOfSystemInfo, StreamInfo->SizeOfSystemInfo)) != S_OK) { return Status; }
//
// Write misc info entry.
//
if ((Status = WriteDirectoryEntry(Dump, MiscInfoStream, StreamInfo->RvaOfMiscInfo, sizeof(MINIDUMP_MISC_INFO))) != S_OK) { return Status; }
if ((Dump->DumpType & MiniDumpWithHandleData) && StreamInfo->SizeOfHandleData) { //
// Write handle data entry. If no handle data
// was recovered we don't write an entry and
// just let another unused stream get auto-created.
//
if ((Status = WriteDirectoryEntry (Dump, HandleDataStream, StreamInfo->RvaOfHandleData, StreamInfo->SizeOfHandleData)) != S_OK) { return Status; } } Offset = StreamInfo->RvaOfUserStreams;
for (i = 0; i < UserStreamCount; i++) {
if ((Status = WriteDirectoryEntry (Dump, UserStreamArray[i].Type, Offset, UserStreamArray [i].BufferSize)) != S_OK) { return Status; }
Offset += UserStreamArray[i].BufferSize; }
return S_OK; }
HRESULT WriteException( IN PMINIDUMP_STATE Dump, IN PMINIDUMP_STREAM_INFO StreamInfo, IN CONST PEXCEPTION_INFO ExceptionInfo ) { HRESULT Status; ULONG i; ULONG ContextRva; MINIDUMP_EXCEPTION_STREAM ExceptionStream;
if (ExceptionInfo == NULL ) { return S_OK; }
if ((Status = WriteOther (Dump, StreamInfo, ExceptionInfo->ContextRecord, Dump->ContextSize, &ContextRva)) != S_OK) { return Status; }
ZeroMemory (&ExceptionStream, sizeof (ExceptionStream));
ExceptionStream.ThreadId = ExceptionInfo->ThreadId; ExceptionStream.ExceptionRecord = ExceptionInfo->ExceptionRecord; ExceptionStream.ThreadContext.DataSize = Dump->ContextSize; ExceptionStream.ThreadContext.Rva = ContextRva;
return WriteAtOffset(Dump, StreamInfo->RvaOfException, &ExceptionStream, StreamInfo->SizeOfException); }
HRESULT WriteUserStreams( IN PMINIDUMP_STATE Dump, IN PMINIDUMP_STREAM_INFO StreamInfo, IN PMINIDUMP_USER_STREAM UserStreamArray, IN ULONG UserStreamCount ) { HRESULT Status; ULONG i; ULONG Offset;
Offset = StreamInfo->RvaOfUserStreams;
for (i = 0; i < UserStreamCount; i++) {
if ((Status = WriteAtOffset(Dump, Offset, UserStreamArray[i].Buffer, UserStreamArray[i].BufferSize)) != S_OK) { return Status; }
Offset += UserStreamArray[ i ].BufferSize; }
return S_OK; }
HRESULT WriteMemoryListHeader( IN PMINIDUMP_STATE Dump, IN PMINIDUMP_STREAM_INFO StreamInfo ) { HRESULT Status; ULONG Size; ULONG Count; MINIDUMP_MEMORY_LIST MemoryList;
ASSERT ( StreamInfo->RvaOfMemoryDescriptors == StreamInfo->RvaForCurMemoryDescriptor );
Size = StreamInfo->SizeOfMemoryDescriptors; Size -= sizeof (MINIDUMP_MEMORY_LIST); ASSERT ( (Size % sizeof (MINIDUMP_MEMORY_DESCRIPTOR)) == 0); Count = Size / sizeof (MINIDUMP_MEMORY_DESCRIPTOR);
MemoryList.NumberOfMemoryRanges = Count;
if ((Status = WriteAtOffset (Dump, StreamInfo->RvaOfMemoryDescriptors, &MemoryList, sizeof (MemoryList))) != S_OK) { return Status; }
StreamInfo->RvaForCurMemoryDescriptor += sizeof (MemoryList); return S_OK; }
#define FULL_MEMORY_BUFFER 65536
HRESULT WriteFullMemory( IN PMINIDUMP_STATE Dump, IN PMINIDUMP_STREAM_INFO StreamInfo ) { PVOID Buffer; HRESULT Status; ULONG64 Offset; ULONG64 Size; ULONG Protect, State, Type; MINIDUMP_MEMORY64_LIST List; MINIDUMP_MEMORY_DESCRIPTOR64 Desc; ULONG64 SeekOffset;
//
// Pick up the current offset for the RVA as
// variable data may have been written in previously.
//
if ((Status = Dump->OutProv-> Seek(FILE_CURRENT, 0, &SeekOffset)) != S_OK) { return Status; }
StreamInfo->RvaOfMemoryDescriptors = (ULONG)SeekOffset; Buffer = AllocMemory(Dump, FULL_MEMORY_BUFFER); if (Buffer == NULL) { return E_OUTOFMEMORY; }
//
// First pass: count and write descriptors.
// Only accessible, available memory is saved.
//
// Write placeholder list header.
ZeroMemory(&List, sizeof(List)); if ((Status = Dump->OutProv-> WriteAll(&List, sizeof(List))) != S_OK) { goto Exit; } Offset = 0; for (;;) { if (Dump->SysProv-> QueryVirtual(Dump->ProcessHandle, Offset, &Offset, &Size, &Protect, &State, &Type) != S_OK) { break; }
if (((Protect & PAGE_GUARD) || (Protect & PAGE_NOACCESS) || (State & MEM_FREE) || (State & MEM_RESERVE))) { Offset += Size; continue; }
// The size of a stream is a ULONG32 so we can't store
// any more than that.
if (List.NumberOfMemoryRanges == (_UI32_MAX - sizeof(MINIDUMP_MEMORY64_LIST)) / sizeof(Desc)) { goto Exit; }
List.NumberOfMemoryRanges++; Desc.StartOfMemoryRange = Offset; Desc.DataSize = Size; if ((Status = Dump->OutProv-> WriteAll(&Desc, sizeof(Desc))) != S_OK) { goto Exit; }
Offset += Size; }
StreamInfo->SizeOfMemoryDescriptors += (ULONG)List.NumberOfMemoryRanges * sizeof(Desc); List.BaseRva = (RVA64)StreamInfo->RvaOfMemoryDescriptors + StreamInfo->SizeOfMemoryDescriptors; //
// Second pass: write memory contents.
//
Offset = 0; for (;;) { ULONG64 ChunkOffset; ULONG ChunkSize;
if (Dump->SysProv-> QueryVirtual(Dump->ProcessHandle, Offset, &Offset, &Size, &Protect, &State, &Type) != S_OK) { break; }
if (((Protect & PAGE_GUARD) || (Protect & PAGE_NOACCESS) || (State & MEM_FREE) || (State & MEM_RESERVE))) { Offset += Size; continue; }
ChunkOffset = Offset; Offset += Size; while (Size > 0) { if (Size > FULL_MEMORY_BUFFER) { ChunkSize = FULL_MEMORY_BUFFER; } else { ChunkSize = (ULONG)Size; }
if ((Status = Dump->SysProv-> ReadAllVirtual(Dump->ProcessHandle, ChunkOffset, Buffer, ChunkSize)) != S_OK) { goto Exit; } if ((Status = Dump->OutProv-> WriteAll(Buffer, ChunkSize)) != S_OK) { goto Exit; } ChunkOffset += ChunkSize; Size -= ChunkSize; } }
// Write correct list header.
Status = WriteAtOffset(Dump, StreamInfo->RvaOfMemoryDescriptors, &List, sizeof(List)); Exit: FreeMemory(Dump, Buffer); return Status; }
HRESULT WriteDumpData( IN PMINIDUMP_STATE Dump, IN PMINIDUMP_STREAM_INFO StreamInfo, IN PINTERNAL_PROCESS Process, IN CONST PEXCEPTION_INFO ExceptionInfo, IN CONST PMINIDUMP_USER_STREAM UserStreamArray, IN ULONG UserStreamCount ) { HRESULT Status;
if ((Status = WriteHeader ( Dump, StreamInfo )) != S_OK) { return Status; }
if ((Status = WriteSystemInfo ( Dump, StreamInfo )) != S_OK) { return Status; }
if ((Status = WriteMiscInfo(Dump, StreamInfo, Process)) != S_OK) { return Status; }
//
// Optionally, write the exception to the file.
//
if ((Status = WriteException ( Dump, StreamInfo, ExceptionInfo )) != S_OK) { return Status; }
if (!(Dump->DumpType & MiniDumpWithFullMemory)) { //
// WriteMemoryList initializes the memory list header (count).
// The actual writing of the entries is done by WriteThreadList
// and WriteModuleList.
//
if ((Status = WriteMemoryListHeader ( Dump, StreamInfo )) != S_OK) { return Status; }
if ((Status = WriteMemoryBlocks(Dump, StreamInfo, Process)) != S_OK) { return Status; } }
//
// Write the threads list. This will also write the contexts, and
// stacks for each thread.
//
if ((Status = WriteThreadList ( Dump, StreamInfo, Process )) != S_OK) { return Status; }
//
// Write the module list. This will also write the debug information and
// module name to the file.
//
if ((Status = WriteModuleList ( Dump, StreamInfo, Process )) != S_OK) { return Status; }
//
// Write the unloaded module list.
//
if ((Status = WriteUnloadedModuleList ( Dump, StreamInfo, Process )) != S_OK) { return Status; }
//
// Write the function table list.
//
if ((Status = WriteFunctionTableList ( Dump, StreamInfo, Process )) != S_OK) { return Status; }
if ((Status = WriteUserStreams ( Dump, StreamInfo, UserStreamArray, UserStreamCount)) != S_OK) { return Status; }
// Put the file pointer at the end of the dump so
// we can accumulate write-streamed data.
if ((Status = Dump->OutProv-> Seek(FILE_BEGIN, StreamInfo->RvaOfHandleData, NULL)) != S_OK) { return Status; } if (Dump->DumpType & MiniDumpWithHandleData) { if ((Status = GenWriteHandleData(Dump, StreamInfo)) != S_OK) { return Status; } }
if (Dump->DumpType & MiniDumpWithFullMemory) { if ((Status = WriteFullMemory(Dump, StreamInfo)) != S_OK) { return Status; } }
if ((Status = Dump->OutProv-> Seek(FILE_BEGIN, StreamInfo->RvaOfDirectory, NULL)) != S_OK) { return Status; }
return WriteDirectoryTable ( Dump, StreamInfo, Process, UserStreamArray, UserStreamCount); }
HRESULT MarshalExceptionPointers( IN PMINIDUMP_STATE Dump, IN CONST _MINIDUMP_EXCEPTION_INFORMATION64* ExceptionParam, IN OUT PEXCEPTION_INFO ExceptionInfo ) { HRESULT Status;
if (Dump->ExRecordSize == sizeof(EXCEPTION_RECORD32)) {
EXCEPTION_RECORD32 Record;
if ((Status = Dump->SysProv-> ReadAllVirtual(Dump->ProcessHandle, ExceptionParam->ExceptionRecord, &Record, sizeof(Record))) != S_OK) { return Status; }
GenExRecord32ToMd(&Record, &ExceptionInfo->ExceptionRecord);
} else { EXCEPTION_RECORD64 Record;
if ((Status = Dump->SysProv-> ReadAllVirtual(Dump->ProcessHandle, ExceptionParam->ExceptionRecord, &Record, sizeof(Record))) != S_OK) { return Status; }
GenExRecord64ToMd(&Record, &ExceptionInfo->ExceptionRecord); } if ((Status = Dump->SysProv-> ReadAllVirtual(Dump->ProcessHandle, ExceptionParam->ContextRecord, ExceptionInfo->ContextRecord, Dump->ContextSize)) != S_OK) { return Status; }
return S_OK; }
HRESULT GetExceptionInfo( IN PMINIDUMP_STATE Dump, IN CONST struct _MINIDUMP_EXCEPTION_INFORMATION64* ExceptionParam, OUT PEXCEPTION_INFO * ExceptionInfoBuffer ) { HRESULT Status; PEXCEPTION_INFO ExceptionInfo; ULONG Size;
if ( ExceptionParam == NULL ) { *ExceptionInfoBuffer = NULL; return S_OK; }
if (Dump->ExRecordSize != sizeof(EXCEPTION_RECORD32) && Dump->ExRecordSize != sizeof(EXCEPTION_RECORD64)) { return E_INVALIDARG; } Size = sizeof(*ExceptionInfo); if (ExceptionParam->ClientPointers) { Size += Dump->ContextSize; } ExceptionInfo = (PEXCEPTION_INFO)AllocMemory(Dump, Size); if ( ExceptionInfo == NULL ) { return E_OUTOFMEMORY; }
if ( !ExceptionParam->ClientPointers ) {
if (Dump->ExRecordSize == sizeof(EXCEPTION_RECORD32)) { GenExRecord32ToMd((PEXCEPTION_RECORD32) ExceptionParam->ExceptionRecord, &ExceptionInfo->ExceptionRecord); } else { GenExRecord64ToMd((PEXCEPTION_RECORD64) ExceptionParam->ExceptionRecord, &ExceptionInfo->ExceptionRecord); }
ExceptionInfo->ContextRecord = (PVOID)ExceptionParam->ContextRecord;
Status = S_OK;
} else {
ExceptionInfo->ContextRecord = (PVOID)(ExceptionInfo + 1); Status = MarshalExceptionPointers(Dump, ExceptionParam, ExceptionInfo); }
ExceptionInfo->ThreadId = ExceptionParam->ThreadId;
if ( Status != S_OK ) { FreeMemory(Dump, ExceptionInfo); } else {
//
// We've seen some cases where the exception record has
// a bogus number of parameters, causing stack corruption here.
// We could fail such cases but in the spirit of try to
// allow dumps to generated as often as possible we just
// limit the number to the maximum.
//
if (ExceptionInfo->ExceptionRecord.NumberParameters > EXCEPTION_MAXIMUM_PARAMETERS) { ExceptionInfo->ExceptionRecord.NumberParameters = EXCEPTION_MAXIMUM_PARAMETERS; } *ExceptionInfoBuffer = ExceptionInfo; }
return Status; }
VOID FreeExceptionInfo( IN PMINIDUMP_STATE Dump, IN PEXCEPTION_INFO ExceptionInfo ) { if ( ExceptionInfo ) { FreeMemory(Dump, ExceptionInfo); } }
HRESULT GetSystemType( IN OUT PMINIDUMP_STATE Dump ) { HRESULT Status;
if ((Status = Dump->SysProv-> GetCpuType(&Dump->CpuType, &Dump->BackingStore)) != S_OK) { return Status; } switch(Dump->CpuType) { case IMAGE_FILE_MACHINE_I386: Dump->CpuTypeName = L"x86"; break; case IMAGE_FILE_MACHINE_IA64: Dump->CpuTypeName = L"IA64"; break; case IMAGE_FILE_MACHINE_AMD64: Dump->CpuTypeName = L"AMD64"; break; case IMAGE_FILE_MACHINE_ARM: Dump->CpuTypeName = L"ARM"; break; default: return E_INVALIDARG; } if ((Status = Dump->SysProv-> GetOsInfo(&Dump->OsPlatformId, &Dump->OsMajor, &Dump->OsMinor, &Dump->OsBuildNumber, &Dump->OsProductType, &Dump->OsSuiteMask)) != S_OK) { return Status; } Dump->SysProv-> GetContextSizes(&Dump->ContextSize, &Dump->RegScanOffset, &Dump->RegScanCount); Dump->SysProv-> GetPointerSize(&Dump->PtrSize); Dump->SysProv-> GetPageSize(&Dump->PageSize); Dump->SysProv-> GetFunctionTableSizes(&Dump->FuncTableSize, &Dump->FuncTableEntrySize); Dump->SysProv-> GetInstructionWindowSize(&Dump->InstructionWindowSize);
if (Dump->FuncTableSize > MAX_DYNAMIC_FUNCTION_TABLE) { return E_INVALIDARG; }
Dump->ExRecordSize = Dump->PtrSize == 8 ? sizeof(EXCEPTION_RECORD64) : sizeof(EXCEPTION_RECORD32);
if (Dump->RegScanCount == -1) { // Default reg scan.
switch(Dump->CpuType) { case IMAGE_FILE_MACHINE_I386: Dump->RegScanOffset = 0x9c; Dump->RegScanCount = 11; break; case IMAGE_FILE_MACHINE_IA64: Dump->RegScanOffset = 0x878; Dump->RegScanCount = 41; break; case IMAGE_FILE_MACHINE_AMD64: Dump->RegScanOffset = 0x78; Dump->RegScanCount = 17; break; case IMAGE_FILE_MACHINE_ARM: Dump->RegScanOffset = 4; Dump->RegScanCount = 16; break; default: return E_INVALIDARG; } }
if (Dump->InstructionWindowSize == -1) { // Default window.
switch(Dump->CpuType) { case IMAGE_FILE_MACHINE_I386: Dump->InstructionWindowSize = 256; break; case IMAGE_FILE_MACHINE_IA64: Dump->InstructionWindowSize = 768; break; case IMAGE_FILE_MACHINE_AMD64: Dump->InstructionWindowSize = 256; break; case IMAGE_FILE_MACHINE_ARM: Dump->InstructionWindowSize = 512; break; default: return E_INVALIDARG; } } return S_OK; }
HRESULT WINAPI MiniDumpProvideDump( IN HANDLE hProcess, IN DWORD ProcessId, IN MiniDumpSystemProvider* SysProv, IN MiniDumpOutputProvider* OutProv, IN MiniDumpAllocationProvider* AllocProv, IN ULONG DumpType, IN CONST struct _MINIDUMP_EXCEPTION_INFORMATION64* ExceptionParam, OPTIONAL IN CONST struct _MINIDUMP_USER_STREAM_INFORMATION* UserStreamParam, OPTIONAL IN CONST struct _MINIDUMP_CALLBACK_INFORMATION* CallbackParam OPTIONAL ) { HRESULT Status; PINTERNAL_PROCESS Process; MINIDUMP_STREAM_INFO StreamInfo; PEXCEPTION_INFO ExceptionInfo; PMINIDUMP_USER_STREAM UserStreamArray; ULONG UserStreamCount; MINIDUMP_STATE Dump;
if ((DumpType & ~(MiniDumpNormal | MiniDumpWithDataSegs | MiniDumpWithFullMemory | MiniDumpWithHandleData | MiniDumpFilterMemory | MiniDumpScanMemory | MiniDumpWithUnloadedModules | MiniDumpWithIndirectlyReferencedMemory | MiniDumpFilterModulePaths | MiniDumpWithProcessThreadData | MiniDumpWithPrivateReadWriteMemory | MiniDumpWithoutOptionalData))) {
return E_INVALIDARG; }
// Modify flags that are affected by dropping optional data.
if (DumpType & MiniDumpWithoutOptionalData) { DumpType &= ~(MiniDumpWithFullMemory | MiniDumpWithIndirectlyReferencedMemory | MiniDumpWithPrivateReadWriteMemory); } // Full memory by definition includes data segments,
// so turn off data segments if full memory is requested.
if (DumpType & MiniDumpWithFullMemory) { DumpType &= ~(MiniDumpWithDataSegs | MiniDumpFilterMemory | MiniDumpScanMemory | MiniDumpWithIndirectlyReferencedMemory | MiniDumpWithProcessThreadData | MiniDumpWithPrivateReadWriteMemory); } // Fail immediately if stream-oriented data is requested but the
// output provider can't handle streamed output.
if ((DumpType & (MiniDumpWithHandleData | MiniDumpWithFullMemory)) && OutProv->SupportsStreaming() != S_OK) { return E_INVALIDARG; }
//
// Initialization
//
Process = NULL; UserStreamArray = NULL; UserStreamCount = 0;
Dump.ProcessHandle = hProcess; Dump.ProcessId = ProcessId; Dump.SysProv = SysProv; Dump.OutProv = OutProv; Dump.AllocProv = AllocProv; Dump.DumpType = DumpType, Dump.AccumStatus = 0;
if ( CallbackParam ) { Dump.CallbackRoutine = CallbackParam->CallbackRoutine; Dump.CallbackParam = CallbackParam->CallbackParam; } else { Dump.CallbackRoutine = NULL; Dump.CallbackParam = NULL; }
if ((Status = GetSystemType(&Dump)) != S_OK) { return Status; } //
// Marshal exception pointers into our process space if necessary.
//
if ((Status = GetExceptionInfo(&Dump, ExceptionParam, &ExceptionInfo)) != S_OK) { goto Exit; }
if ( UserStreamParam ) { UserStreamArray = UserStreamParam->UserStreamArray; UserStreamCount = UserStreamParam->UserStreamCount; }
//
// Gather information about the process we are dumping.
//
if ((Status = GenGetProcessInfo(&Dump, &Process)) != S_OK) { goto Exit; }
//
// Process gathered information.
//
if ((Status = PostProcessInfo(&Dump, Process)) != S_OK) { goto Exit; } //
// Execute user callbacks to filter out unwanted data.
//
if ((Status = ExecuteCallbacks(&Dump, Process)) != S_OK) { goto Exit; }
//
// Pass 1: Fill in the StreamInfo structure.
//
if ((Status = CalculateStreamInfo(&Dump, Process, &StreamInfo, ( ExceptionInfo != NULL ) ? TRUE : FALSE, UserStreamArray, UserStreamCount)) != S_OK) { goto Exit; }
//
// Pass 2: Write the minidump data to disk.
//
if (DumpType & (MiniDumpWithHandleData | MiniDumpWithFullMemory)) { // We don't know how big the output will be.
if ((Status = OutProv->Start(0)) != S_OK) { goto Exit; } } else { // Pass in the size of the dump.
if ((Status = OutProv->Start(StreamInfo.RvaOfHandleData)) != S_OK) { goto Exit; } }
Status = WriteDumpData(&Dump, &StreamInfo, Process, ExceptionInfo, UserStreamArray, UserStreamCount);
OutProv->Finish(); Exit:
//
// Free up any memory marshalled for the exception pointers.
//
FreeExceptionInfo ( &Dump, ExceptionInfo );
//
// Free the process objects.
//
if ( Process ) { GenFreeProcessObject ( &Dump, Process ); }
return Status; }
BOOL UseDbgHelp(void) { #if !defined (_DBGHELP_SOURCE_)
OSVERSIONINFO OsVer; //
// Bind to dbghelp imports.
//
// We can only use the dbghelp imports if the dbghelp on
// the system is of recent vintage and therefore has a good
// chance of including all the latest minidump code. Currently
// Windows Server (5.01 >= build 3620) has the latest minidump
// code so its dbghelp can be used. If minidump.lib has major
// feature additions this check will need to be revised.
//
OsVer.dwOSVersionInfoSize = sizeof(OsVer); if (GetVersionEx(&OsVer) && OsVer.dwPlatformId == VER_PLATFORM_WIN32_NT && (OsVer.dwMajorVersion > 5 || (OsVer.dwMajorVersion == 5 && OsVer.dwMinorVersion >= 2)) && OsVer.dwBuildNumber >= 3620) { return TRUE; }
#endif
return FALSE; }
BOOL WINAPI MiniDumpWriteDump( IN HANDLE hProcess, IN DWORD ProcessId, IN HANDLE hFile, IN MINIDUMP_TYPE DumpType, IN CONST PMINIDUMP_EXCEPTION_INFORMATION ExceptionParam, OPTIONAL IN CONST PMINIDUMP_USER_STREAM_INFORMATION UserStreamParam, OPTIONAL IN CONST PMINIDUMP_CALLBACK_INFORMATION CallbackParam OPTIONAL ) { HRESULT Status; MiniDumpSystemProvider* SysProv = NULL; MiniDumpOutputProvider* OutProv = NULL; MiniDumpAllocationProvider* AllocProv = NULL; MINIDUMP_EXCEPTION_INFORMATION64 ExInfoBuffer; PMINIDUMP_EXCEPTION_INFORMATION64 ExInfo;
// Attempt to use the system's copy of the code in
// dbghelp. If any of this process fails just continue
// on with the local code.
if (UseDbgHelp()) { HINSTANCE Dll = LoadLibrary("dbghelp.dll"); if (Dll) {
MINI_DUMP_WRITE_DUMP Fn = (MINI_DUMP_WRITE_DUMP) GetProcAddress(Dll, "MiniDumpWriteDump"); if (Fn) { BOOL Succ = Fn(hProcess, ProcessId, hFile, DumpType, ExceptionParam, UserStreamParam, CallbackParam); FreeLibrary(Dll); return Succ; }
FreeLibrary(Dll); } } if ((Status = MiniDumpCreateLiveSystemProvider(&SysProv)) != S_OK || (Status = MiniDumpCreateFileOutputProvider(hFile, &OutProv)) != S_OK || (Status = MiniDumpCreateLiveAllocationProvider(&AllocProv)) != S_OK) { goto Exit; }
if (ExceptionParam) { ExInfo = &ExInfoBuffer; ExInfo->ThreadId = ExceptionParam->ThreadId; ExInfo->ClientPointers = ExceptionParam->ClientPointers; if (ExInfo->ClientPointers) { EXCEPTION_POINTERS ClientPointers; if ((Status = SysProv-> ReadAllVirtual(hProcess, (LONG_PTR)ExceptionParam->ExceptionPointers, &ClientPointers, sizeof(ClientPointers))) != S_OK) { goto Exit; } ExInfo->ExceptionRecord = (LONG_PTR)ClientPointers.ExceptionRecord; ExInfo->ContextRecord = (LONG_PTR)ClientPointers.ContextRecord; } else { ExInfo->ExceptionRecord = (LONG_PTR)ExceptionParam->ExceptionPointers->ExceptionRecord; ExInfo->ContextRecord = (LONG_PTR)ExceptionParam->ExceptionPointers->ContextRecord; } } else { ExInfo = NULL; } Status = MiniDumpProvideDump(hProcess, ProcessId, SysProv, OutProv, AllocProv, DumpType, ExInfo, UserStreamParam, CallbackParam); Exit:
if (SysProv) { SysProv->Release(); } if (OutProv) { OutProv->Release(); } if (AllocProv) { AllocProv->Release(); } if (Status == S_OK) { return TRUE; } else { SetLastError(Status); return FALSE; } }
BOOL WINAPI MiniDumpReadDumpStream( IN PVOID Base, ULONG StreamNumber, OUT PMINIDUMP_DIRECTORY * Dir, OPTIONAL OUT PVOID * Stream, OPTIONAL OUT ULONG * StreamSize OPTIONAL ) { ULONG i; BOOL Found; PMINIDUMP_DIRECTORY Dirs; PMINIDUMP_HEADER Header;
// Attempt to use the system's copy of the code in
// dbghelp. If any of this process fails just continue
// on with the local code.
if (UseDbgHelp()) { HINSTANCE Dll = LoadLibrary("dbghelp.dll"); if (Dll) {
MINI_DUMP_READ_DUMP_STREAM Fn = (MINI_DUMP_READ_DUMP_STREAM) GetProcAddress(Dll, "MiniDumpReadDumpStream"); if (Fn) { BOOL Succ = Fn(Base, StreamNumber, Dir, Stream, StreamSize); FreeLibrary(Dll); return Succ; }
FreeLibrary(Dll); } }
//
// Initialization
//
Found = FALSE; Header = (PMINIDUMP_HEADER) Base;
if ( Header->Signature != MINIDUMP_SIGNATURE || (Header->Version & 0xffff) != MINIDUMP_VERSION ) {
//
// Invalid Minidump file.
//
return FALSE; }
Dirs = (PMINIDUMP_DIRECTORY) RVA_TO_ADDR (Header, Header->StreamDirectoryRva);
for (i = 0; i < Header->NumberOfStreams; i++) { if (Dirs [i].StreamType == StreamNumber) { Found = TRUE; break; } }
if ( !Found ) { return FALSE; }
if ( Dir ) { *Dir = &Dirs [i]; }
if ( Stream ) { *Stream = RVA_TO_ADDR (Base, Dirs [i].Location.Rva); }
if ( StreamSize ) { *StreamSize = Dirs[i].Location.DataSize; }
return TRUE; }
|