Leaked source code of windows server 2003
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

3288 lines
92 KiB

/*++
Copyright(c) 1999-2002 Microsoft Corporation
Module Name:
minidump.c
Abstract:
Minidump user-mode crashdump support.
Author:
Matthew D Hendel (math) 20-Aug-1999
--*/
#include "pch.cpp"
#include <limits.h>
#include <dbgver.h>
PINTERNAL_MODULE
ModuleContainingAddress(
IN PINTERNAL_PROCESS Process,
IN ULONG64 Address
)
{
PINTERNAL_MODULE Module;
PLIST_ENTRY ModuleEntry;
ModuleEntry = Process->ModuleList.Flink;
while ( ModuleEntry != &Process->ModuleList ) {
Module = CONTAINING_RECORD (ModuleEntry, INTERNAL_MODULE,
ModulesLink);
ModuleEntry = ModuleEntry->Flink;
if (Address >= Module->BaseOfImage &&
Address < Module->BaseOfImage + Module->SizeOfImage) {
return Module;
}
}
return NULL;
}
VOID
ScanMemoryForModuleRefs(
IN PMINIDUMP_STATE Dump,
IN PINTERNAL_PROCESS Process,
IN BOOL DoRead,
IN ULONG64 Base,
IN ULONG Size,
IN PVOID MemBuffer,
IN MEMBLOCK_TYPE TypeOfMemory,
IN BOOL FilterContent
)
{
PVOID CurMem;
ULONG64 CurPtr;
ULONG Done;
// We only want to scan certain kinds of memory.
if (TypeOfMemory != MEMBLOCK_STACK &&
TypeOfMemory != MEMBLOCK_STORE &&
TypeOfMemory != MEMBLOCK_DATA_SEG &&
TypeOfMemory != MEMBLOCK_INDIRECT)
{
return;
}
// If the base address is not pointer-size aligned
// we can't easily assume that this is a meaningful
// area of memory to scan for references. Normal
// stack and store addresses will always be pointer
// size aligned so this should only reject invalid
// addresses.
if (!Base || !Size || (Base & (Dump->PtrSize - 1))) {
return;
}
if (DoRead) {
if (Dump->SysProv->
ReadVirtual(Dump->ProcessHandle,
Base, MemBuffer, Size, &Done) != S_OK) {
return;
}
} else {
Done = Size;
}
CurMem = MemBuffer;
Done /= Dump->PtrSize;
while (Done-- > 0) {
PINTERNAL_MODULE Module;
BOOL InAny;
CurPtr = GenGetPointer(Dump, CurMem);
// An IA64 backing store can contain PFS values
// that must be preserved in order to allow stack walking.
// The high two bits of PFS are the privilege level, which
// should always be 0y11 for user-mode code so we use this
// as a marker to look for PFS entries.
// There is also a NAT collection flush at every 0x1F8
// offset. These values cannot be filtered.
if (Dump->CpuType == IMAGE_FILE_MACHINE_IA64 &&
TypeOfMemory == MEMBLOCK_STORE) {
if ((Base & 0x1f8) == 0x1f8 ||
(CurPtr & 0xc000000000000000UI64) == 0xc000000000000000UI64) {
goto Next;
}
}
InAny = FALSE;
if (Module = ModuleContainingAddress(Process, CurPtr)) {
Module->WriteFlags |= ModuleReferencedByMemory;
InAny = TRUE;
}
// If the current pointer is not a module reference
// or an internal reference for a thread stack or store,
// filter it.
if (FilterContent && !InAny) {
PINTERNAL_THREAD Thread;
PLIST_ENTRY ThreadEntry;
ThreadEntry = Process->ThreadList.Flink;
while ( ThreadEntry != &Process->ThreadList ) {
Thread = CONTAINING_RECORD (ThreadEntry, INTERNAL_THREAD,
ThreadsLink);
ThreadEntry = ThreadEntry->Flink;
if ((CurPtr >= Thread->StackEnd &&
CurPtr < Thread->StackBase) ||
(CurPtr >= Thread->BackingStoreBase &&
CurPtr < Thread->BackingStoreBase +
Thread->BackingStoreSize)) {
InAny = TRUE;
break;
}
}
if (!InAny) {
GenSetPointer(Dump, CurMem, 0);
}
}
Next:
CurMem = (PUCHAR)CurMem + Dump->PtrSize;
Base += Dump->PtrSize;
}
}
HRESULT
WriteAtOffset(
IN PMINIDUMP_STATE Dump,
ULONG Offset,
PVOID Buffer,
ULONG BufferSize
)
{
HRESULT Status;
if ((Status = Dump->OutProv->
Seek(FILE_BEGIN, Offset, NULL)) == S_OK) {
Status = Dump->OutProv->
WriteAll(Buffer, BufferSize);
}
return Status;
}
HRESULT
WriteOther(
IN PMINIDUMP_STATE Dump,
IN PMINIDUMP_STREAM_INFO StreamInfo,
IN PVOID Buffer,
IN ULONG SizeOfBuffer,
OUT ULONG * BufferRva
)
{
HRESULT Status;
ULONG Rva;
ASSERT (Buffer != NULL);
ASSERT (SizeOfBuffer != 0);
//
// If it's larger than we've allocated space for, fail.
//
Rva = StreamInfo->RvaForCurOther;
if (Rva + SizeOfBuffer >
StreamInfo->RvaOfOther + StreamInfo->SizeOfOther) {
return E_INVALIDARG;
}
//
// Set location to point at which we want to write and write.
//
if ((Status = Dump->OutProv->
Seek(FILE_BEGIN, Rva, NULL)) == S_OK) {
if ((Status = Dump->OutProv->
WriteAll(Buffer, SizeOfBuffer)) == S_OK) {
if (BufferRva) {
*BufferRva = Rva;
}
StreamInfo->RvaForCurOther += SizeOfBuffer;
}
}
return Status;
}
HRESULT
WriteMemory(
IN PMINIDUMP_STATE Dump,
IN PMINIDUMP_STREAM_INFO StreamInfo,
IN PVOID Buffer,
IN ULONG64 StartOfRegion,
IN ULONG SizeOfRegion,
OUT ULONG * MemoryDataRva OPTIONAL
)
{
HRESULT Status;
ULONG DataRva;
ULONG ListRva;
ULONG SizeOfMemoryDescriptor;
MINIDUMP_MEMORY_DESCRIPTOR Descriptor;
ASSERT ( StreamInfo != NULL );
ASSERT ( Buffer != NULL );
ASSERT ( StartOfRegion != 0 );
ASSERT ( SizeOfRegion != 0 );
//
// Writing a memory entry is a little different. When a memory entry
// is written we need a descriptor in the memory list describing the
// memory written AND a variable-sized entry in the MEMORY_DATA region
// with the actual data.
//
ListRva = StreamInfo->RvaForCurMemoryDescriptor;
DataRva = StreamInfo->RvaForCurMemoryData;
SizeOfMemoryDescriptor = sizeof (MINIDUMP_MEMORY_DESCRIPTOR);
//
// If we overflowed either the memory list or the memory data
// regions, fail.
//
if ( ( ListRva + SizeOfMemoryDescriptor >
StreamInfo->RvaOfMemoryDescriptors + StreamInfo->SizeOfMemoryDescriptors) ||
( DataRva + SizeOfRegion >
StreamInfo->RvaOfMemoryData + StreamInfo->SizeOfMemoryData ) ) {
return E_INVALIDARG;
}
//
// First, write the data to the MEMORY_DATA region.
//
if ((Status = Dump->OutProv->
Seek(FILE_BEGIN, DataRva, NULL)) != S_OK ||
(Status = Dump->OutProv->
WriteAll(Buffer, SizeOfRegion)) != S_OK) {
return Status;
}
//
// Then update the memory descriptor in the MEMORY_LIST region.
//
Descriptor.StartOfMemoryRange = StartOfRegion;
Descriptor.Memory.DataSize = SizeOfRegion;
Descriptor.Memory.Rva = DataRva;
if ((Status = Dump->OutProv->
Seek(FILE_BEGIN, ListRva, NULL)) != S_OK ||
(Status = Dump->OutProv->
WriteAll(&Descriptor, SizeOfMemoryDescriptor)) != S_OK) {
return Status;
}
//
// Update both the List Rva and the Data Rva and return the
// the Data Rva.
//
StreamInfo->RvaForCurMemoryDescriptor += SizeOfMemoryDescriptor;
StreamInfo->RvaForCurMemoryData += SizeOfRegion;
if ( MemoryDataRva ) {
*MemoryDataRva = DataRva;
}
return S_OK;
}
HRESULT
WriteMemoryFromProcess(
IN PMINIDUMP_STATE Dump,
IN PMINIDUMP_STREAM_INFO StreamInfo,
IN PINTERNAL_PROCESS Process,
IN ULONG64 BaseOfRegion,
IN ULONG SizeOfRegion,
IN BOOL FilterContent,
IN MEMBLOCK_TYPE TypeOfMemory,
OUT ULONG * MemoryDataRva OPTIONAL
)
{
HRESULT Status;
PVOID Buffer;
Buffer = AllocMemory ( Dump, SizeOfRegion );
if (!Buffer) {
return E_OUTOFMEMORY;
}
if ((Status = Dump->SysProv->
ReadAllVirtual(Dump->ProcessHandle, BaseOfRegion, Buffer,
SizeOfRegion)) == S_OK) {
if (FilterContent) {
ScanMemoryForModuleRefs(Dump, Process, FALSE, BaseOfRegion,
SizeOfRegion, Buffer, TypeOfMemory,
TRUE);
}
Status = WriteMemory (Dump,
StreamInfo,
Buffer,
BaseOfRegion,
SizeOfRegion,
MemoryDataRva);
}
FreeMemory(Dump, Buffer);
return Status;
}
HRESULT
WriteThread(
IN PMINIDUMP_STATE Dump,
IN PMINIDUMP_STREAM_INFO StreamInfo,
IN LPVOID ThreadData,
IN ULONG SizeOfThreadData,
OUT ULONG * ThreadDataRva OPTIONAL
)
{
HRESULT Status;
ULONG Rva;
ASSERT (StreamInfo);
ASSERT (ThreadData);
Rva = StreamInfo->RvaForCurThread;
if ( Rva + SizeOfThreadData >
StreamInfo->RvaOfThreadList + StreamInfo->SizeOfThreadList ) {
return E_INVALIDARG;
}
if ((Status = Dump->OutProv->
Seek(FILE_BEGIN, Rva, NULL)) != S_OK ||
(Status = Dump->OutProv->
WriteAll(ThreadData, SizeOfThreadData)) != S_OK) {
return Status;
}
if ( ThreadDataRva ) {
*ThreadDataRva = Rva;
}
StreamInfo->RvaForCurThread += SizeOfThreadData;
return S_OK;
}
HRESULT
WriteStringToPool(
IN PMINIDUMP_STATE Dump,
IN PMINIDUMP_STREAM_INFO StreamInfo,
IN PWSTR String,
OUT ULONG * StringRva
)
{
HRESULT Status;
ULONG32 StringLen;
ULONG SizeOfString;
ULONG Rva;
ASSERT (String);
ASSERT (sizeof (ULONG32) == sizeof (MINIDUMP_STRING));
StringLen = GenStrLengthW(String) * sizeof (WCHAR);
SizeOfString = sizeof (MINIDUMP_STRING) + StringLen + sizeof (WCHAR);
Rva = StreamInfo->RvaForCurString;
if ( Rva + SizeOfString >
StreamInfo->RvaOfStringPool + StreamInfo->SizeOfStringPool ) {
return E_INVALIDARG;
}
if ((Status = Dump->OutProv->
Seek(FILE_BEGIN, Rva, NULL)) != S_OK ||
(Status = Dump->OutProv->
WriteAll(&StringLen, sizeof(StringLen))) != S_OK) {
return Status;
}
//
// Include the trailing '\000'.
//
StringLen += sizeof (WCHAR);
if ((Status = Dump->OutProv->
WriteAll(String, StringLen)) != S_OK) {
return Status;
}
if ( StringRva ) {
*StringRva = Rva;
}
StreamInfo->RvaForCurString += SizeOfString;
return S_OK;
}
HRESULT
WriteModule (
IN PMINIDUMP_STATE Dump,
IN PMINIDUMP_STREAM_INFO StreamInfo,
IN PMINIDUMP_MODULE Module,
OUT ULONG * ModuleRva
)
{
HRESULT Status;
ULONG Rva;
ULONG SizeOfModule;
ASSERT (StreamInfo);
ASSERT (Module);
SizeOfModule = sizeof (MINIDUMP_MODULE);
Rva = StreamInfo->RvaForCurModule;
if ( Rva + SizeOfModule >
StreamInfo->RvaOfModuleList + StreamInfo->SizeOfModuleList ) {
return E_INVALIDARG;
}
if ((Status = Dump->OutProv->
Seek(FILE_BEGIN, Rva, NULL)) != S_OK ||
(Status = Dump->OutProv->
WriteAll(Module, SizeOfModule)) != S_OK) {
return Status;
}
if ( ModuleRva ) {
*ModuleRva = Rva;
}
StreamInfo->RvaForCurModule += SizeOfModule;
return S_OK;
}
HRESULT
WriteUnloadedModule (
IN PMINIDUMP_STATE Dump,
IN PMINIDUMP_STREAM_INFO StreamInfo,
IN PMINIDUMP_UNLOADED_MODULE Module,
OUT ULONG * ModuleRva
)
{
HRESULT Status;
ULONG Rva;
ULONG SizeOfModule;
ASSERT (StreamInfo);
ASSERT (Module);
SizeOfModule = sizeof (*Module);
Rva = StreamInfo->RvaForCurUnloadedModule;
if ( Rva + SizeOfModule >
StreamInfo->RvaOfUnloadedModuleList +
StreamInfo->SizeOfUnloadedModuleList ) {
return E_INVALIDARG;
}
if ((Status = Dump->OutProv->
Seek(FILE_BEGIN, Rva, NULL)) != S_OK ||
(Status = Dump->OutProv->
WriteAll(Module, SizeOfModule)) != S_OK) {
return Status;
}
if ( ModuleRva ) {
*ModuleRva = Rva;
}
StreamInfo->RvaForCurUnloadedModule += SizeOfModule;
return S_OK;
}
HRESULT
WriteThreadList(
IN PMINIDUMP_STATE Dump,
IN PMINIDUMP_STREAM_INFO StreamInfo,
IN PINTERNAL_PROCESS Process
)
{
HRESULT Status;
ULONG StackMemoryRva;
ULONG StoreMemoryRva;
ULONG ContextRva;
MINIDUMP_THREAD_EX DumpThread;
PINTERNAL_THREAD Thread;
ULONG NumberOfThreads;
PLIST_ENTRY Entry;
ASSERT (Process);
ASSERT (StreamInfo);
//
// Write the thread count.
//
NumberOfThreads = Process->NumberOfThreadsToWrite;
if ((Status = Dump->OutProv->
Seek(FILE_BEGIN, StreamInfo->RvaOfThreadList, NULL)) != S_OK ||
(Status = Dump->OutProv->
WriteAll(&NumberOfThreads, sizeof(NumberOfThreads))) != S_OK) {
return Status;
}
StreamInfo->RvaForCurThread += sizeof(NumberOfThreads);
//
// Iterate over the thread list writing the description,
// context and memory for each thread.
//
Entry = Process->ThreadList.Flink;
while ( Entry != &Process->ThreadList ) {
Thread = CONTAINING_RECORD (Entry,
INTERNAL_THREAD,
ThreadsLink);
Entry = Entry->Flink;
//
// Only write the threads that have been flagged to be written.
//
if (IsFlagClear (Thread->WriteFlags, ThreadWriteThread)) {
continue;
}
//
// Write the context if it was flagged to be written.
//
if (IsFlagSet (Thread->WriteFlags, ThreadWriteContext)) {
//
// Write the thread context to the OTHER stream.
//
if ((Status = WriteOther (Dump,
StreamInfo,
Thread->ContextBuffer,
Dump->ContextSize,
&ContextRva)) != S_OK) {
return Status;
}
} else {
ContextRva = 0;
}
//
// Write the stack if it was flagged to be written.
//
if (IsFlagSet (Thread->WriteFlags, ThreadWriteStack)) {
//
// Write the stack memory data; write it directly from the image.
//
if ((Status =
WriteMemoryFromProcess(Dump,
StreamInfo,
Process,
Thread->StackEnd,
(ULONG) (Thread->StackBase -
Thread->StackEnd),
IsFlagSet(Dump->DumpType,
MiniDumpFilterMemory),
MEMBLOCK_STACK,
&StackMemoryRva)) != S_OK) {
return Status;
}
} else {
StackMemoryRva = 0;
}
//
// Write the backing store if it was flagged to be written.
// A newly created thread's backing store may be empty
// so handle the case of zero size.
//
if (IsFlagSet (Thread->WriteFlags, ThreadWriteBackingStore) &&
Thread->BackingStoreSize) {
//
// Write the store memory data; write it directly from the image.
//
if ((Status =
WriteMemoryFromProcess(Dump,
StreamInfo,
Process,
Thread->BackingStoreBase,
Thread->BackingStoreSize,
IsFlagSet(Dump->DumpType,
MiniDumpFilterMemory),
MEMBLOCK_STORE,
&StoreMemoryRva
)) != S_OK) {
return Status;
}
} else {
StoreMemoryRva = 0;
}
//
// Build the dump thread.
//
DumpThread.ThreadId = Thread->ThreadId;
DumpThread.SuspendCount = Thread->SuspendCount;
DumpThread.PriorityClass = Thread->PriorityClass;
DumpThread.Priority = Thread->Priority;
DumpThread.Teb = Thread->Teb;
//
// Stack offset and size.
//
DumpThread.Stack.StartOfMemoryRange = Thread->StackEnd;
DumpThread.Stack.Memory.DataSize =
(ULONG) ( Thread->StackBase - Thread->StackEnd );
DumpThread.Stack.Memory.Rva = StackMemoryRva;
//
// Backing store offset and size.
//
DumpThread.BackingStore.StartOfMemoryRange = Thread->BackingStoreBase;
DumpThread.BackingStore.Memory.DataSize = Thread->BackingStoreSize;
DumpThread.BackingStore.Memory.Rva = StoreMemoryRva;
//
// Context offset and size.
//
DumpThread.ThreadContext.DataSize = Dump->ContextSize;
DumpThread.ThreadContext.Rva = ContextRva;
//
// Write the dump thread to the threads region.
//
if ((Status = WriteThread (Dump,
StreamInfo,
&DumpThread,
StreamInfo->ThreadStructSize,
NULL)) != S_OK) {
return Status;
}
}
return S_OK;
}
HRESULT
WriteModuleList(
IN PMINIDUMP_STATE Dump,
IN PMINIDUMP_STREAM_INFO StreamInfo,
IN PINTERNAL_PROCESS Process
)
{
HRESULT Status;
MINIDUMP_MODULE DumpModule;
ULONG StringRva;
ULONG CvRecordRva;
ULONG MiscRecordRva;
PLIST_ENTRY Entry;
PINTERNAL_MODULE Module;
ULONG32 NumberOfModules;
ASSERT (Process);
ASSERT (StreamInfo);
NumberOfModules = Process->NumberOfModulesToWrite;
if ((Status = Dump->OutProv->
Seek(FILE_BEGIN, StreamInfo->RvaForCurModule, NULL)) != S_OK ||
(Status = Dump->OutProv->
WriteAll(&NumberOfModules, sizeof(NumberOfModules))) != S_OK) {
return Status;
}
StreamInfo->RvaForCurModule += sizeof (NumberOfModules);
//
// Iterate through the module list writing the module name, module entry
// and module debug info to the dump file.
//
Entry = Process->ModuleList.Flink;
while ( Entry != &Process->ModuleList ) {
Module = CONTAINING_RECORD (Entry,
INTERNAL_MODULE,
ModulesLink);
Entry = Entry->Flink;
//
// If we are not to write information for this module, just continue.
//
if (IsFlagClear (Module->WriteFlags, ModuleWriteModule)) {
continue;
}
//
// Write module name.
//
if ((Status = WriteStringToPool (Dump,
StreamInfo,
Module->SavePath,
&StringRva)) != S_OK) {
return Status;
}
//
// Write CvRecord for a module into the OTHER region.
//
if ( IsFlagSet (Module->WriteFlags, ModuleWriteCvRecord) &&
Module->CvRecord != NULL && Module->SizeOfCvRecord != 0 ) {
if ((Status = WriteOther (Dump,
StreamInfo,
Module->CvRecord,
Module->SizeOfCvRecord,
&CvRecordRva)) != S_OK) {
return Status;
}
} else {
CvRecordRva = 0;
}
if ( IsFlagSet (Module->WriteFlags, ModuleWriteMiscRecord) &&
Module->MiscRecord != NULL && Module->SizeOfMiscRecord != 0 ) {
if ((Status = WriteOther (Dump,
StreamInfo,
Module->MiscRecord,
Module->SizeOfMiscRecord,
&MiscRecordRva)) != S_OK) {
return Status;
}
} else {
MiscRecordRva = 0;
}
DumpModule.BaseOfImage = Module->BaseOfImage;
DumpModule.SizeOfImage = Module->SizeOfImage;
DumpModule.CheckSum = Module->CheckSum;
DumpModule.TimeDateStamp = Module->TimeDateStamp;
DumpModule.VersionInfo = Module->VersionInfo;
DumpModule.CvRecord.Rva = CvRecordRva;
DumpModule.CvRecord.DataSize = Module->SizeOfCvRecord;
DumpModule.MiscRecord.Rva = MiscRecordRva;
DumpModule.MiscRecord.DataSize = Module->SizeOfMiscRecord;
DumpModule.ModuleNameRva = StringRva;
DumpModule.Reserved0 = 0;
DumpModule.Reserved1 = 0;
//
// Write the module entry itself.
//
if ((Status = WriteModule (Dump,
StreamInfo,
&DumpModule,
NULL)) != S_OK) {
return Status;
}
}
return S_OK;
}
HRESULT
WriteUnloadedModuleList(
IN PMINIDUMP_STATE Dump,
IN PMINIDUMP_STREAM_INFO StreamInfo,
IN PINTERNAL_PROCESS Process
)
{
HRESULT Status;
MINIDUMP_UNLOADED_MODULE_LIST DumpModuleList;
MINIDUMP_UNLOADED_MODULE DumpModule;
ULONG StringRva;
PLIST_ENTRY Entry;
PINTERNAL_UNLOADED_MODULE Module;
ULONG32 NumberOfModules;
ASSERT (Process);
ASSERT (StreamInfo);
if (IsListEmpty(&Process->UnloadedModuleList)) {
// Nothing to write.
return S_OK;
}
NumberOfModules = Process->NumberOfUnloadedModules;
if ((Status = Dump->OutProv->
Seek(FILE_BEGIN, StreamInfo->RvaForCurUnloadedModule,
NULL)) != S_OK) {
return Status;
}
DumpModuleList.SizeOfHeader = sizeof(DumpModuleList);
DumpModuleList.SizeOfEntry = sizeof(DumpModule);
DumpModuleList.NumberOfEntries = NumberOfModules;
if ((Status = Dump->OutProv->
WriteAll(&DumpModuleList, sizeof(DumpModuleList))) != S_OK) {
return Status;
}
StreamInfo->RvaForCurUnloadedModule += sizeof (DumpModuleList);
//
// Iterate through the module list writing the module name, module entry
// and module debug info to the dump file.
//
Entry = Process->UnloadedModuleList.Flink;
while ( Entry != &Process->UnloadedModuleList ) {
Module = CONTAINING_RECORD (Entry,
INTERNAL_UNLOADED_MODULE,
ModulesLink);
Entry = Entry->Flink;
//
// Write module name.
//
if ((Status = WriteStringToPool (Dump,
StreamInfo,
Module->Path,
&StringRva)) != S_OK) {
return Status;
}
DumpModule.BaseOfImage = Module->BaseOfImage;
DumpModule.SizeOfImage = Module->SizeOfImage;
DumpModule.CheckSum = Module->CheckSum;
DumpModule.TimeDateStamp = Module->TimeDateStamp;
DumpModule.ModuleNameRva = StringRva;
//
// Write the module entry itself.
//
if ((Status = WriteUnloadedModule(Dump,
StreamInfo,
&DumpModule,
NULL)) != S_OK) {
return Status;
}
}
return S_OK;
}
#define FUNCTION_TABLE_ALIGNMENT 8
HRESULT
WriteFunctionTableList(
IN PMINIDUMP_STATE Dump,
IN PMINIDUMP_STREAM_INFO StreamInfo,
IN PINTERNAL_PROCESS Process
)
{
HRESULT Status;
MINIDUMP_FUNCTION_TABLE_STREAM TableStream;
MINIDUMP_FUNCTION_TABLE_DESCRIPTOR DumpTable;
PLIST_ENTRY Entry;
PINTERNAL_FUNCTION_TABLE Table;
RVA PrevRva, Rva;
ASSERT (Process);
ASSERT (StreamInfo);
if (IsListEmpty(&Process->FunctionTableList)) {
// Nothing to write.
return S_OK;
}
Rva = StreamInfo->RvaOfFunctionTableList;
if ((Status = Dump->OutProv->
Seek(FILE_BEGIN, Rva, NULL)) != S_OK) {
return Status;
}
TableStream.SizeOfHeader = sizeof(TableStream);
TableStream.SizeOfDescriptor = sizeof(DumpTable);
TableStream.SizeOfNativeDescriptor = Dump->FuncTableSize;
TableStream.SizeOfFunctionEntry = Dump->FuncTableEntrySize;
TableStream.NumberOfDescriptors = Process->NumberOfFunctionTables;
// Ensure that the actual descriptors are 8-byte aligned in
// the overall file.
Rva += sizeof(TableStream);
PrevRva = Rva;
Rva = (Rva + FUNCTION_TABLE_ALIGNMENT - 1) &
~(FUNCTION_TABLE_ALIGNMENT - 1);
TableStream.SizeOfAlignPad = Rva - PrevRva;
if ((Status = Dump->OutProv->
WriteAll(&TableStream, sizeof(TableStream))) != S_OK) {
return Status;
}
//
// Iterate through the function table list
// and write out the table data.
//
Entry = Process->FunctionTableList.Flink;
while ( Entry != &Process->FunctionTableList ) {
Table = CONTAINING_RECORD (Entry,
INTERNAL_FUNCTION_TABLE,
TableLink);
Entry = Entry->Flink;
// Move to aligned RVA.
if ((Status = Dump->OutProv->
Seek(FILE_BEGIN, Rva, NULL)) != S_OK) {
return Status;
}
DumpTable.MinimumAddress = Table->MinimumAddress;
DumpTable.MaximumAddress = Table->MaximumAddress;
DumpTable.BaseAddress = Table->BaseAddress;
DumpTable.EntryCount = Table->EntryCount;
Rva += sizeof(DumpTable) + Dump->FuncTableSize +
Dump->FuncTableEntrySize * Table->EntryCount;
PrevRva = Rva;
Rva = (Rva + FUNCTION_TABLE_ALIGNMENT - 1) &
~(FUNCTION_TABLE_ALIGNMENT - 1);
DumpTable.SizeOfAlignPad = Rva - PrevRva;
if ((Status = Dump->OutProv->
WriteAll(&DumpTable, sizeof(DumpTable))) != S_OK ||
(Status = Dump->OutProv->
WriteAll(Table->RawTable, Dump->FuncTableSize)) != S_OK ||
(Status = Dump->OutProv->
WriteAll(Table->RawEntries,
Dump->FuncTableEntrySize * Table->EntryCount)) != S_OK) {
return Status;
}
}
return S_OK;
}
HRESULT
WriteMemoryBlocks(
IN PMINIDUMP_STATE Dump,
IN PMINIDUMP_STREAM_INFO StreamInfo,
IN PINTERNAL_PROCESS Process
)
{
HRESULT Status;
PLIST_ENTRY ScanEntry;
PVA_RANGE Scan;
ScanEntry = Process->MemoryBlocks.Flink;
while (ScanEntry != &Process->MemoryBlocks) {
Scan = CONTAINING_RECORD(ScanEntry, VA_RANGE, NextLink);
ScanEntry = Scan->NextLink.Flink;
if ((Status =
WriteMemoryFromProcess(Dump,
StreamInfo,
Process,
Scan->Start,
Scan->Size,
FALSE,
Scan->Type,
NULL)) != S_OK) {
return Status;
}
}
return S_OK;
}
HRESULT
CalculateSizeForThreads(
IN PMINIDUMP_STATE Dump,
IN PINTERNAL_PROCESS Process,
IN OUT MINIDUMP_STREAM_INFO * StreamInfo
)
{
ULONG SizeOfContexts;
ULONG SizeOfMemRegions;
ULONG SizeOfThreads;
ULONG SizeOfMemoryDescriptors;
ULONG NumberOfThreads;
ULONG NumberOfMemRegions;
PINTERNAL_THREAD Thread;
PLIST_ENTRY Entry;
ASSERT (Process);
ASSERT (StreamInfo);
NumberOfThreads = 0;
NumberOfMemRegions = 0;
SizeOfContexts = 0;
SizeOfMemRegions = 0;
// If no backing store information is written a normal
// MINIDUMP_THREAD can be used, otherwise a MINIDUMP_THREAD_EX
// is required.
StreamInfo->ThreadStructSize = sizeof(MINIDUMP_THREAD);
Entry = Process->ThreadList.Flink;
while ( Entry != &Process->ThreadList ) {
Thread = CONTAINING_RECORD (Entry,
INTERNAL_THREAD,
ThreadsLink);
Entry = Entry->Flink;
//
// Do we need to write any information for this thread at all?
//
if (IsFlagClear (Thread->WriteFlags, ThreadWriteThread)) {
continue;
}
NumberOfThreads++;
//
// Write a context for this thread?
//
if (IsFlagSet (Thread->WriteFlags, ThreadWriteContext)) {
SizeOfContexts += Dump->ContextSize;
}
//
// Write a stack for this thread?
//
if (IsFlagSet (Thread->WriteFlags, ThreadWriteStack)) {
NumberOfMemRegions++;
SizeOfMemRegions += (ULONG) (Thread->StackBase - Thread->StackEnd);
}
//
// Write the backing store for this thread?
//
if (IsFlagSet (Thread->WriteFlags, ThreadWriteBackingStore)) {
// A newly created thread's backing store may be empty
// so handle the case of zero size.
if (Thread->BackingStoreSize) {
NumberOfMemRegions++;
SizeOfMemRegions += Thread->BackingStoreSize;
}
// We still need a THREAD_EX as this is a platform
// which supports backing store.
StreamInfo->ThreadStructSize = sizeof(MINIDUMP_THREAD_EX);
}
// Write an instruction window for this thread?
if (IsFlagSet (Thread->WriteFlags, ThreadWriteInstructionWindow)) {
GenGetThreadInstructionWindow(Dump, Process, Thread);
}
// Write thread data for this thread?
if (IsFlagSet (Thread->WriteFlags, ThreadWriteThreadData) &&
Thread->SizeOfTeb) {
GenAddTebMemory(Dump, Process, Thread);
}
}
Process->NumberOfThreadsToWrite = NumberOfThreads;
//
// Nobody should have allocated memory from the thread list region yet.
//
ASSERT (StreamInfo->SizeOfThreadList == 0);
SizeOfThreads = NumberOfThreads * StreamInfo->ThreadStructSize;
SizeOfMemoryDescriptors = NumberOfMemRegions *
sizeof (MINIDUMP_MEMORY_DESCRIPTOR);
StreamInfo->SizeOfThreadList += sizeof (ULONG32);
StreamInfo->SizeOfThreadList += SizeOfThreads;
StreamInfo->SizeOfOther += SizeOfContexts;
StreamInfo->SizeOfMemoryData += SizeOfMemRegions;
StreamInfo->SizeOfMemoryDescriptors += SizeOfMemoryDescriptors;
return S_OK;
}
HRESULT
CalculateSizeForModules(
IN PMINIDUMP_STATE Dump,
IN PINTERNAL_PROCESS Process,
IN OUT MINIDUMP_STREAM_INFO * StreamInfo
)
/*++
Routine Description:
Calculate amount of space needed in the string pool, the memory table and
the module list table for module information.
Arguments:
Process - Minidump process information.
StreamInfo - The stream size information for this dump.
--*/
{
ULONG NumberOfModules;
ULONG SizeOfDebugInfo;
ULONG SizeOfStringData;
PINTERNAL_MODULE Module;
PLIST_ENTRY Entry;
ASSERT (Process);
ASSERT (StreamInfo);
NumberOfModules = 0;
SizeOfDebugInfo = 0;
SizeOfStringData = 0;
Entry = Process->ModuleList.Flink;
while ( Entry != &Process->ModuleList ) {
Module = CONTAINING_RECORD (Entry, INTERNAL_MODULE, ModulesLink);
Entry = Entry->Flink;
if (IsFlagClear (Module->WriteFlags, ModuleWriteModule)) {
continue;
}
NumberOfModules++;
SizeOfStringData += (GenStrLengthW(Module->SavePath) + 1) * sizeof(WCHAR);
SizeOfStringData += sizeof ( MINIDUMP_STRING );
//
// Add in the sizes of both the CV and MISC records.
//
if (IsFlagSet (Module->WriteFlags, ModuleWriteCvRecord)) {
SizeOfDebugInfo += Module->SizeOfCvRecord;
}
if (IsFlagSet (Module->WriteFlags, ModuleWriteMiscRecord)) {
SizeOfDebugInfo += Module->SizeOfMiscRecord;
}
//
// Add the module data sections if requested.
//
if (IsFlagSet (Module->WriteFlags, ModuleWriteDataSeg)) {
GenGetDataContributors(Dump, Process, Module);
}
}
Process->NumberOfModulesToWrite = NumberOfModules;
ASSERT (StreamInfo->SizeOfModuleList == 0);
StreamInfo->SizeOfModuleList += sizeof (MINIDUMP_MODULE_LIST);
StreamInfo->SizeOfModuleList += (NumberOfModules * sizeof (MINIDUMP_MODULE));
StreamInfo->SizeOfStringPool += SizeOfStringData;
StreamInfo->SizeOfOther += SizeOfDebugInfo;
return S_OK;
}
HRESULT
CalculateSizeForUnloadedModules(
IN PINTERNAL_PROCESS Process,
IN OUT MINIDUMP_STREAM_INFO * StreamInfo
)
{
ULONG SizeOfStringData;
PINTERNAL_UNLOADED_MODULE Module;
PLIST_ENTRY Entry;
ASSERT (Process);
ASSERT (StreamInfo);
SizeOfStringData = 0;
Entry = Process->UnloadedModuleList.Flink;
while ( Entry != &Process->UnloadedModuleList ) {
Module = CONTAINING_RECORD (Entry, INTERNAL_UNLOADED_MODULE,
ModulesLink);
Entry = Entry->Flink;
SizeOfStringData += (GenStrLengthW(Module->Path) + 1) * sizeof(WCHAR);
SizeOfStringData += sizeof ( MINIDUMP_STRING );
}
ASSERT (StreamInfo->SizeOfUnloadedModuleList == 0);
StreamInfo->SizeOfUnloadedModuleList +=
sizeof (MINIDUMP_UNLOADED_MODULE_LIST);
StreamInfo->SizeOfUnloadedModuleList +=
(Process->NumberOfUnloadedModules * sizeof (MINIDUMP_UNLOADED_MODULE));
StreamInfo->SizeOfStringPool += SizeOfStringData;
return S_OK;
}
HRESULT
CalculateSizeForFunctionTables(
IN PMINIDUMP_STATE Dump,
IN PINTERNAL_PROCESS Process,
IN OUT MINIDUMP_STREAM_INFO * StreamInfo
)
{
ULONG SizeOfTableData;
PINTERNAL_FUNCTION_TABLE Table;
PLIST_ENTRY Entry;
ASSERT (Process);
ASSERT (StreamInfo);
SizeOfTableData = 0;
Entry = Process->FunctionTableList.Flink;
while ( Entry != &Process->FunctionTableList ) {
Table = CONTAINING_RECORD (Entry, INTERNAL_FUNCTION_TABLE, TableLink);
Entry = Entry->Flink;
// Alignment space is required as the structures
// in the stream must be properly aligned.
SizeOfTableData += FUNCTION_TABLE_ALIGNMENT +
sizeof(MINIDUMP_FUNCTION_TABLE_DESCRIPTOR) +
Dump->FuncTableSize +
Table->EntryCount * Dump->FuncTableEntrySize;
}
ASSERT (StreamInfo->SizeOfFunctionTableList == 0);
StreamInfo->SizeOfFunctionTableList +=
sizeof (MINIDUMP_FUNCTION_TABLE_STREAM) + SizeOfTableData;
return S_OK;
}
HRESULT
WriteDirectoryEntry(
IN PMINIDUMP_STATE Dump,
IN ULONG StreamType,
IN ULONG RvaOfDir,
IN SIZE_T SizeOfDir
)
{
MINIDUMP_DIRECTORY Dir;
//
// Do not write empty streams.
//
if (SizeOfDir == 0) {
return S_OK;
}
//
// The maximum size of a directory is a ULONG.
//
if (SizeOfDir > _UI32_MAX) {
return E_INVALIDARG;
}
Dir.StreamType = StreamType;
Dir.Location.Rva = RvaOfDir;
Dir.Location.DataSize = (ULONG) SizeOfDir;
return Dump->OutProv->
WriteAll(&Dir, sizeof(Dir));
}
VOID
ScanContextForModuleRefs(
IN PMINIDUMP_STATE Dump,
IN PINTERNAL_PROCESS Process,
IN PINTERNAL_THREAD Thread
)
{
ULONG NumReg;
PUCHAR Reg;
PINTERNAL_MODULE Module;
Reg = (PUCHAR)Thread->ContextBuffer + Dump->RegScanOffset;
NumReg = Dump->RegScanCount;
while (NumReg-- > 0) {
ULONG64 CurPtr;
CurPtr = GenGetPointer(Dump, Reg);
Reg += Dump->PtrSize;
if (Module = ModuleContainingAddress(Process, CurPtr)) {
Module->WriteFlags |= ModuleReferencedByMemory;
}
}
}
HRESULT
FilterOrScanMemory(
IN PMINIDUMP_STATE Dump,
IN PINTERNAL_PROCESS Process,
IN PVOID MemBuffer
)
{
PINTERNAL_THREAD Thread;
PLIST_ENTRY ThreadEntry;
//
// Scan the stack and backing store
// memory for every thread.
//
ThreadEntry = Process->ThreadList.Flink;
while ( ThreadEntry != &Process->ThreadList ) {
Thread = CONTAINING_RECORD (ThreadEntry, INTERNAL_THREAD, ThreadsLink);
ThreadEntry = ThreadEntry->Flink;
ScanContextForModuleRefs(Dump, Process, Thread);
ScanMemoryForModuleRefs(Dump, Process, TRUE,
Thread->StackEnd,
(ULONG)(Thread->StackBase - Thread->StackEnd),
MemBuffer, MEMBLOCK_STACK, FALSE);
ScanMemoryForModuleRefs(Dump, Process, TRUE,
Thread->BackingStoreBase,
Thread->BackingStoreSize,
MemBuffer, MEMBLOCK_STORE, FALSE);
}
return S_OK;
}
#define IND_CAPTURE_SIZE (Dump->PageSize / 4)
#define PRE_IND_CAPTURE_SIZE (IND_CAPTURE_SIZE / 4)
HRESULT
AddIndirectMemory(
IN PMINIDUMP_STATE Dump,
IN PINTERNAL_PROCESS Process,
IN ULONG64 Base,
IN ULONG Size,
IN PVOID MemBuffer
)
{
HRESULT Status = S_OK;
PVOID CurMem;
ULONG Done;
// If the base address is not pointer-size aligned
// we can't easily assume that this is a meaningful
// area of memory to scan for references. Normal
// stack and store addresses will always be pointer
// size aligned so this should only reject invalid
// addresses.
if (!Base || !Size || (Base & (Dump->PtrSize - 1))) {
return S_OK;
}
if ((Status = Dump->SysProv->
ReadVirtual(Dump->ProcessHandle,
Base, MemBuffer, Size, &Done)) != S_OK) {
return Status;
}
CurMem = MemBuffer;
Done /= Dump->PtrSize;
while (Done-- > 0) {
ULONG64 Start;
HRESULT OneStatus;
//
// How much memory to save behind the pointer is an
// interesting question. The reference could be to
// an arbitrary amount of data, so we want to save
// a good chunk, but we don't want to end up saving
// full memory.
// Instead, pick an arbitrary size -- 1/4 of a page --
// and save some before and after the pointer.
//
Start = GenGetPointer(Dump, CurMem);
// If it's a pointer into an image assume doesn't
// need to be stored via this mechanism as it's either
// code, which will be mapped later; or data, which can
// be saved with MiniDumpWithDataSegs.
if (!ModuleContainingAddress(Process, Start)) {
if (Start < PRE_IND_CAPTURE_SIZE) {
Start = 0;
} else {
Start -= PRE_IND_CAPTURE_SIZE;
}
if ((OneStatus =
GenAddMemoryBlock(Dump, Process, MEMBLOCK_INDIRECT,
Start, IND_CAPTURE_SIZE)) != S_OK) {
Status = OneStatus;
}
}
CurMem = (PUCHAR)CurMem + Dump->PtrSize;
}
return Status;
}
HRESULT
AddIndirectlyReferencedMemory(
IN PMINIDUMP_STATE Dump,
IN PINTERNAL_PROCESS Process,
IN PVOID MemBuffer
)
{
HRESULT Status;
PINTERNAL_THREAD Thread;
PLIST_ENTRY ThreadEntry;
//
// Scan the stack and backing store
// memory for every thread.
//
ThreadEntry = Process->ThreadList.Flink;
while ( ThreadEntry != &Process->ThreadList ) {
Thread = CONTAINING_RECORD (ThreadEntry, INTERNAL_THREAD, ThreadsLink);
ThreadEntry = ThreadEntry->Flink;
if ((Status =
AddIndirectMemory(Dump,
Process,
Thread->StackEnd,
(ULONG)(Thread->StackBase - Thread->StackEnd),
MemBuffer)) != S_OK) {
return Status;
}
if ((Status =
AddIndirectMemory(Dump,
Process,
Thread->BackingStoreBase,
Thread->BackingStoreSize,
MemBuffer)) != S_OK) {
return Status;
}
}
return S_OK;
}
HRESULT
PostProcessInfo(
IN PMINIDUMP_STATE Dump,
IN PINTERNAL_PROCESS Process
)
{
PVOID MemBuffer;
HRESULT Status = S_OK;
MemBuffer = AllocMemory(Dump, Process->MaxStackOrStoreSize);
if (!MemBuffer) {
return E_OUTOFMEMORY;
}
if (Dump->DumpType & (MiniDumpFilterMemory | MiniDumpScanMemory)) {
Status = FilterOrScanMemory(Dump, Process, MemBuffer);
}
if (Status == S_OK &&
(Dump->DumpType & MiniDumpWithIndirectlyReferencedMemory)) {
// Indirect memory is not crucial to the dump so
// ignore any failures.
AddIndirectlyReferencedMemory(Dump, Process, MemBuffer);
}
FreeMemory(Dump, MemBuffer);
return Status;
}
HRESULT
ExecuteCallbacks(
IN PMINIDUMP_STATE Dump,
IN PINTERNAL_PROCESS Process
)
{
PINTERNAL_MODULE Module;
PINTERNAL_THREAD Thread;
PLIST_ENTRY Entry;
MINIDUMP_CALLBACK_INPUT CallbackInput;
MINIDUMP_CALLBACK_OUTPUT CallbackOutput;
ASSERT ( Process != NULL );
Thread = NULL;
Module = NULL;
//
// If there are no callbacks to call, then we are done.
//
if ( Dump->CallbackRoutine == NULL ) {
return S_OK;
}
CallbackInput.ProcessHandle = Dump->ProcessHandle;
CallbackInput.ProcessId = Dump->ProcessId;
//
// Call callbacks for each module.
//
CallbackInput.CallbackType = ModuleCallback;
Entry = Process->ModuleList.Flink;
while ( Entry != &Process->ModuleList ) {
Module = CONTAINING_RECORD (Entry, INTERNAL_MODULE, ModulesLink);
Entry = Entry->Flink;
CallbackInput.Module.FullPath = Module->FullPath;
CallbackInput.Module.BaseOfImage = Module->BaseOfImage;
CallbackInput.Module.SizeOfImage = Module->SizeOfImage;
CallbackInput.Module.CheckSum = Module->CheckSum;
CallbackInput.Module.TimeDateStamp = Module->TimeDateStamp;
CopyMemory (&CallbackInput.Module.VersionInfo,
&Module->VersionInfo,
sizeof (CallbackInput.Module.VersionInfo)
);
CallbackInput.Module.CvRecord = Module->CvRecord;
CallbackInput.Module.SizeOfCvRecord = Module->SizeOfCvRecord;
CallbackInput.Module.MiscRecord = Module->MiscRecord;
CallbackInput.Module.SizeOfMiscRecord = Module->SizeOfMiscRecord;
CallbackOutput.ModuleWriteFlags = Module->WriteFlags;
if (!Dump->CallbackRoutine (Dump->CallbackParam,
&CallbackInput,
&CallbackOutput)) {
// If the callback returned FALSE, quit now.
return E_ABORT;
}
// Don't turn on any flags that weren't originally set.
Module->WriteFlags &= CallbackOutput.ModuleWriteFlags;
}
Module = NULL;
//
// Call callbacks for each thread.
//
if (Dump->BackingStore) {
CallbackInput.CallbackType = ThreadExCallback;
} else {
CallbackInput.CallbackType = ThreadCallback;
}
Entry = Process->ThreadList.Flink;
while ( Entry != &Process->ThreadList ) {
Thread = CONTAINING_RECORD (Entry, INTERNAL_THREAD, ThreadsLink);
Entry = Entry->Flink;
CallbackInput.ThreadEx.ThreadId = Thread->ThreadId;
CallbackInput.ThreadEx.ThreadHandle = Thread->ThreadHandle;
CallbackInput.ThreadEx.Context = *(PCONTEXT)Thread->ContextBuffer;
CallbackInput.ThreadEx.SizeOfContext = Dump->ContextSize;
CallbackInput.ThreadEx.StackBase = Thread->StackBase;
CallbackInput.ThreadEx.StackEnd = Thread->StackEnd;
CallbackInput.ThreadEx.BackingStoreBase = Thread->BackingStoreBase;
CallbackInput.ThreadEx.BackingStoreEnd =
Thread->BackingStoreBase + Thread->BackingStoreSize;
CallbackOutput.ThreadWriteFlags = Thread->WriteFlags;
if (!Dump->CallbackRoutine (Dump->CallbackParam,
&CallbackInput,
&CallbackOutput)) {
// If the callback returned FALSE, quit now.
return E_ABORT;
}
// Don't turn on any flags that weren't originally set.
Thread->WriteFlags &= CallbackOutput.ThreadWriteFlags;
}
Thread = NULL;
//
// Call callbacks to include memory.
//
CallbackInput.CallbackType = MemoryCallback;
for (;;) {
CallbackOutput.MemoryBase = 0;
CallbackOutput.MemorySize = 0;
if (!Dump->CallbackRoutine (Dump->CallbackParam,
&CallbackInput,
&CallbackOutput) ||
!CallbackOutput.MemorySize) {
// If the callback returned FALSE there is no more memory.
break;
}
GenAddMemoryBlock(Dump, Process, MEMBLOCK_MEM_CALLBACK,
CallbackOutput.MemoryBase,
CallbackOutput.MemorySize);
}
return S_OK;
}
HRESULT
WriteSystemInfo(
IN PMINIDUMP_STATE Dump,
IN PMINIDUMP_STREAM_INFO StreamInfo
)
{
HRESULT Status;
MINIDUMP_SYSTEM_INFO SystemInfo;
WCHAR CSDVersionW [128];
RVA StringRva;
ULONG Length;
StringRva = 0;
//
// First, get the CPU information.
//
if ((Status = Dump->SysProv->
GetCpuInfo(&SystemInfo.ProcessorArchitecture,
&SystemInfo.ProcessorLevel,
&SystemInfo.ProcessorRevision,
&SystemInfo.NumberOfProcessors,
&SystemInfo.Cpu)) != S_OK) {
return Status;
}
//
// Next get OS Information.
//
SystemInfo.ProductType = (UCHAR)Dump->OsProductType;
SystemInfo.MajorVersion = Dump->OsMajor;
SystemInfo.MinorVersion = Dump->OsMinor;
SystemInfo.BuildNumber = Dump->OsBuildNumber;
SystemInfo.PlatformId = Dump->OsPlatformId;
SystemInfo.SuiteMask = Dump->OsSuiteMask;
SystemInfo.Reserved2 = 0;
if ((Status = Dump->SysProv->
GetOsCsdString(CSDVersionW, ARRAY_COUNT(CSDVersionW))) != S_OK) {
return Status;
}
Length = (GenStrLengthW(CSDVersionW) + 1) * sizeof(WCHAR);
if ( Length != StreamInfo->VersionStringLength ) {
//
// If this fails it means that since the OS lied to us about the
// size of the string. Very bad, we should investigate.
//
ASSERT ( FALSE );
return E_INVALIDARG;
}
if ((Status = WriteStringToPool (Dump,
StreamInfo,
CSDVersionW,
&StringRva)) != S_OK) {
return Status;
}
SystemInfo.CSDVersionRva = StringRva;
ASSERT ( sizeof (SystemInfo) == StreamInfo->SizeOfSystemInfo );
return WriteAtOffset (Dump,
StreamInfo->RvaOfSystemInfo,
&SystemInfo,
sizeof (SystemInfo));
}
HRESULT
CalculateSizeForSystemInfo(
IN PMINIDUMP_STATE Dump,
IN OUT MINIDUMP_STREAM_INFO * StreamInfo
)
{
HRESULT Status;
WCHAR CSDVersionW [128];
ULONG Length;
if ((Status = Dump->SysProv->
GetOsCsdString(CSDVersionW, ARRAY_COUNT(CSDVersionW))) != S_OK) {
return Status;
}
Length = (GenStrLengthW(CSDVersionW) + 1) * sizeof(WCHAR);
StreamInfo->SizeOfSystemInfo = sizeof (MINIDUMP_SYSTEM_INFO);
StreamInfo->SizeOfStringPool += Length;
StreamInfo->SizeOfStringPool += sizeof (MINIDUMP_STRING);
StreamInfo->VersionStringLength = Length;
return S_OK;
}
HRESULT
WriteMiscInfo(
IN PMINIDUMP_STATE Dump,
IN PMINIDUMP_STREAM_INFO StreamInfo,
IN PINTERNAL_PROCESS Process
)
{
MINIDUMP_MISC_INFO MiscInfo;
ZeroMemory(&MiscInfo, sizeof(MiscInfo));
MiscInfo.SizeOfInfo = sizeof(MiscInfo);
MiscInfo.Flags1 |= MINIDUMP_MISC1_PROCESS_ID;
MiscInfo.ProcessId = Process->ProcessId;
if (Process->TimesValid) {
MiscInfo.Flags1 |= MINIDUMP_MISC1_PROCESS_TIMES;
MiscInfo.ProcessCreateTime = Process->CreateTime;
MiscInfo.ProcessUserTime = Process->UserTime;
MiscInfo.ProcessKernelTime = Process->KernelTime;
}
return WriteAtOffset(Dump,
StreamInfo->RvaOfMiscInfo,
&MiscInfo,
sizeof(MiscInfo));
}
void
PostProcessMemoryBlocks(
IN PMINIDUMP_STATE Dump,
IN PINTERNAL_PROCESS Process
)
{
PINTERNAL_THREAD Thread;
PLIST_ENTRY ThreadEntry;
//
// Remove any overlap with thread stacks and backing stores.
//
ThreadEntry = Process->ThreadList.Flink;
while ( ThreadEntry != &Process->ThreadList ) {
Thread = CONTAINING_RECORD (ThreadEntry, INTERNAL_THREAD, ThreadsLink);
ThreadEntry = ThreadEntry->Flink;
GenRemoveMemoryRange(Dump, Process,
Thread->StackEnd,
(ULONG)(Thread->StackBase - Thread->StackEnd));
GenRemoveMemoryRange(Dump, Process,
Thread->BackingStoreBase,
Thread->BackingStoreSize);
}
}
HRESULT
CalculateStreamInfo(
IN PMINIDUMP_STATE Dump,
IN PINTERNAL_PROCESS Process,
OUT PMINIDUMP_STREAM_INFO StreamInfo,
IN BOOL ExceptionPresent,
IN PMINIDUMP_USER_STREAM UserStreamArray,
IN ULONG UserStreamCount
)
{
ULONG i;
HRESULT Status;
ULONG NumberOfStreams;
ULONG SizeOfDirectory;
ULONG SizeOfUserStreams;
ASSERT ( Process != NULL );
ASSERT ( StreamInfo != NULL );
ZeroMemory (StreamInfo, sizeof (*StreamInfo));
if ( ExceptionPresent ) {
NumberOfStreams = NUMBER_OF_STREAMS + UserStreamCount;
} else {
NumberOfStreams = NUMBER_OF_STREAMS + UserStreamCount - 1;
}
if (Dump->DumpType & MiniDumpWithHandleData) {
NumberOfStreams++;
}
if (!IsListEmpty(&Process->UnloadedModuleList)) {
NumberOfStreams++;
}
// Add a stream for dynamic function tables if some were found.
if (!IsListEmpty(&Process->FunctionTableList)) {
NumberOfStreams++;
}
SizeOfDirectory = sizeof (MINIDUMP_DIRECTORY) * NumberOfStreams;
StreamInfo->NumberOfStreams = NumberOfStreams;
StreamInfo->RvaOfHeader = 0;
StreamInfo->SizeOfHeader = sizeof (MINIDUMP_HEADER);
StreamInfo->RvaOfDirectory =
StreamInfo->RvaOfHeader + StreamInfo->SizeOfHeader;
StreamInfo->SizeOfDirectory = SizeOfDirectory;
StreamInfo->RvaOfSystemInfo =
StreamInfo->RvaOfDirectory + StreamInfo->SizeOfDirectory;
if ((Status =
CalculateSizeForSystemInfo(Dump, StreamInfo)) != S_OK) {
return Status;
}
StreamInfo->RvaOfMiscInfo =
StreamInfo->RvaOfSystemInfo + StreamInfo->SizeOfSystemInfo;
StreamInfo->RvaOfException =
StreamInfo->RvaOfMiscInfo + sizeof(MINIDUMP_MISC_INFO);
//
// If an exception is present, reserve enough space for the exception
// and for the excepting thread's context in the Other stream.
//
if ( ExceptionPresent ) {
StreamInfo->SizeOfException = sizeof (MINIDUMP_EXCEPTION_STREAM);
StreamInfo->SizeOfOther += Dump->ContextSize;
}
StreamInfo->RvaOfThreadList =
StreamInfo->RvaOfException + StreamInfo->SizeOfException;
StreamInfo->RvaForCurThread = StreamInfo->RvaOfThreadList;
if ((Status =
CalculateSizeForThreads(Dump, Process, StreamInfo)) != S_OK) {
return Status;
}
if ((Status =
CalculateSizeForModules(Dump, Process, StreamInfo)) != S_OK) {
return Status;
}
if (!IsListEmpty(&Process->UnloadedModuleList)) {
if ((Status =
CalculateSizeForUnloadedModules(Process, StreamInfo)) != S_OK) {
return Status;
}
}
if (!IsListEmpty(&Process->FunctionTableList)) {
if ((Status = CalculateSizeForFunctionTables(Dump, Process,
StreamInfo)) != S_OK) {
return Status;
}
}
if ((Dump->DumpType & MiniDumpWithProcessThreadData) &&
Process->SizeOfPeb) {
GenAddPebMemory(Dump, Process);
}
PostProcessMemoryBlocks(Dump, Process);
// Add in any extra memory blocks.
StreamInfo->SizeOfMemoryData += Process->SizeOfMemoryBlocks;
StreamInfo->SizeOfMemoryDescriptors += Process->NumberOfMemoryBlocks *
sizeof(MINIDUMP_MEMORY_DESCRIPTOR);
StreamInfo->RvaOfModuleList =
StreamInfo->RvaOfThreadList + StreamInfo->SizeOfThreadList;
StreamInfo->RvaForCurModule = StreamInfo->RvaOfModuleList;
StreamInfo->RvaOfUnloadedModuleList =
StreamInfo->RvaOfModuleList + StreamInfo->SizeOfModuleList;
StreamInfo->RvaForCurUnloadedModule = StreamInfo->RvaOfUnloadedModuleList;
// If there aren't any function tables the size will be zero
// and the RVA will just end up being the RVA after
// the module list.
StreamInfo->RvaOfFunctionTableList =
StreamInfo->RvaOfUnloadedModuleList +
StreamInfo->SizeOfUnloadedModuleList;
StreamInfo->RvaOfStringPool =
StreamInfo->RvaOfFunctionTableList +
StreamInfo->SizeOfFunctionTableList;
StreamInfo->RvaForCurString = StreamInfo->RvaOfStringPool;
StreamInfo->RvaOfOther =
StreamInfo->RvaOfStringPool + StreamInfo->SizeOfStringPool;
StreamInfo->RvaForCurOther = StreamInfo->RvaOfOther;
SizeOfUserStreams = 0;
for (i = 0; i < UserStreamCount; i++) {
SizeOfUserStreams += (ULONG) UserStreamArray[i].BufferSize;
}
StreamInfo->RvaOfUserStreams =
StreamInfo->RvaOfOther + StreamInfo->SizeOfOther;
StreamInfo->SizeOfUserStreams = SizeOfUserStreams;
//
// Minidumps with full memory must put the raw memory
// data at the end of the dump so that it's easy to
// avoid mapping it when the dump is mapped. There's
// no problem with putting the memory data at the end
// of the dump in all the other cases so just always
// put the memory data at the end of the dump.
//
// One other benefit of having the raw data at the end
// is that we can safely assume that everything except
// the raw memory data will fit in the first 4GB of
// the file so we don't need to use 64-bit file offsets
// for everything.
//
// In the full memory case no other memory should have
// been saved so far as stacks, data segs and so on
// will automatically be included in the full memory
// information. If something was saved it'll throw off
// the dump writing as full memory descriptors are generated
// on the fly at write time rather than being precached.
// If other descriptors and memory blocks have been written
// out everything will be wrong.
// Full-memory descriptors are also 64-bit and do not
// match the 32-bit descriptors written elsewhere.
//
if ((Dump->DumpType & MiniDumpWithFullMemory) &&
(StreamInfo->SizeOfMemoryDescriptors > 0 ||
StreamInfo->SizeOfMemoryData > 0)) {
return E_INVALIDARG;
}
StreamInfo->SizeOfMemoryDescriptors +=
(Dump->DumpType & MiniDumpWithFullMemory) ?
sizeof (MINIDUMP_MEMORY64_LIST) : sizeof (MINIDUMP_MEMORY_LIST);
StreamInfo->RvaOfMemoryDescriptors =
StreamInfo->RvaOfUserStreams + StreamInfo->SizeOfUserStreams;
StreamInfo->RvaForCurMemoryDescriptor =
StreamInfo->RvaOfMemoryDescriptors;
StreamInfo->RvaOfMemoryData =
StreamInfo->RvaOfMemoryDescriptors +
StreamInfo->SizeOfMemoryDescriptors;
StreamInfo->RvaForCurMemoryData = StreamInfo->RvaOfMemoryData;
//
// Handle data cannot easily be sized beforehand so it's
// also streamed in at write time. In a partial dump
// it'll come after the memory data. In a full dump
// it'll come before it.
//
StreamInfo->RvaOfHandleData = StreamInfo->RvaOfMemoryData +
StreamInfo->SizeOfMemoryData;
return S_OK;
}
HRESULT
WriteHeader(
IN PMINIDUMP_STATE Dump,
IN PMINIDUMP_STREAM_INFO StreamInfo
)
{
HRESULT Status;
MINIDUMP_HEADER Header;
Header.Signature = MINIDUMP_SIGNATURE;
// Encode an implementation-specific version into the high word
// of the version to make it clear what version of the code
// was used to generate a dump.
Header.Version =
(MINIDUMP_VERSION & 0xffff) |
((VER_PRODUCTMAJORVERSION & 0xf) << 28) |
((VER_PRODUCTMINORVERSION & 0xf) << 24) |
((VER_PRODUCTBUILD & 0xff) << 16);
Header.NumberOfStreams = StreamInfo->NumberOfStreams;
Header.StreamDirectoryRva = StreamInfo->RvaOfDirectory;
// If there were any partial failures during the
// dump generation set the checksum to indicate that.
// The checksum field was never used before so
// we're stealing it for a somewhat related purpose.
Header.CheckSum = Dump->AccumStatus;
Header.Flags = Dump->DumpType;
//
// Store the time of dump generation.
//
if ((Status = Dump->SysProv->
GetCurrentTimeDate((PULONG)&Header.TimeDateStamp)) != S_OK) {
return Status;
}
ASSERT (sizeof (Header) == StreamInfo->SizeOfHeader);
return WriteAtOffset (Dump,
StreamInfo->RvaOfHeader,
&Header,
sizeof (Header));
}
HRESULT
WriteDirectoryTable(
IN PMINIDUMP_STATE Dump,
IN PMINIDUMP_STREAM_INFO StreamInfo,
IN PINTERNAL_PROCESS Process,
IN PMINIDUMP_USER_STREAM UserStreamArray,
IN ULONG UserStreamCount
)
{
HRESULT Status;
ULONG i;
ULONG Offset;
if ((Status =
WriteDirectoryEntry (Dump,
StreamInfo->ThreadStructSize ==
sizeof(MINIDUMP_THREAD_EX) ?
ThreadExListStream : ThreadListStream,
StreamInfo->RvaOfThreadList,
StreamInfo->SizeOfThreadList)) != S_OK) {
return Status;
}
if ((Status =
WriteDirectoryEntry (Dump,
ModuleListStream,
StreamInfo->RvaOfModuleList,
StreamInfo->SizeOfModuleList)) != S_OK) {
return Status;
}
if (!IsListEmpty(&Process->UnloadedModuleList)) {
if ((Status =
WriteDirectoryEntry (Dump,
UnloadedModuleListStream,
StreamInfo->RvaOfUnloadedModuleList,
StreamInfo->SizeOfUnloadedModuleList)) != S_OK) {
return Status;
}
}
if (!IsListEmpty(&Process->FunctionTableList)) {
if ((Status =
WriteDirectoryEntry (Dump,
FunctionTableStream,
StreamInfo->RvaOfFunctionTableList,
StreamInfo->SizeOfFunctionTableList)) != S_OK) {
return Status;
}
}
if ((Status =
WriteDirectoryEntry (Dump,
(Dump->DumpType & MiniDumpWithFullMemory) ?
Memory64ListStream : MemoryListStream,
StreamInfo->RvaOfMemoryDescriptors,
StreamInfo->SizeOfMemoryDescriptors)) != S_OK) {
return Status;
}
//
// Write exception directory entry.
//
if ((Status =
WriteDirectoryEntry (Dump,
ExceptionStream,
StreamInfo->RvaOfException,
StreamInfo->SizeOfException)) != S_OK) {
return Status;
}
//
// Write system info entry.
//
if ((Status =
WriteDirectoryEntry (Dump,
SystemInfoStream,
StreamInfo->RvaOfSystemInfo,
StreamInfo->SizeOfSystemInfo)) != S_OK) {
return Status;
}
//
// Write misc info entry.
//
if ((Status =
WriteDirectoryEntry(Dump,
MiscInfoStream,
StreamInfo->RvaOfMiscInfo,
sizeof(MINIDUMP_MISC_INFO))) != S_OK) {
return Status;
}
if ((Dump->DumpType & MiniDumpWithHandleData) &&
StreamInfo->SizeOfHandleData) {
//
// Write handle data entry. If no handle data
// was recovered we don't write an entry and
// just let another unused stream get auto-created.
//
if ((Status =
WriteDirectoryEntry (Dump,
HandleDataStream,
StreamInfo->RvaOfHandleData,
StreamInfo->SizeOfHandleData)) != S_OK) {
return Status;
}
}
Offset = StreamInfo->RvaOfUserStreams;
for (i = 0; i < UserStreamCount; i++) {
if ((Status =
WriteDirectoryEntry (Dump,
UserStreamArray[i].Type,
Offset,
UserStreamArray [i].BufferSize)) != S_OK) {
return Status;
}
Offset += UserStreamArray[i].BufferSize;
}
return S_OK;
}
HRESULT
WriteException(
IN PMINIDUMP_STATE Dump,
IN PMINIDUMP_STREAM_INFO StreamInfo,
IN CONST PEXCEPTION_INFO ExceptionInfo
)
{
HRESULT Status;
ULONG i;
ULONG ContextRva;
MINIDUMP_EXCEPTION_STREAM ExceptionStream;
if (ExceptionInfo == NULL ) {
return S_OK;
}
if ((Status = WriteOther (Dump,
StreamInfo,
ExceptionInfo->ContextRecord,
Dump->ContextSize,
&ContextRva)) != S_OK) {
return Status;
}
ZeroMemory (&ExceptionStream, sizeof (ExceptionStream));
ExceptionStream.ThreadId = ExceptionInfo->ThreadId;
ExceptionStream.ExceptionRecord = ExceptionInfo->ExceptionRecord;
ExceptionStream.ThreadContext.DataSize = Dump->ContextSize;
ExceptionStream.ThreadContext.Rva = ContextRva;
return WriteAtOffset(Dump,
StreamInfo->RvaOfException,
&ExceptionStream,
StreamInfo->SizeOfException);
}
HRESULT
WriteUserStreams(
IN PMINIDUMP_STATE Dump,
IN PMINIDUMP_STREAM_INFO StreamInfo,
IN PMINIDUMP_USER_STREAM UserStreamArray,
IN ULONG UserStreamCount
)
{
HRESULT Status;
ULONG i;
ULONG Offset;
Offset = StreamInfo->RvaOfUserStreams;
for (i = 0; i < UserStreamCount; i++) {
if ((Status = WriteAtOffset(Dump,
Offset,
UserStreamArray[i].Buffer,
UserStreamArray[i].BufferSize)) != S_OK) {
return Status;
}
Offset += UserStreamArray[ i ].BufferSize;
}
return S_OK;
}
HRESULT
WriteMemoryListHeader(
IN PMINIDUMP_STATE Dump,
IN PMINIDUMP_STREAM_INFO StreamInfo
)
{
HRESULT Status;
ULONG Size;
ULONG Count;
MINIDUMP_MEMORY_LIST MemoryList;
ASSERT ( StreamInfo->RvaOfMemoryDescriptors ==
StreamInfo->RvaForCurMemoryDescriptor );
Size = StreamInfo->SizeOfMemoryDescriptors;
Size -= sizeof (MINIDUMP_MEMORY_LIST);
ASSERT ( (Size % sizeof (MINIDUMP_MEMORY_DESCRIPTOR)) == 0);
Count = Size / sizeof (MINIDUMP_MEMORY_DESCRIPTOR);
MemoryList.NumberOfMemoryRanges = Count;
if ((Status = WriteAtOffset (Dump,
StreamInfo->RvaOfMemoryDescriptors,
&MemoryList,
sizeof (MemoryList))) != S_OK) {
return Status;
}
StreamInfo->RvaForCurMemoryDescriptor += sizeof (MemoryList);
return S_OK;
}
#define FULL_MEMORY_BUFFER 65536
HRESULT
WriteFullMemory(
IN PMINIDUMP_STATE Dump,
IN PMINIDUMP_STREAM_INFO StreamInfo
)
{
PVOID Buffer;
HRESULT Status;
ULONG64 Offset;
ULONG64 Size;
ULONG Protect, State, Type;
MINIDUMP_MEMORY64_LIST List;
MINIDUMP_MEMORY_DESCRIPTOR64 Desc;
ULONG64 SeekOffset;
//
// Pick up the current offset for the RVA as
// variable data may have been written in previously.
//
if ((Status = Dump->OutProv->
Seek(FILE_CURRENT, 0, &SeekOffset)) != S_OK) {
return Status;
}
StreamInfo->RvaOfMemoryDescriptors = (ULONG)SeekOffset;
Buffer = AllocMemory(Dump, FULL_MEMORY_BUFFER);
if (Buffer == NULL) {
return E_OUTOFMEMORY;
}
//
// First pass: count and write descriptors.
// Only accessible, available memory is saved.
//
// Write placeholder list header.
ZeroMemory(&List, sizeof(List));
if ((Status = Dump->OutProv->
WriteAll(&List, sizeof(List))) != S_OK) {
goto Exit;
}
Offset = 0;
for (;;) {
if (Dump->SysProv->
QueryVirtual(Dump->ProcessHandle, Offset, &Offset, &Size,
&Protect, &State, &Type) != S_OK) {
break;
}
if (((Protect & PAGE_GUARD) ||
(Protect & PAGE_NOACCESS) ||
(State & MEM_FREE) ||
(State & MEM_RESERVE))) {
Offset += Size;
continue;
}
// The size of a stream is a ULONG32 so we can't store
// any more than that.
if (List.NumberOfMemoryRanges ==
(_UI32_MAX - sizeof(MINIDUMP_MEMORY64_LIST)) / sizeof(Desc)) {
goto Exit;
}
List.NumberOfMemoryRanges++;
Desc.StartOfMemoryRange = Offset;
Desc.DataSize = Size;
if ((Status = Dump->OutProv->
WriteAll(&Desc, sizeof(Desc))) != S_OK) {
goto Exit;
}
Offset += Size;
}
StreamInfo->SizeOfMemoryDescriptors +=
(ULONG)List.NumberOfMemoryRanges * sizeof(Desc);
List.BaseRva = (RVA64)StreamInfo->RvaOfMemoryDescriptors +
StreamInfo->SizeOfMemoryDescriptors;
//
// Second pass: write memory contents.
//
Offset = 0;
for (;;) {
ULONG64 ChunkOffset;
ULONG ChunkSize;
if (Dump->SysProv->
QueryVirtual(Dump->ProcessHandle, Offset, &Offset, &Size,
&Protect, &State, &Type) != S_OK) {
break;
}
if (((Protect & PAGE_GUARD) ||
(Protect & PAGE_NOACCESS) ||
(State & MEM_FREE) ||
(State & MEM_RESERVE))) {
Offset += Size;
continue;
}
ChunkOffset = Offset;
Offset += Size;
while (Size > 0) {
if (Size > FULL_MEMORY_BUFFER) {
ChunkSize = FULL_MEMORY_BUFFER;
} else {
ChunkSize = (ULONG)Size;
}
if ((Status = Dump->SysProv->
ReadAllVirtual(Dump->ProcessHandle,
ChunkOffset, Buffer, ChunkSize)) != S_OK) {
goto Exit;
}
if ((Status = Dump->OutProv->
WriteAll(Buffer, ChunkSize)) != S_OK) {
goto Exit;
}
ChunkOffset += ChunkSize;
Size -= ChunkSize;
}
}
// Write correct list header.
Status = WriteAtOffset(Dump, StreamInfo->RvaOfMemoryDescriptors,
&List, sizeof(List));
Exit:
FreeMemory(Dump, Buffer);
return Status;
}
HRESULT
WriteDumpData(
IN PMINIDUMP_STATE Dump,
IN PMINIDUMP_STREAM_INFO StreamInfo,
IN PINTERNAL_PROCESS Process,
IN CONST PEXCEPTION_INFO ExceptionInfo,
IN CONST PMINIDUMP_USER_STREAM UserStreamArray,
IN ULONG UserStreamCount
)
{
HRESULT Status;
if ((Status = WriteHeader ( Dump, StreamInfo )) != S_OK) {
return Status;
}
if ((Status = WriteSystemInfo ( Dump, StreamInfo )) != S_OK) {
return Status;
}
if ((Status = WriteMiscInfo(Dump, StreamInfo, Process)) != S_OK) {
return Status;
}
//
// Optionally, write the exception to the file.
//
if ((Status = WriteException ( Dump, StreamInfo, ExceptionInfo )) != S_OK) {
return Status;
}
if (!(Dump->DumpType & MiniDumpWithFullMemory)) {
//
// WriteMemoryList initializes the memory list header (count).
// The actual writing of the entries is done by WriteThreadList
// and WriteModuleList.
//
if ((Status = WriteMemoryListHeader ( Dump, StreamInfo )) != S_OK) {
return Status;
}
if ((Status = WriteMemoryBlocks(Dump, StreamInfo, Process)) != S_OK) {
return Status;
}
}
//
// Write the threads list. This will also write the contexts, and
// stacks for each thread.
//
if ((Status = WriteThreadList ( Dump, StreamInfo, Process )) != S_OK) {
return Status;
}
//
// Write the module list. This will also write the debug information and
// module name to the file.
//
if ((Status = WriteModuleList ( Dump, StreamInfo, Process )) != S_OK) {
return Status;
}
//
// Write the unloaded module list.
//
if ((Status = WriteUnloadedModuleList ( Dump, StreamInfo, Process )) != S_OK) {
return Status;
}
//
// Write the function table list.
//
if ((Status = WriteFunctionTableList ( Dump, StreamInfo, Process )) != S_OK) {
return Status;
}
if ((Status = WriteUserStreams ( Dump,
StreamInfo,
UserStreamArray,
UserStreamCount)) != S_OK) {
return Status;
}
// Put the file pointer at the end of the dump so
// we can accumulate write-streamed data.
if ((Status = Dump->OutProv->
Seek(FILE_BEGIN, StreamInfo->RvaOfHandleData, NULL)) != S_OK) {
return Status;
}
if (Dump->DumpType & MiniDumpWithHandleData) {
if ((Status =
GenWriteHandleData(Dump, StreamInfo)) != S_OK) {
return Status;
}
}
if (Dump->DumpType & MiniDumpWithFullMemory) {
if ((Status = WriteFullMemory(Dump, StreamInfo)) != S_OK) {
return Status;
}
}
if ((Status = Dump->OutProv->
Seek(FILE_BEGIN, StreamInfo->RvaOfDirectory, NULL)) != S_OK) {
return Status;
}
return WriteDirectoryTable ( Dump,
StreamInfo,
Process,
UserStreamArray,
UserStreamCount);
}
HRESULT
MarshalExceptionPointers(
IN PMINIDUMP_STATE Dump,
IN CONST _MINIDUMP_EXCEPTION_INFORMATION64* ExceptionParam,
IN OUT PEXCEPTION_INFO ExceptionInfo
)
{
HRESULT Status;
if (Dump->ExRecordSize == sizeof(EXCEPTION_RECORD32)) {
EXCEPTION_RECORD32 Record;
if ((Status = Dump->SysProv->
ReadAllVirtual(Dump->ProcessHandle,
ExceptionParam->ExceptionRecord,
&Record,
sizeof(Record))) != S_OK) {
return Status;
}
GenExRecord32ToMd(&Record, &ExceptionInfo->ExceptionRecord);
} else {
EXCEPTION_RECORD64 Record;
if ((Status = Dump->SysProv->
ReadAllVirtual(Dump->ProcessHandle,
ExceptionParam->ExceptionRecord,
&Record,
sizeof(Record))) != S_OK) {
return Status;
}
GenExRecord64ToMd(&Record, &ExceptionInfo->ExceptionRecord);
}
if ((Status = Dump->SysProv->
ReadAllVirtual(Dump->ProcessHandle,
ExceptionParam->ContextRecord,
ExceptionInfo->ContextRecord,
Dump->ContextSize)) != S_OK) {
return Status;
}
return S_OK;
}
HRESULT
GetExceptionInfo(
IN PMINIDUMP_STATE Dump,
IN CONST struct _MINIDUMP_EXCEPTION_INFORMATION64* ExceptionParam,
OUT PEXCEPTION_INFO * ExceptionInfoBuffer
)
{
HRESULT Status;
PEXCEPTION_INFO ExceptionInfo;
ULONG Size;
if ( ExceptionParam == NULL ) {
*ExceptionInfoBuffer = NULL;
return S_OK;
}
if (Dump->ExRecordSize != sizeof(EXCEPTION_RECORD32) &&
Dump->ExRecordSize != sizeof(EXCEPTION_RECORD64)) {
return E_INVALIDARG;
}
Size = sizeof(*ExceptionInfo);
if (ExceptionParam->ClientPointers) {
Size += Dump->ContextSize;
}
ExceptionInfo = (PEXCEPTION_INFO)AllocMemory(Dump, Size);
if ( ExceptionInfo == NULL ) {
return E_OUTOFMEMORY;
}
if ( !ExceptionParam->ClientPointers ) {
if (Dump->ExRecordSize == sizeof(EXCEPTION_RECORD32)) {
GenExRecord32ToMd((PEXCEPTION_RECORD32)
ExceptionParam->ExceptionRecord,
&ExceptionInfo->ExceptionRecord);
} else {
GenExRecord64ToMd((PEXCEPTION_RECORD64)
ExceptionParam->ExceptionRecord,
&ExceptionInfo->ExceptionRecord);
}
ExceptionInfo->ContextRecord =
(PVOID)ExceptionParam->ContextRecord;
Status = S_OK;
} else {
ExceptionInfo->ContextRecord = (PVOID)(ExceptionInfo + 1);
Status = MarshalExceptionPointers(Dump,
ExceptionParam,
ExceptionInfo);
}
ExceptionInfo->ThreadId = ExceptionParam->ThreadId;
if ( Status != S_OK ) {
FreeMemory(Dump, ExceptionInfo);
} else {
//
// We've seen some cases where the exception record has
// a bogus number of parameters, causing stack corruption here.
// We could fail such cases but in the spirit of try to
// allow dumps to generated as often as possible we just
// limit the number to the maximum.
//
if (ExceptionInfo->ExceptionRecord.NumberParameters >
EXCEPTION_MAXIMUM_PARAMETERS) {
ExceptionInfo->ExceptionRecord.NumberParameters =
EXCEPTION_MAXIMUM_PARAMETERS;
}
*ExceptionInfoBuffer = ExceptionInfo;
}
return Status;
}
VOID
FreeExceptionInfo(
IN PMINIDUMP_STATE Dump,
IN PEXCEPTION_INFO ExceptionInfo
)
{
if ( ExceptionInfo ) {
FreeMemory(Dump, ExceptionInfo);
}
}
HRESULT
GetSystemType(
IN OUT PMINIDUMP_STATE Dump
)
{
HRESULT Status;
if ((Status = Dump->SysProv->
GetCpuType(&Dump->CpuType,
&Dump->BackingStore)) != S_OK) {
return Status;
}
switch(Dump->CpuType) {
case IMAGE_FILE_MACHINE_I386:
Dump->CpuTypeName = L"x86";
break;
case IMAGE_FILE_MACHINE_IA64:
Dump->CpuTypeName = L"IA64";
break;
case IMAGE_FILE_MACHINE_AMD64:
Dump->CpuTypeName = L"AMD64";
break;
case IMAGE_FILE_MACHINE_ARM:
Dump->CpuTypeName = L"ARM";
break;
default:
return E_INVALIDARG;
}
if ((Status = Dump->SysProv->
GetOsInfo(&Dump->OsPlatformId,
&Dump->OsMajor,
&Dump->OsMinor,
&Dump->OsBuildNumber,
&Dump->OsProductType,
&Dump->OsSuiteMask)) != S_OK) {
return Status;
}
Dump->SysProv->
GetContextSizes(&Dump->ContextSize,
&Dump->RegScanOffset,
&Dump->RegScanCount);
Dump->SysProv->
GetPointerSize(&Dump->PtrSize);
Dump->SysProv->
GetPageSize(&Dump->PageSize);
Dump->SysProv->
GetFunctionTableSizes(&Dump->FuncTableSize,
&Dump->FuncTableEntrySize);
Dump->SysProv->
GetInstructionWindowSize(&Dump->InstructionWindowSize);
if (Dump->FuncTableSize > MAX_DYNAMIC_FUNCTION_TABLE) {
return E_INVALIDARG;
}
Dump->ExRecordSize = Dump->PtrSize == 8 ?
sizeof(EXCEPTION_RECORD64) : sizeof(EXCEPTION_RECORD32);
if (Dump->RegScanCount == -1) {
// Default reg scan.
switch(Dump->CpuType) {
case IMAGE_FILE_MACHINE_I386:
Dump->RegScanOffset = 0x9c;
Dump->RegScanCount = 11;
break;
case IMAGE_FILE_MACHINE_IA64:
Dump->RegScanOffset = 0x878;
Dump->RegScanCount = 41;
break;
case IMAGE_FILE_MACHINE_AMD64:
Dump->RegScanOffset = 0x78;
Dump->RegScanCount = 17;
break;
case IMAGE_FILE_MACHINE_ARM:
Dump->RegScanOffset = 4;
Dump->RegScanCount = 16;
break;
default:
return E_INVALIDARG;
}
}
if (Dump->InstructionWindowSize == -1) {
// Default window.
switch(Dump->CpuType) {
case IMAGE_FILE_MACHINE_I386:
Dump->InstructionWindowSize = 256;
break;
case IMAGE_FILE_MACHINE_IA64:
Dump->InstructionWindowSize = 768;
break;
case IMAGE_FILE_MACHINE_AMD64:
Dump->InstructionWindowSize = 256;
break;
case IMAGE_FILE_MACHINE_ARM:
Dump->InstructionWindowSize = 512;
break;
default:
return E_INVALIDARG;
}
}
return S_OK;
}
HRESULT
WINAPI
MiniDumpProvideDump(
IN HANDLE hProcess,
IN DWORD ProcessId,
IN MiniDumpSystemProvider* SysProv,
IN MiniDumpOutputProvider* OutProv,
IN MiniDumpAllocationProvider* AllocProv,
IN ULONG DumpType,
IN CONST struct _MINIDUMP_EXCEPTION_INFORMATION64* ExceptionParam, OPTIONAL
IN CONST struct _MINIDUMP_USER_STREAM_INFORMATION* UserStreamParam, OPTIONAL
IN CONST struct _MINIDUMP_CALLBACK_INFORMATION* CallbackParam OPTIONAL
)
{
HRESULT Status;
PINTERNAL_PROCESS Process;
MINIDUMP_STREAM_INFO StreamInfo;
PEXCEPTION_INFO ExceptionInfo;
PMINIDUMP_USER_STREAM UserStreamArray;
ULONG UserStreamCount;
MINIDUMP_STATE Dump;
if ((DumpType & ~(MiniDumpNormal |
MiniDumpWithDataSegs |
MiniDumpWithFullMemory |
MiniDumpWithHandleData |
MiniDumpFilterMemory |
MiniDumpScanMemory |
MiniDumpWithUnloadedModules |
MiniDumpWithIndirectlyReferencedMemory |
MiniDumpFilterModulePaths |
MiniDumpWithProcessThreadData |
MiniDumpWithPrivateReadWriteMemory |
MiniDumpWithoutOptionalData))) {
return E_INVALIDARG;
}
// Modify flags that are affected by dropping optional data.
if (DumpType & MiniDumpWithoutOptionalData) {
DumpType &= ~(MiniDumpWithFullMemory |
MiniDumpWithIndirectlyReferencedMemory |
MiniDumpWithPrivateReadWriteMemory);
}
// Full memory by definition includes data segments,
// so turn off data segments if full memory is requested.
if (DumpType & MiniDumpWithFullMemory) {
DumpType &= ~(MiniDumpWithDataSegs |
MiniDumpFilterMemory |
MiniDumpScanMemory |
MiniDumpWithIndirectlyReferencedMemory |
MiniDumpWithProcessThreadData |
MiniDumpWithPrivateReadWriteMemory);
}
// Fail immediately if stream-oriented data is requested but the
// output provider can't handle streamed output.
if ((DumpType & (MiniDumpWithHandleData |
MiniDumpWithFullMemory)) &&
OutProv->SupportsStreaming() != S_OK) {
return E_INVALIDARG;
}
//
// Initialization
//
Process = NULL;
UserStreamArray = NULL;
UserStreamCount = 0;
Dump.ProcessHandle = hProcess;
Dump.ProcessId = ProcessId;
Dump.SysProv = SysProv;
Dump.OutProv = OutProv;
Dump.AllocProv = AllocProv;
Dump.DumpType = DumpType,
Dump.AccumStatus = 0;
if ( CallbackParam ) {
Dump.CallbackRoutine = CallbackParam->CallbackRoutine;
Dump.CallbackParam = CallbackParam->CallbackParam;
} else {
Dump.CallbackRoutine = NULL;
Dump.CallbackParam = NULL;
}
if ((Status = GetSystemType(&Dump)) != S_OK) {
return Status;
}
//
// Marshal exception pointers into our process space if necessary.
//
if ((Status = GetExceptionInfo(&Dump,
ExceptionParam,
&ExceptionInfo)) != S_OK) {
goto Exit;
}
if ( UserStreamParam ) {
UserStreamArray = UserStreamParam->UserStreamArray;
UserStreamCount = UserStreamParam->UserStreamCount;
}
//
// Gather information about the process we are dumping.
//
if ((Status = GenGetProcessInfo(&Dump, &Process)) != S_OK) {
goto Exit;
}
//
// Process gathered information.
//
if ((Status = PostProcessInfo(&Dump, Process)) != S_OK) {
goto Exit;
}
//
// Execute user callbacks to filter out unwanted data.
//
if ((Status = ExecuteCallbacks(&Dump, Process)) != S_OK) {
goto Exit;
}
//
// Pass 1: Fill in the StreamInfo structure.
//
if ((Status =
CalculateStreamInfo(&Dump,
Process,
&StreamInfo,
( ExceptionInfo != NULL ) ? TRUE : FALSE,
UserStreamArray,
UserStreamCount)) != S_OK) {
goto Exit;
}
//
// Pass 2: Write the minidump data to disk.
//
if (DumpType & (MiniDumpWithHandleData |
MiniDumpWithFullMemory)) {
// We don't know how big the output will be.
if ((Status = OutProv->Start(0)) != S_OK) {
goto Exit;
}
} else {
// Pass in the size of the dump.
if ((Status = OutProv->Start(StreamInfo.RvaOfHandleData)) != S_OK) {
goto Exit;
}
}
Status = WriteDumpData(&Dump,
&StreamInfo,
Process,
ExceptionInfo,
UserStreamArray,
UserStreamCount);
OutProv->Finish();
Exit:
//
// Free up any memory marshalled for the exception pointers.
//
FreeExceptionInfo ( &Dump, ExceptionInfo );
//
// Free the process objects.
//
if ( Process ) {
GenFreeProcessObject ( &Dump, Process );
}
return Status;
}
BOOL
UseDbgHelp(void)
{
#if !defined (_DBGHELP_SOURCE_)
OSVERSIONINFO OsVer;
//
// Bind to dbghelp imports.
//
// We can only use the dbghelp imports if the dbghelp on
// the system is of recent vintage and therefore has a good
// chance of including all the latest minidump code. Currently
// Windows Server (5.01 >= build 3620) has the latest minidump
// code so its dbghelp can be used. If minidump.lib has major
// feature additions this check will need to be revised.
//
OsVer.dwOSVersionInfoSize = sizeof(OsVer);
if (GetVersionEx(&OsVer) &&
OsVer.dwPlatformId == VER_PLATFORM_WIN32_NT &&
(OsVer.dwMajorVersion > 5 ||
(OsVer.dwMajorVersion == 5 &&
OsVer.dwMinorVersion >= 2)) &&
OsVer.dwBuildNumber >= 3620) {
return TRUE;
}
#endif
return FALSE;
}
BOOL
WINAPI
MiniDumpWriteDump(
IN HANDLE hProcess,
IN DWORD ProcessId,
IN HANDLE hFile,
IN MINIDUMP_TYPE DumpType,
IN CONST PMINIDUMP_EXCEPTION_INFORMATION ExceptionParam, OPTIONAL
IN CONST PMINIDUMP_USER_STREAM_INFORMATION UserStreamParam, OPTIONAL
IN CONST PMINIDUMP_CALLBACK_INFORMATION CallbackParam OPTIONAL
)
{
HRESULT Status;
MiniDumpSystemProvider* SysProv = NULL;
MiniDumpOutputProvider* OutProv = NULL;
MiniDumpAllocationProvider* AllocProv = NULL;
MINIDUMP_EXCEPTION_INFORMATION64 ExInfoBuffer;
PMINIDUMP_EXCEPTION_INFORMATION64 ExInfo;
// Attempt to use the system's copy of the code in
// dbghelp. If any of this process fails just continue
// on with the local code.
if (UseDbgHelp()) {
HINSTANCE Dll = LoadLibrary("dbghelp.dll");
if (Dll) {
MINI_DUMP_WRITE_DUMP Fn = (MINI_DUMP_WRITE_DUMP)
GetProcAddress(Dll, "MiniDumpWriteDump");
if (Fn) {
BOOL Succ = Fn(hProcess, ProcessId, hFile, DumpType,
ExceptionParam, UserStreamParam, CallbackParam);
FreeLibrary(Dll);
return Succ;
}
FreeLibrary(Dll);
}
}
if ((Status =
MiniDumpCreateLiveSystemProvider(&SysProv)) != S_OK ||
(Status =
MiniDumpCreateFileOutputProvider(hFile, &OutProv)) != S_OK ||
(Status =
MiniDumpCreateLiveAllocationProvider(&AllocProv)) != S_OK) {
goto Exit;
}
if (ExceptionParam) {
ExInfo = &ExInfoBuffer;
ExInfo->ThreadId = ExceptionParam->ThreadId;
ExInfo->ClientPointers = ExceptionParam->ClientPointers;
if (ExInfo->ClientPointers) {
EXCEPTION_POINTERS ClientPointers;
if ((Status = SysProv->
ReadAllVirtual(hProcess,
(LONG_PTR)ExceptionParam->ExceptionPointers,
&ClientPointers,
sizeof(ClientPointers))) != S_OK) {
goto Exit;
}
ExInfo->ExceptionRecord =
(LONG_PTR)ClientPointers.ExceptionRecord;
ExInfo->ContextRecord =
(LONG_PTR)ClientPointers.ContextRecord;
} else {
ExInfo->ExceptionRecord =
(LONG_PTR)ExceptionParam->ExceptionPointers->ExceptionRecord;
ExInfo->ContextRecord =
(LONG_PTR)ExceptionParam->ExceptionPointers->ContextRecord;
}
} else {
ExInfo = NULL;
}
Status = MiniDumpProvideDump(hProcess, ProcessId,
SysProv, OutProv, AllocProv,
DumpType, ExInfo,
UserStreamParam, CallbackParam);
Exit:
if (SysProv) {
SysProv->Release();
}
if (OutProv) {
OutProv->Release();
}
if (AllocProv) {
AllocProv->Release();
}
if (Status == S_OK) {
return TRUE;
} else {
SetLastError(Status);
return FALSE;
}
}
BOOL
WINAPI
MiniDumpReadDumpStream(
IN PVOID Base,
ULONG StreamNumber,
OUT PMINIDUMP_DIRECTORY * Dir, OPTIONAL
OUT PVOID * Stream, OPTIONAL
OUT ULONG * StreamSize OPTIONAL
)
{
ULONG i;
BOOL Found;
PMINIDUMP_DIRECTORY Dirs;
PMINIDUMP_HEADER Header;
// Attempt to use the system's copy of the code in
// dbghelp. If any of this process fails just continue
// on with the local code.
if (UseDbgHelp()) {
HINSTANCE Dll = LoadLibrary("dbghelp.dll");
if (Dll) {
MINI_DUMP_READ_DUMP_STREAM Fn = (MINI_DUMP_READ_DUMP_STREAM)
GetProcAddress(Dll, "MiniDumpReadDumpStream");
if (Fn) {
BOOL Succ = Fn(Base, StreamNumber,
Dir, Stream, StreamSize);
FreeLibrary(Dll);
return Succ;
}
FreeLibrary(Dll);
}
}
//
// Initialization
//
Found = FALSE;
Header = (PMINIDUMP_HEADER) Base;
if ( Header->Signature != MINIDUMP_SIGNATURE ||
(Header->Version & 0xffff) != MINIDUMP_VERSION ) {
//
// Invalid Minidump file.
//
return FALSE;
}
Dirs = (PMINIDUMP_DIRECTORY) RVA_TO_ADDR (Header, Header->StreamDirectoryRva);
for (i = 0; i < Header->NumberOfStreams; i++) {
if (Dirs [i].StreamType == StreamNumber) {
Found = TRUE;
break;
}
}
if ( !Found ) {
return FALSE;
}
if ( Dir ) {
*Dir = &Dirs [i];
}
if ( Stream ) {
*Stream = RVA_TO_ADDR (Base, Dirs [i].Location.Rva);
}
if ( StreamSize ) {
*StreamSize = Dirs[i].Location.DataSize;
}
return TRUE;
}