Leaked source code of windows server 2003
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

814 lines
23 KiB

/*++
Copyright (c) 1993 Microsoft Corporation
Module Name:
spfsrec.c
Abstract:
Filesystem recognition/identification routines.
Author:
Ted Miller (tedm) 16-September-1993
Revision History:
--*/
#include "spprecmp.h"
#pragma hdrstop
#include <bootfat.h>
#include <bootf32.h>
#include <bootntfs.h>
#include <boot98f.h> //NEC98
#include <boot98n.h> //NEC98
#include <boot98f2.h> //NEC98
#include <patchbc.h>
//
// Packed FAT boot sector.
//
typedef struct _BOOTSECTOR {
UCHAR Jump[3]; // offset = 0x000 0
UCHAR Oem[8]; // offset = 0x003 3
UCHAR BytesPerSector[2];
UCHAR SectorsPerCluster[1];
UCHAR ReservedSectors[2];
UCHAR Fats[1];
UCHAR RootEntries[2];
UCHAR Sectors[2];
UCHAR Media[1];
UCHAR SectorsPerFat[2];
UCHAR SectorsPerTrack[2];
UCHAR Heads[2];
UCHAR HiddenSectors[4];
UCHAR LargeSectors[4];
UCHAR PhysicalDriveNumber[1]; // offset = 0x024 36
UCHAR Reserved[1]; // offset = 0x025 37
UCHAR Signature[1]; // offset = 0x026 38
UCHAR Id[4]; // offset = 0x027 39
UCHAR VolumeLabel[11]; // offset = 0x02B 43
UCHAR SystemId[8]; // offset = 0x036 54
UCHAR BootStrap[510-62];
UCHAR AA55Signature[2];
} BOOTSECTOR, *PBOOTSECTOR;
//
// Packed NTFS boot sector.
//
typedef struct _NTFS_BOOTSECTOR {
UCHAR Jump[3];
UCHAR Oem[8];
UCHAR BytesPerSector[2];
UCHAR SectorsPerCluster[1];
UCHAR ReservedSectors[2];
UCHAR Fats[1];
UCHAR RootEntries[2];
UCHAR Sectors[2];
UCHAR Media[1];
UCHAR SectorsPerFat[2];
UCHAR SectorsPerTrack[2];
UCHAR Heads[2];
UCHAR HiddenSectors[4];
UCHAR LargeSectors[4];
UCHAR Unused[4];
LARGE_INTEGER NumberSectors;
LARGE_INTEGER MftStartLcn;
LARGE_INTEGER Mft2StartLcn;
CHAR ClustersPerFileRecordSegment;
UCHAR Reserved0[3];
CHAR DefaultClustersPerIndexAllocationBuffer;
UCHAR Reserved1[3];
LARGE_INTEGER SerialNumber;
ULONG Checksum;
UCHAR BootStrap[512-86];
USHORT AA55Signature;
} NTFS_BOOTSECTOR, *PNTFS_BOOTSECTOR;
//
// Various signatures
//
#define BOOTSECTOR_SIGNATURE 0xaa55
BOOLEAN
SpIsFat(
IN HANDLE PartitionHandle,
IN ULONG BytesPerSector,
IN PVOID AlignedBuffer,
OUT BOOLEAN *Fat32
)
/*++
Routine Description:
Determine whether a partition contians a FAT or FAT32 filesystem.
Arguments:
PartitionHandle - supplies handle to open partition.
The partition should have been opened for synchronous i/o.
BytesPerSector - supplies the number of bytes in a sector on
the disk. This value should be ultimately derived from
IOCTL_DISK_GET_DISK_GEOMETRY.
AlignedBuffer - supplies buffer to be used for i/o of a single sector.
Fat32 - if this routine returns TRUE then this receives a flag
indicating whether the volume is fat32.
Return Value:
TRUE if the drive appears to be FAT.
--*/
{
PBOOTSECTOR BootSector;
USHORT bps;
NTSTATUS Status;
IO_STATUS_BLOCK IoStatusBlock;
PARTITION_INFORMATION PartitionInfo;
ULONG SecCnt;
//
// Get partition info. This is so we can check to make sure the
// file system on the partition isn't actually larger than the
// partition itself. This happens for example when people
// abuse the win9x rawread/rawwrite oem tool.
//
Status = ZwDeviceIoControlFile(
PartitionHandle,
NULL,
NULL,
NULL,
&IoStatusBlock,
IOCTL_DISK_GET_PARTITION_INFO,
NULL,
0,
&PartitionInfo,
sizeof(PartitionInfo)
);
if(!NT_SUCCESS(Status)) {
KdPrintEx((DPFLTR_SETUP_ID, DPFLTR_ERROR_LEVEL, "SETUP: SpIsFat: unable to get partition info (%lx)\n",Status));
return(FALSE);
}
if((ULONGLONG)(PartitionInfo.PartitionLength.QuadPart / BytesPerSector) > 0xffffffffUi64) {
//
// This can't happen since the BPB can't describe it.
//
return(FALSE);
}
SecCnt = (ULONG)(PartitionInfo.PartitionLength.QuadPart / BytesPerSector);
ASSERT(sizeof(BOOTSECTOR)==512);
BootSector = AlignedBuffer;
//
// Read the boot sector (sector 0).
//
Status = SpReadWriteDiskSectors(
PartitionHandle,
0,
1,
BytesPerSector,
BootSector,
FALSE
);
if(!NT_SUCCESS(Status)) {
KdPrintEx((DPFLTR_SETUP_ID, DPFLTR_ERROR_LEVEL, "SETUP: SpIsFat: Error %lx reading sector 0\n",Status));
return(FALSE);
}
//
// Adjust large sector count if necessary.
//
if(U_USHORT(BootSector->Sectors)) {
U_ULONG(BootSector->LargeSectors) = 0;
if((ULONG)U_USHORT(BootSector->Sectors) > SecCnt) {
KdPrintEx((DPFLTR_SETUP_ID, DPFLTR_ERROR_LEVEL, "SETUP: Boot sector on a disk has inconsistent size information!!\n"));
return(FALSE);
}
} else {
if(U_ULONG(BootSector->LargeSectors) > SecCnt) {
KdPrintEx((DPFLTR_SETUP_ID, DPFLTR_ERROR_LEVEL, "SETUP: Boot sector on a disk has inconsistent size information!!\n"));
return(FALSE);
}
}
//
// Check various fields for permissible values.
// Note that this check does not venture into fields beyond the BPB,
// so disks with sector size < 512 are allowed.
//
if((BootSector->Jump[0] != 0x49) // Fujitsu FMR
&& (BootSector->Jump[0] != 0xe9)
&& (BootSector->Jump[0] != 0xeb)) {
return(FALSE);
}
bps = U_USHORT(BootSector->BytesPerSector);
if((bps != 128) && (bps != 256)
&& (bps != 512) && (bps != 1024)
&& (bps != 2048) && (bps != 4096)) {
return(FALSE);
}
if((BootSector->SectorsPerCluster[0] != 1)
&& (BootSector->SectorsPerCluster[0] != 2)
&& (BootSector->SectorsPerCluster[0] != 4)
&& (BootSector->SectorsPerCluster[0] != 8)
&& (BootSector->SectorsPerCluster[0] != 16)
&& (BootSector->SectorsPerCluster[0] != 32)
&& (BootSector->SectorsPerCluster[0] != 64)
&& (BootSector->SectorsPerCluster[0] != 128)) {
return(FALSE);
}
if(!U_USHORT(BootSector->ReservedSectors) || !BootSector->Fats[0]) {
return(FALSE);
}
if(!U_USHORT(BootSector->Sectors) && !U_ULONG(BootSector->LargeSectors)) {
return(FALSE);
}
if((BootSector->Media[0] != 0x00) // FMR (formatted by OS/2)
&& (BootSector->Media[0] != 0x01) // FMR (floppy, formatted by DOS)
&& (BootSector->Media[0] != 0xf0)
&& (BootSector->Media[0] != 0xf8)
&& (BootSector->Media[0] != 0xf9)
&& (BootSector->Media[0] != 0xfa) // FMR
&& (BootSector->Media[0] != 0xfb)
&& (BootSector->Media[0] != 0xfc)
&& (BootSector->Media[0] != 0xfd)
&& (BootSector->Media[0] != 0xfe)
&& (BootSector->Media[0] != 0xff)) {
return(FALSE);
}
//
// Final distinction is between FAT and FAT32.
// Root dir entry count is 0 on FAT32.
//
if(U_USHORT(BootSector->SectorsPerFat) && !U_USHORT(BootSector->RootEntries)) {
return(FALSE);
}
*Fat32 = (BOOLEAN)(U_USHORT(BootSector->RootEntries) == 0);
return(TRUE);
}
BOOLEAN
SpIsNtfs(
IN HANDLE PartitionHandle,
IN ULONG BytesPerSector,
IN PVOID AlignedBuffer,
IN ULONG WhichOne
)
/*++
Routine Description:
Determine whether a partition contians an NTFS filesystem.
Arguments:
PartitionHandle - supplies handle to open partition.
The partition should have been opened for synchronous i/o.
BytesPerSector - supplies the number of bytes in a sector on
the disk. This value should be ultimately derived from
IOCTL_DISK_GET_DISK_GEOMETRY.
AlignedBuffer - supplies buffer to be used for i/o of a single sector.
WhichOne - supplies a value that allows the caller to try more than
one sector. 0 = sector 0. 1 = sector n-1. 2 = sector n/2, where
n = number of sectors in the partition.
Return Value:
TRUE if the drive appears to be FAT.
--*/
{
PNTFS_BOOTSECTOR BootSector;
NTSTATUS Status;
PULONG l;
ULONG Checksum;
IO_STATUS_BLOCK IoStatusBlock;
PARTITION_INFORMATION PartitionInfo;
ULONGLONG SecCnt;
//
// Get partition information.
//
Status = ZwDeviceIoControlFile(
PartitionHandle,
NULL,
NULL,
NULL,
&IoStatusBlock,
IOCTL_DISK_GET_PARTITION_INFO,
NULL,
0,
&PartitionInfo,
sizeof(PartitionInfo)
);
if(!NT_SUCCESS(Status)) {
KdPrintEx((DPFLTR_SETUP_ID, DPFLTR_ERROR_LEVEL, "SETUP: SpIsNtfs: unable to get partition info (%lx)\n",Status));
return(FALSE);
}
SecCnt = (ULONGLONG)PartitionInfo.PartitionLength.QuadPart / BytesPerSector;
ASSERT(sizeof(NTFS_BOOTSECTOR)==512);
BootSector = AlignedBuffer;
//
// Read the boot sector (sector 0).
//
Status = SpReadWriteDiskSectors(
PartitionHandle,
(ULONG)(WhichOne ? ((WhichOne == 1) ? SecCnt-1 : SecCnt/2) : 0),
1,
BytesPerSector,
BootSector,
FALSE
);
if(!NT_SUCCESS(Status)) {
KdPrintEx((DPFLTR_SETUP_ID, DPFLTR_ERROR_LEVEL, "SETUP: SpIsNtfs: Error %lx reading sector %u\n",Status,WhichOne ? ((WhichOne == 1) ? SecCnt-1 : SecCnt/2) : 0));
return(FALSE);
}
//
// Caulculate the checksum.
//
for(Checksum=0,l=(PULONG)BootSector; l<(PULONG)&BootSector->Checksum; l++) {
Checksum += *l;
}
//
// Ensure that NTFS appears in the OEM field.
//
if(strncmp(BootSector->Oem,"NTFS ",8)) {
return(FALSE);
}
//
// The number of bytes per sector must match the value
// reported by the device, and must be less than or equal to
// the page size.
//
if((U_USHORT(BootSector->BytesPerSector) != BytesPerSector)
|| (U_USHORT(BootSector->BytesPerSector) > PAGE_SIZE))
{
return(FALSE);
}
//
// Other checks.
// Note that these checks do not venture into fields beyond 128 bytes,
// so disks with sector size < 512 are allowed.
//
if((BootSector->SectorsPerCluster[0] != 1)
&& (BootSector->SectorsPerCluster[0] != 2)
&& (BootSector->SectorsPerCluster[0] != 4)
&& (BootSector->SectorsPerCluster[0] != 8)
&& (BootSector->SectorsPerCluster[0] != 16)
&& (BootSector->SectorsPerCluster[0] != 32)
&& (BootSector->SectorsPerCluster[0] != 64)
&& (BootSector->SectorsPerCluster[0] != 128)) {
return(FALSE);
}
if(U_USHORT(BootSector->ReservedSectors)
|| BootSector->Fats[0]
|| U_USHORT(BootSector->RootEntries)
|| U_USHORT(BootSector->Sectors)
|| U_USHORT(BootSector->SectorsPerFat)
|| U_ULONG(BootSector->LargeSectors)) {
return(FALSE);
}
//
// ClustersPerFileRecord can be less than zero if file records
// are smaller than clusters. This number is the negative of a shift count.
// If clusters are smaller than file records then this number is
// still the clusters per file records.
//
if(BootSector->ClustersPerFileRecordSegment <= -9) {
if(BootSector->ClustersPerFileRecordSegment < -31) {
return(FALSE);
}
} else if((BootSector->ClustersPerFileRecordSegment != 1)
&& (BootSector->ClustersPerFileRecordSegment != 2)
&& (BootSector->ClustersPerFileRecordSegment != 4)
&& (BootSector->ClustersPerFileRecordSegment != 8)
&& (BootSector->ClustersPerFileRecordSegment != 16)
&& (BootSector->ClustersPerFileRecordSegment != 32)
&& (BootSector->ClustersPerFileRecordSegment != 64)) {
return(FALSE);
}
//
// ClustersPerIndexAllocationBuffer can be less than zero if index buffers
// are smaller than clusters. This number is the negative of a shift count.
// If clusters are smaller than index buffers then this number is
// still the clusters per index buffers.
//
if(BootSector->DefaultClustersPerIndexAllocationBuffer <= -9) {
if(BootSector->DefaultClustersPerIndexAllocationBuffer < -31) {
return(FALSE);
}
} else if((BootSector->DefaultClustersPerIndexAllocationBuffer != 1)
&& (BootSector->DefaultClustersPerIndexAllocationBuffer != 2)
&& (BootSector->DefaultClustersPerIndexAllocationBuffer != 4)
&& (BootSector->DefaultClustersPerIndexAllocationBuffer != 8)
&& (BootSector->DefaultClustersPerIndexAllocationBuffer != 16)
&& (BootSector->DefaultClustersPerIndexAllocationBuffer != 32)
&& (BootSector->DefaultClustersPerIndexAllocationBuffer != 64)) {
return(FALSE);
}
if((ULONGLONG)BootSector->NumberSectors.QuadPart > SecCnt) {
return(FALSE);
}
if((((ULONGLONG)BootSector->MftStartLcn.QuadPart * BootSector->SectorsPerCluster[0]) > SecCnt)
|| (((ULONGLONG)BootSector->Mft2StartLcn.QuadPart * BootSector->SectorsPerCluster[0]) > SecCnt)) {
return(FALSE);
}
return(TRUE);
}
FilesystemType
SpIdentifyFileSystem(
IN PWSTR DevicePath,
IN ULONG BytesPerSector,
IN ULONG PartitionOrdinal
)
/*++
Routine Description:
Identify the filesystem present on a given partition.
Arguments:
DevicePath - supplies the name in the nt namespace for
the disk's device object.
BytesPerSector - supplies value reported by IOCTL_GET_DISK_GEOMETRY.
PartitionOrdinal - supplies the ordinal of the partition
to be identified.
Return Value:
Value from the FilesystemType enum identifying the filesystem.
--*/
{
NTSTATUS Status;
HANDLE Handle;
FilesystemType fs;
PUCHAR UnalignedBuffer,AlignedBuffer;
BOOLEAN Fat32;
//
// First open the partition.
//
Status = SpOpenPartition(DevicePath,PartitionOrdinal,&Handle,FALSE);
if(!NT_SUCCESS(Status)) {
KdPrintEx((DPFLTR_SETUP_ID, DPFLTR_ERROR_LEVEL,
"SETUP: SpIdentifyFileSystem: unable to open %ws\\partition%u (%lx)\n",
DevicePath,
PartitionOrdinal
));
return(FilesystemUnknown);
}
UnalignedBuffer = SpMemAlloc(2*BytesPerSector);
AlignedBuffer = ALIGN(UnalignedBuffer,BytesPerSector);
//
// Check for each filesystem we know about.
//
if(SpIsFat(Handle,BytesPerSector,AlignedBuffer,&Fat32)) {
fs = Fat32 ? FilesystemFat32 : FilesystemFat;
} else {
if(SpIsNtfs(Handle,BytesPerSector,AlignedBuffer,0)) {
fs = FilesystemNtfs;
} else {
fs = FilesystemUnknown;
}
}
SpMemFree(UnalignedBuffer);
ZwClose(Handle);
return(fs);
}
ULONG
NtfsMirrorBootSector (
IN HANDLE Handle,
IN ULONG BytesPerSector,
IN OUT PUCHAR *Buffer
)
/*++
Routine Description:
Finds out where the mirror boot sector is.
Arguments:
Handle - supplies handle to open partition.
The partition should have been opened for synchronous i/o.
BytesPerSector - supplies the number of bytes in a sector on
the disk. This value should be ultimately derived from
IOCTL_DISK_GET_DISK_GEOMETRY.
Buffer - receives the address of the buffer we use to read the boot sector
Return Value:
0 - mirror sector not found
1 - mirror in sector n-1
2 - mirror in sector n/2
where n = number of sectors in the partition.
--*/
{
NTSTATUS Status;
PUCHAR UnalignedBuffer, AlignedBuffer;
ULONG Mirror;
Mirror = 0;
//
// Set up our buffer
//
UnalignedBuffer = SpMemAlloc (2*BytesPerSector);
ASSERT (UnalignedBuffer);
AlignedBuffer = ALIGN (UnalignedBuffer, BytesPerSector);
//
// Look for the mirror boot sector
//
if (SpIsNtfs (Handle,BytesPerSector,AlignedBuffer,1)) {
Mirror = 1;
} else if (SpIsNtfs (Handle,BytesPerSector,AlignedBuffer,2)) {
Mirror = 2;
}
//
// Give the caller a copy of the buffer
//
if (Buffer) {
*Buffer = SpMemAlloc (BytesPerSector);
RtlMoveMemory (*Buffer, AlignedBuffer, BytesPerSector);
}
SpMemFree (UnalignedBuffer);
return Mirror;
}
VOID
WriteNtfsBootSector (
IN HANDLE PartitionHandle,
IN ULONG BytesPerSector,
IN PVOID Buffer,
IN ULONG WhichOne
)
/*++
Routine Description:
Writes a NTFS boot sector to sector 0 or one of the mirror locations.
Arguments:
PartitionHandle - supplies handle to open partition.
The partition should have been opened for synchronous i/o.
BytesPerSector - supplies the number of bytes in a sector on
the disk. This value should be ultimately derived from
IOCTL_DISK_GET_DISK_GEOMETRY.
AlignedBuffer - supplies buffer to be used for i/o of a single sector.
WhichOne - supplies a value that allows the caller to try more than
one sector. 0 = sector 0. 1 = sector n-1. 2 = sector n/2, where
n = number of sectors in the partition.
Return Value:
None.
--*/
{
NTSTATUS Status;
IO_STATUS_BLOCK IoStatusBlock;
PARTITION_INFORMATION PartitionInfo;
PUCHAR UnalignedBuffer, AlignedBuffer;
ULONGLONG SecCnt;
UnalignedBuffer = SpMemAlloc (2*BytesPerSector);
ASSERT (UnalignedBuffer);
AlignedBuffer = ALIGN (UnalignedBuffer, BytesPerSector);
RtlMoveMemory (AlignedBuffer, Buffer, BytesPerSector);
//
// Get partition information.
//
Status = ZwDeviceIoControlFile(
PartitionHandle,
NULL,
NULL,
NULL,
&IoStatusBlock,
IOCTL_DISK_GET_PARTITION_INFO,
NULL,
0,
&PartitionInfo,
sizeof(PartitionInfo)
);
if(!NT_SUCCESS(Status)) {
KdPrintEx((DPFLTR_SETUP_ID, DPFLTR_ERROR_LEVEL, "SETUP: WriteNtfsBootSector: unable to get partition info (%lx)\n",
Status));
return;
}
SecCnt = (ULONGLONG)PartitionInfo.PartitionLength.QuadPart / BytesPerSector;
ASSERT(sizeof(NTFS_BOOTSECTOR)==512);
//
// Write the boot sector.
//
Status = SpReadWriteDiskSectors(
PartitionHandle,
(ULONG)(WhichOne ? ((WhichOne == 1) ? SecCnt-1 : SecCnt/2) : 0),
1,
BytesPerSector,
AlignedBuffer,
TRUE
);
if(!NT_SUCCESS(Status)) {
KdPrintEx((DPFLTR_SETUP_ID, DPFLTR_ERROR_LEVEL, "SETUP: WriteNtfsBootSector: Error %lx reading sector 0\n",
Status));
return;
}
SpMemFree (UnalignedBuffer);
}
BOOLEAN
SpPatchBootMessages(
VOID
)
{
LPWSTR UnicodeMsg;
LPSTR FatNtldrMissing;
LPSTR FatDiskError;
LPSTR FatPressKey;
LPSTR NtfsNtldrMissing;
LPSTR NtfsNtldrCompressed;
LPSTR NtfsDiskError;
LPSTR NtfsPressKey;
LPSTR MbrInvalidTable;
LPSTR MbrIoError;
LPSTR MbrMissingOs;
ULONG l;
extern unsigned char x86BootCode[512];
//
// we don't touch boot code on NEC98
//
if (IsNEC_98) { //NEC98
return(TRUE);
} //NEC98
UnicodeMsg = TemporaryBuffer + (sizeof(TemporaryBuffer) / sizeof(WCHAR) / 2);
//
// Deal with FAT -- get messages and patch.
//
SpFormatMessage(UnicodeMsg,100,SP_BOOTMSG_FAT_NTLDR_MISSING);
FatNtldrMissing = (PCHAR)TemporaryBuffer;
RtlUnicodeToOemN(FatNtldrMissing,100,&l,UnicodeMsg,(wcslen(UnicodeMsg)+1)*sizeof(WCHAR));
SpFormatMessage(UnicodeMsg,100,SP_BOOTMSG_FAT_DISK_ERROR);
FatDiskError = FatNtldrMissing + l;
RtlUnicodeToOemN(FatDiskError,100,&l,UnicodeMsg,(wcslen(UnicodeMsg)+1)*sizeof(WCHAR));
SpFormatMessage(UnicodeMsg,100,SP_BOOTMSG_FAT_PRESS_KEY);
FatPressKey = FatDiskError + l;
RtlUnicodeToOemN(FatPressKey,100,&l,UnicodeMsg,(wcslen(UnicodeMsg)+1)*sizeof(WCHAR));
if(!PatchMessagesIntoFatBootCode(FatBootCode,FALSE,FatNtldrMissing,FatDiskError,FatPressKey)) {
return(FALSE);
}
if(!PatchMessagesIntoFatBootCode(Fat32BootCode,TRUE,FatNtldrMissing,FatDiskError,FatPressKey)) {
return(FALSE);
}
//
// Deal with NTFS -- get messages and patch.
//
SpFormatMessage(UnicodeMsg,100,SP_BOOTMSG_NTFS_NTLDR_MISSING);
NtfsNtldrMissing = (PCHAR)TemporaryBuffer;
RtlUnicodeToOemN(NtfsNtldrMissing,100,&l,UnicodeMsg,(wcslen(UnicodeMsg)+1)*sizeof(WCHAR));
SpFormatMessage(UnicodeMsg,100,SP_BOOTMSG_NTFS_NTLDR_COMPRESSED);
NtfsNtldrCompressed = NtfsNtldrMissing + l;
RtlUnicodeToOemN(NtfsNtldrCompressed,100,&l,UnicodeMsg,(wcslen(UnicodeMsg)+1)*sizeof(WCHAR));
SpFormatMessage(UnicodeMsg,100,SP_BOOTMSG_NTFS_DISK_ERROR);
NtfsDiskError = NtfsNtldrCompressed + l;
RtlUnicodeToOemN(NtfsDiskError,100,&l,UnicodeMsg,(wcslen(UnicodeMsg)+1)*sizeof(WCHAR));
SpFormatMessage(UnicodeMsg,100,SP_BOOTMSG_NTFS_PRESS_KEY);
NtfsPressKey = NtfsDiskError + l;
RtlUnicodeToOemN(NtfsPressKey,100,&l,UnicodeMsg,(wcslen(UnicodeMsg)+1)*sizeof(WCHAR));
if(!PatchMessagesIntoNtfsBootCode(NtfsBootCode,NtfsNtldrMissing,NtfsNtldrCompressed,NtfsDiskError,NtfsPressKey)) {
return(FALSE);
}
//
// Deal with MBR -- get messages and patch.
//
SpFormatMessage(UnicodeMsg,100,SP_BOOTMSG_MBR_INVALID_TABLE);
MbrInvalidTable = (PCHAR)TemporaryBuffer;
RtlUnicodeToOemN(MbrInvalidTable,100,&l,UnicodeMsg,(wcslen(UnicodeMsg)+1)*sizeof(WCHAR));
SpFormatMessage(UnicodeMsg,100,SP_BOOTMSG_MBR_IO_ERROR);
MbrIoError = MbrInvalidTable + l;
RtlUnicodeToOemN(MbrIoError,100,&l,UnicodeMsg,(wcslen(UnicodeMsg)+1)*sizeof(WCHAR));
SpFormatMessage(UnicodeMsg,100,SP_BOOTMSG_MBR_MISSING_OS);
MbrMissingOs = MbrIoError + l;
RtlUnicodeToOemN(MbrMissingOs,100,&l,UnicodeMsg,(wcslen(UnicodeMsg)+1)*sizeof(WCHAR));
if(!PatchMessagesIntoMasterBootCode(x86BootCode,MbrInvalidTable,MbrIoError,MbrMissingOs)) {
return(FALSE);
}
return(TRUE);
}