Leaked source code of windows server 2003
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1392 lines
33 KiB

/*++
Copyright (c) 1991-1992 Microsoft Corporation
Module Name:
secobj.c
Abstract:
This module provides support routines to simplify the creation of
security descriptors for user-mode objects.
Adapted the code from \nt\private\net\netlib\secobj.h
Author:
Rita Wong (ritaw) 27-Feb-1991
Environment:
Contains NT specific code.
Revision History:
16-Apr-1991 JohnRo
Include header files for <netlib.h>.
14 Apr 1992 RichardW
Changed for modified ACE_HEADER struct.
19 Sep. 1995 MadanA
Adapted the code for the internet project and made to use WIN32
APIs instead RTL functions.
--*/
#include <windows.h>
#include <rpc.h>
#include <inetsec.h>
#include <proto.h>
#if DBG
#define STATIC
#else
#define STATIC static
#endif // DBG
//-------------------------------------------------------------------//
// //
// Global variables //
// //
//-------------------------------------------------------------------//
//
// NT well-known SIDs
//
PSID NullSid = NULL; // No members SID
PSID WorldSid = NULL; // All users SID
PSID LocalSid = NULL; // NT local users SID
PSID NetworkSid = NULL; // NT remote users SID
PSID LocalSystemSid = NULL; // NT system processes SID
PSID BuiltinDomainSid = NULL; // Domain Id of the Builtin Domain
//
// Well Known Aliases.
//
// These are aliases that are relative to the built-in domain.
//
PSID LocalAdminSid = NULL; // NT local admins SID
PSID AliasAdminsSid = NULL;
PSID AliasUsersSid = NULL;
PSID AliasGuestsSid = NULL;
PSID AliasPowerUsersSid = NULL;
PSID AliasAccountOpsSid = NULL;
PSID AliasSystemOpsSid = NULL;
PSID AliasPrintOpsSid = NULL;
PSID AliasBackupOpsSid = NULL;
STATIC
struct _SID_DATA {
PSID *Sid;
SID_IDENTIFIER_AUTHORITY IdentifierAuthority;
ULONG SubAuthority;
} SidData[] = {
{&NullSid, SECURITY_NULL_SID_AUTHORITY, SECURITY_NULL_RID},
{&WorldSid, SECURITY_WORLD_SID_AUTHORITY, SECURITY_WORLD_RID},
{&LocalSid, SECURITY_LOCAL_SID_AUTHORITY, SECURITY_LOCAL_RID},
{&NetworkSid, SECURITY_NT_AUTHORITY, SECURITY_NETWORK_RID},
{&LocalSystemSid, SECURITY_NT_AUTHORITY, SECURITY_LOCAL_SYSTEM_RID},
{&BuiltinDomainSid, SECURITY_NT_AUTHORITY, SECURITY_BUILTIN_DOMAIN_RID}
};
STATIC
struct _BUILTIN_DOMAIN_SID_DATA {
PSID *Sid;
ULONG RelativeId;
} BuiltinDomainSidData[] = {
{ &LocalAdminSid, DOMAIN_ALIAS_RID_ADMINS},
{ &AliasAdminsSid, DOMAIN_ALIAS_RID_ADMINS },
{ &AliasUsersSid, DOMAIN_ALIAS_RID_USERS },
{ &AliasGuestsSid, DOMAIN_ALIAS_RID_GUESTS },
{ &AliasPowerUsersSid, DOMAIN_ALIAS_RID_POWER_USERS },
{ &AliasAccountOpsSid, DOMAIN_ALIAS_RID_ACCOUNT_OPS },
{ &AliasSystemOpsSid, DOMAIN_ALIAS_RID_SYSTEM_OPS },
{ &AliasPrintOpsSid, DOMAIN_ALIAS_RID_PRINT_OPS },
{ &AliasBackupOpsSid, DOMAIN_ALIAS_RID_BACKUP_OPS }
};
PVOID
INetpMemoryAllocate(
DWORD Size
)
/*++
Routine Description:
This function allocates the required size of memory by calling
LocalAlloc.
Arguments:
Size - size of the memory block required.
Return Value:
Pointer to the allocated block.
--*/
{
LPVOID NewPointer;
NewPointer = LocalAlloc( LMEM_FIXED | LMEM_ZEROINIT, Size );
#if DBG
// ASSERT( NewPointer != NULL );
#endif
return( NewPointer );
}
VOID
INetpMemoryFree(
PVOID Memory
)
/*++
Routine Description:
This function frees up the memory that was allocated by
InternetAllocateMemory.
Arguments:
Memory - pointer to the memory block that needs to be freed up.
Return Value:
none.
--*/
{
LPVOID Ptr;
#if DBG
// ASSERT( Memory != NULL );
#endif
Ptr = LocalFree( Memory );
#if DBG
// ASSERT( Ptr == NULL );
#endif
}
DWORD
INetpInitializeAllowedAce(
IN PACCESS_ALLOWED_ACE AllowedAce,
IN USHORT AceSize,
IN BYTE InheritFlags,
IN BYTE AceFlags,
IN ACCESS_MASK Mask,
IN PSID AllowedSid
)
/*++
Routine Description:
This function assigns the specified ACE values into an allowed type ACE.
Arguments:
AllowedAce - Supplies a pointer to the ACE that is initialized.
AceSize - Supplies the size of the ACE in bytes.
InheritFlags - Supplies ACE inherit flags.
AceFlags - Supplies ACE type specific control flags.
Mask - Supplies the allowed access masks.
AllowedSid - Supplies the pointer to the SID of user/group which is allowed
the specified access.
Return Value:
WIN32 Error Code.
--*/
{
AllowedAce->Header.AceType = ACCESS_ALLOWED_ACE_TYPE;
AllowedAce->Header.AceSize = AceSize;
AllowedAce->Header.AceFlags = AceFlags | InheritFlags;
AllowedAce->Mask = Mask;
if( CopySid(
GetLengthSid(AllowedSid), // should be valid SID ??
&(AllowedAce->SidStart),
AllowedSid ) == FALSE ) {
return( GetLastError() );
}
return( ERROR_SUCCESS );
}
DWORD
INetpInitializeDeniedAce(
IN PACCESS_DENIED_ACE DeniedAce,
IN USHORT AceSize,
IN BYTE InheritFlags,
IN BYTE AceFlags,
IN ACCESS_MASK Mask,
IN PSID DeniedSid
)
/*++
Routine Description:
This function assigns the specified ACE values into a denied type ACE.
Arguments:
DeniedAce - Supplies a pointer to the ACE that is initialized.
AceSize - Supplies the size of the ACE in bytes.
InheritFlags - Supplies ACE inherit flags.
AceFlags - Supplies ACE type specific control flags.
Mask - Supplies the denied access masks.
AllowedSid - Supplies the pointer to the SID of user/group which is denied
the specified access.
Return Value:
WIN32 Error Code.
--*/
{
DeniedAce->Header.AceType = ACCESS_DENIED_ACE_TYPE;
DeniedAce->Header.AceSize = AceSize;
DeniedAce->Header.AceFlags = AceFlags | InheritFlags;
DeniedAce->Mask = Mask;
if( CopySid(
GetLengthSid(DeniedSid), // should be valid SID ??
&(DeniedAce->SidStart),
DeniedSid ) == FALSE ) {
return( GetLastError() );
}
return( ERROR_SUCCESS );
}
DWORD
INetpInitializeAuditAce(
IN PACCESS_ALLOWED_ACE AuditAce,
IN USHORT AceSize,
IN BYTE InheritFlags,
IN BYTE AceFlags,
IN ACCESS_MASK Mask,
IN PSID AuditSid
)
/*++
Routine Description:
This function assigns the specified ACE values into an audit type ACE.
Arguments:
AuditAce - Supplies a pointer to the ACE that is initialized.
AceSize - Supplies the size of the ACE in bytes.
InheritFlags - Supplies ACE inherit flags.
AceFlags - Supplies ACE type specific control flags.
Mask - Supplies the allowed access masks.
AuditSid - Supplies the pointer to the SID of user/group which is to be
audited.
Return Value:
WIN32 Error Code.
--*/
{
AuditAce->Header.AceType = SYSTEM_AUDIT_ACE_TYPE;
AuditAce->Header.AceSize = AceSize;
AuditAce->Header.AceFlags = AceFlags | InheritFlags;
AuditAce->Mask = Mask;
if( CopySid(
GetLengthSid(AuditSid),
&(AuditAce->SidStart),
AuditSid ) == FALSE ) {
return( GetLastError() );
}
return( ERROR_SUCCESS );
}
DWORD
INetpAllocateAndInitializeSid(
OUT PSID *Sid,
IN PSID_IDENTIFIER_AUTHORITY IdentifierAuthority,
IN ULONG SubAuthorityCount
)
/*++
Routine Description:
This function allocates memory for a SID and initializes it.
Arguments:
None.
Return Value:
WIN32 Error Code.
--*/
{
*Sid = (PSID)
INetpMemoryAllocate(
GetSidLengthRequired( (BYTE)SubAuthorityCount) );
if (*Sid == NULL) {
return ERROR_NOT_ENOUGH_MEMORY;
}
InitializeSid( *Sid, IdentifierAuthority, (BYTE)SubAuthorityCount );
return( ERROR_SUCCESS );
}
DWORD
INetpDomainIdToSid(
IN PSID DomainId,
IN ULONG RelativeId,
OUT PSID *Sid
)
/*++
Routine Description:
Given a domain Id and a relative ID create a SID
Arguments:
DomainId - The template SID to use.
RelativeId - The relative Id to append to the DomainId.
Sid - Returns a pointer to an allocated buffer containing the resultant
Sid. Free this buffer using NetpMemoryFree.
Return Value:
WIN32 Error Code.
--*/
{
DWORD Error;
BYTE DomainIdSubAuthorityCount; // Number of sub authorities in domain ID
ULONG SidLength; // Length of newly allocated SID
//
// Allocate a Sid which has one more sub-authority than the domain ID.
//
DomainIdSubAuthorityCount = *(GetSidSubAuthorityCount( DomainId ));
SidLength = GetSidLengthRequired( (BYTE)(DomainIdSubAuthorityCount+1) );
if ((*Sid = (PSID) INetpMemoryAllocate( SidLength )) == NULL ) {
return ERROR_NOT_ENOUGH_MEMORY;
}
//
// Initialize the new SID to have the same inital value as the
// domain ID.
//
if( CopySid(SidLength, *Sid, DomainId) == FALSE ) {
Error = GetLastError();
INetpMemoryFree( *Sid );
return( Error );
}
//
// Adjust the sub-authority count and
// add the relative Id unique to the newly allocated SID
//
(*(GetSidSubAuthorityCount( *Sid ))) ++;
*GetSidSubAuthority( *Sid, DomainIdSubAuthorityCount ) = RelativeId;
return( ERROR_SUCCESS );
}
DWORD
INetpCreateSecurityDescriptor(
IN PACE_DATA AceData,
IN ULONG AceCount,
IN PSID OwnerSid OPTIONAL,
IN PSID GroupSid OPTIONAL,
OUT PSECURITY_DESCRIPTOR *NewDescriptor
)
/*++
Routine Description:
This function creates an absolutes security descriptor containing
the supplied ACE information.
A sample usage of this function:
//
// Order matters! These ACEs are inserted into the DACL in the
// following order. Security access is granted or denied based on
// the order of the ACEs in the DACL.
//
ACE_DATA AceData[4] = {
{ACCESS_ALLOWED_ACE_TYPE, 0, 0,
GENERIC_ALL, &LocalAdminSid},
{ACCESS_DENIED_ACE_TYPE, 0, 0,
GENERIC_ALL, &NetworkSid},
{ACCESS_ALLOWED_ACE_TYPE, 0, 0,
WKSTA_CONFIG_GUEST_INFO_GET |
WKSTA_CONFIG_USER_INFO_GET, &DomainUsersSid},
{ACCESS_ALLOWED_ACE_TYPE, 0, 0,
WKSTA_CONFIG_GUEST_INFO_GET, &DomainGuestsSid}
};
return NetpCreateSecurityDescriptor(
AceData,
4,
NullSid,
LocalSystemSid,
&ConfigurationInfoSd
);
Arguments:
AceData - Supplies the structure of information that describes the DACL.
AceCount - Supplies the number of entries in AceData structure.
OwnerSid - Supplies the pointer to the SID of the security descriptor
owner. If not specified, a security descriptor with no owner
will be created.
GroupSid - Supplies the pointer to the SID of the security descriptor
primary group. If not specified, a security descriptor with no primary
group will be created.
NewDescriptor - Returns a pointer to the absolute secutiry descriptor
allocated using NetpMemoryAllocate.
Return Value:
WIN32 Error Code.
--*/
{
DWORD Error;
DWORD i;
//
// Pointer to memory dynamically allocated by this routine to hold
// the absolute security descriptor, the DACL, the SACL, and all the ACEs.
//
// +---------------------------------------------------------------+
// | Security Descriptor |
// +-------------------------------+-------+---------------+-------+
// | DACL | ACE 1 | . . . | ACE n |
// +-------------------------------+-------+---------------+-------+
// | SACL | ACE 1 | . . . | ACE n |
// +-------------------------------+-------+---------------+-------+
//
PSECURITY_DESCRIPTOR AbsoluteSd = NULL;
PACL Dacl = NULL; // Pointer to the DACL portion of above buffer
PACL Sacl = NULL; // Pointer to the SACL portion of above buffer
DWORD DaclSize = sizeof(ACL);
DWORD SaclSize = sizeof(ACL);
DWORD MaxAceSize = 0;
PVOID MaxAce = NULL;
LPBYTE CurrentAvailable;
DWORD Size;
// ASSERT( AceCount > 0 );
//
// Compute the total size of the DACL and SACL ACEs and the maximum
// size of any ACE.
//
for (i = 0; i < AceCount; i++) {
DWORD AceSize;
AceSize = GetLengthSid( *(AceData[i].Sid) );
switch (AceData[i].AceType) {
case ACCESS_ALLOWED_ACE_TYPE:
AceSize += sizeof(ACCESS_ALLOWED_ACE);
DaclSize += AceSize;
break;
case ACCESS_DENIED_ACE_TYPE:
AceSize += sizeof(ACCESS_DENIED_ACE);
DaclSize += AceSize;
break;
case SYSTEM_AUDIT_ACE_TYPE:
AceSize += sizeof(SYSTEM_AUDIT_ACE);
SaclSize += AceSize;
break;
default:
return( ERROR_INVALID_PARAMETER );
}
MaxAceSize = max( MaxAceSize, AceSize );
}
//
// Allocate a chunk of memory large enough the security descriptor
// the DACL, the SACL and all ACEs.
//
// A security descriptor is of opaque data type but
// SECURITY_DESCRIPTOR_MIN_LENGTH is the right size.
//
Size = SECURITY_DESCRIPTOR_MIN_LENGTH;
if ( DaclSize != sizeof(ACL) ) {
Size += DaclSize;
}
if ( SaclSize != sizeof(ACL) ) {
Size += SaclSize;
}
if ((AbsoluteSd = INetpMemoryAllocate( Size )) == NULL) {
Error = ERROR_NOT_ENOUGH_MEMORY;
goto Cleanup;
}
//
// Initialize the Dacl and Sacl
//
CurrentAvailable = (LPBYTE)AbsoluteSd + SECURITY_DESCRIPTOR_MIN_LENGTH;
if ( DaclSize != sizeof(ACL) ) {
Dacl = (PACL)CurrentAvailable;
CurrentAvailable += DaclSize;
if( InitializeAcl( Dacl, DaclSize, ACL_REVISION ) == FALSE ) {
Error = GetLastError();
goto Cleanup;
}
}
if ( SaclSize != sizeof(ACL) ) {
Sacl = (PACL)CurrentAvailable;
CurrentAvailable += SaclSize;
if( InitializeAcl( Sacl, SaclSize, ACL_REVISION ) == FALSE ) {
Error = GetLastError();
goto Cleanup;
}
}
//
// Allocate a temporary buffer big enough for the biggest ACE.
//
if ((MaxAce = INetpMemoryAllocate( MaxAceSize )) == NULL ) {
Error = ERROR_NOT_ENOUGH_MEMORY;
goto Cleanup;
}
//
// Initialize each ACE, and append it into the end of the DACL or SACL.
//
for (i = 0; i < AceCount; i++) {
DWORD AceSize;
PACL CurrentAcl;
AceSize = GetLengthSid( *(AceData[i].Sid) );
switch (AceData[i].AceType) {
case ACCESS_ALLOWED_ACE_TYPE:
AceSize += sizeof(ACCESS_ALLOWED_ACE);
CurrentAcl = Dacl;
Error = INetpInitializeAllowedAce(
MaxAce,
(USHORT) AceSize,
AceData[i].InheritFlags,
AceData[i].AceFlags,
AceData[i].Mask,
*(AceData[i].Sid) );
break;
case ACCESS_DENIED_ACE_TYPE:
AceSize += sizeof(ACCESS_DENIED_ACE);
CurrentAcl = Dacl;
Error = INetpInitializeDeniedAce(
MaxAce,
(USHORT) AceSize,
AceData[i].InheritFlags,
AceData[i].AceFlags,
AceData[i].Mask,
*(AceData[i].Sid) );
break;
case SYSTEM_AUDIT_ACE_TYPE:
AceSize += sizeof(SYSTEM_AUDIT_ACE);
CurrentAcl = Sacl;
Error = INetpInitializeAuditAce(
MaxAce,
(USHORT) AceSize,
AceData[i].InheritFlags,
AceData[i].AceFlags,
AceData[i].Mask,
*(AceData[i].Sid) );
break;
}
if ( Error != ERROR_SUCCESS ) {
goto Cleanup;
}
//
// Append the initialized ACE to the end of DACL or SACL
//
if ( AddAce(
CurrentAcl,
ACL_REVISION,
MAXDWORD,
MaxAce,
AceSize ) == FALSE ) {
Error = GetLastError();
goto Cleanup;
}
}
//
// Create the security descriptor with absolute pointers to SIDs
// and ACLs.
//
// Owner = OwnerSid
// Group = GroupSid
// Dacl = Dacl
// Sacl = Sacl
//
if ( InitializeSecurityDescriptor(
AbsoluteSd,
SECURITY_DESCRIPTOR_REVISION ) == FALSE ) {
Error = GetLastError();
goto Cleanup;
}
if ( SetSecurityDescriptorOwner(
AbsoluteSd,
OwnerSid,
FALSE ) == FALSE ) {
Error = GetLastError();
goto Cleanup;
}
if ( SetSecurityDescriptorGroup(
AbsoluteSd,
GroupSid,
FALSE ) == FALSE ) {
Error = GetLastError();
goto Cleanup;
}
if ( SetSecurityDescriptorDacl(
AbsoluteSd,
TRUE,
Dacl,
FALSE ) == FALSE ) {
Error = GetLastError();
goto Cleanup;
}
if ( SetSecurityDescriptorSacl(
AbsoluteSd,
FALSE,
Sacl,
FALSE ) == FALSE ) {
Error = GetLastError();
goto Cleanup;
}
//
// Done
//
*NewDescriptor = AbsoluteSd;
AbsoluteSd = NULL;
Error = ERROR_SUCCESS;
//
// Clean up
//
Cleanup:
if( AbsoluteSd != NULL ) {
//
// delete the partially made SD if we are not completely
// successful
//
INetpMemoryFree( AbsoluteSd );
}
//
// Delete the temporary ACE
//
if ( MaxAce != NULL ) {
INetpMemoryFree( MaxAce );
}
return( Error );
}
DWORD
INetCreateWellKnownSids(
VOID
)
/*++
Routine Description:
This function creates some well-known SIDs and store them in global
variables.
Arguments:
none.
Return Value:
WIN32 Error Code.
--*/
{
DWORD Error;
DWORD i;
//
// Allocate and initialize well-known SIDs which aren't relative to
// the domain Id.
//
for (i = 0; i < (sizeof(SidData) / sizeof(SidData[0])) ; i++) {
Error = INetpAllocateAndInitializeSid(
SidData[i].Sid,
&(SidData[i].IdentifierAuthority),
1);
if ( Error != ERROR_SUCCESS ) {
return Error;
}
*(GetSidSubAuthority(*(SidData[i].Sid), 0)) = SidData[i].SubAuthority;
}
//
// Build each SID which is relative to the Builtin Domain Id.
//
for ( i = 0;
i < (sizeof(BuiltinDomainSidData) /
sizeof(BuiltinDomainSidData[0]));
i++) {
Error = INetpDomainIdToSid(
BuiltinDomainSid,
BuiltinDomainSidData[i].RelativeId,
BuiltinDomainSidData[i].Sid );
if ( Error != ERROR_SUCCESS ) {
return Error;
}
}
return ERROR_SUCCESS;
}
VOID
INetFreeWellKnownSids(
VOID
)
/*++
Routine Description:
This function frees up the dynamic memory consumed by the well-known
SIDs.
Arguments:
none.
Return Value:
none
--*/
{
DWORD i;
//
// free up memory allocated for well-known SIDs
//
for (i = 0; i < (sizeof(SidData) / sizeof(SidData[0])) ; i++) {
if( *SidData[i].Sid != NULL ) {
INetpMemoryFree( *SidData[i].Sid );
*SidData[i].Sid = NULL;
}
}
//
// free up memory allocated for Builtin Domain SIDs
//
for (i = 0;
i < (sizeof(BuiltinDomainSidData) /
sizeof(BuiltinDomainSidData[0])) ;
i++) {
if( *BuiltinDomainSidData[i].Sid != NULL ) {
INetpMemoryFree( *BuiltinDomainSidData[i].Sid );
*BuiltinDomainSidData[i].Sid = NULL;
}
}
}
DWORD
INetCreateSecurityObject(
IN PACE_DATA AceData,
IN ULONG AceCount,
IN PSID OwnerSid,
IN PSID GroupSid,
IN PGENERIC_MAPPING GenericMapping,
OUT PSECURITY_DESCRIPTOR *NewDescriptor
)
/*++
Routine Description:
This function creates the DACL for the security descriptor based on
on the ACE information specified, and creates the security descriptor
which becomes the user-mode security object.
A sample usage of this function:
//
// Structure that describes the mapping of Generic access rights to
// object specific access rights for the ConfigurationInfo object.
//
GENERIC_MAPPING WsConfigInfoMapping = {
STANDARD_RIGHTS_READ | // Generic read
WKSTA_CONFIG_GUEST_INFO_GET |
WKSTA_CONFIG_USER_INFO_GET |
WKSTA_CONFIG_ADMIN_INFO_GET,
STANDARD_RIGHTS_WRITE | // Generic write
WKSTA_CONFIG_INFO_SET,
STANDARD_RIGHTS_EXECUTE, // Generic execute
WKSTA_CONFIG_ALL_ACCESS // Generic all
};
//
// Order matters! These ACEs are inserted into the DACL in the
// following order. Security access is granted or denied based on
// the order of the ACEs in the DACL.
//
ACE_DATA AceData[4] = {
{ACCESS_ALLOWED_ACE_TYPE, 0, 0,
GENERIC_ALL, &LocalAdminSid},
{ACCESS_DENIED_ACE_TYPE, 0, 0,
GENERIC_ALL, &NetworkSid},
{ACCESS_ALLOWED_ACE_TYPE, 0, 0,
WKSTA_CONFIG_GUEST_INFO_GET |
WKSTA_CONFIG_USER_INFO_GET, &DomainUsersSid},
{ACCESS_ALLOWED_ACE_TYPE, 0, 0,
WKSTA_CONFIG_GUEST_INFO_GET, &DomainGuestsSid}
};
return INetCreateSecurityObject(
AceData,
4,
NullSid,
LocalSystemSid,
&WsConfigInfoMapping,
&ConfigurationInfoSd
);
Arguments:
AceData - Supplies the structure of information that describes the DACL.
AceCount - Supplies the number of entries in AceData structure.
OwnerSid - Supplies the pointer to the SID of the security descriptor
owner.
GroupSid - Supplies the pointer to the SID of the security descriptor
primary group.
GenericMapping - Supplies the pointer to a generic mapping array denoting
the mapping between each generic right to specific rights.
NewDescriptor - Returns a pointer to the self-relative security descriptor
which represents the user-mode object.
Return Value:
WIN32 Error Code.
NOTE : the security object created by calling this function may be
freed up by calling INetDeleteSecurityObject().
--*/
{
DWORD Error;
PSECURITY_DESCRIPTOR AbsoluteSd = NULL;
HANDLE TokenHandle = NULL;
Error = INetpCreateSecurityDescriptor(
AceData,
AceCount,
OwnerSid,
GroupSid,
&AbsoluteSd
);
if( Error != ERROR_SUCCESS ) {
return( Error );
}
if( OpenProcessToken(
GetCurrentProcess(),
TOKEN_QUERY,
&TokenHandle ) == FALSE ) {
TokenHandle = INVALID_HANDLE_VALUE;
Error = GetLastError();
goto Cleanup;
}
//
// Create the security object (a user-mode object is really a pseudo-
// object represented by a security descriptor that have relative
// pointers to SIDs and ACLs). This routine allocates the memory to
// hold the relative security descriptor so the memory allocated for the
// DACL, ACEs, and the absolute descriptor can be freed.
//
if( CreatePrivateObjectSecurity(
NULL, // Parent descriptor
AbsoluteSd, // Creator descriptor
NewDescriptor, // Pointer to new descriptor
FALSE, // Is directory object
TokenHandle, // Token
GenericMapping // Generic mapping
) == FALSE ) {
Error = GetLastError();
goto Cleanup;
}
Error = ERROR_SUCCESS;
Cleanup:
if( TokenHandle != NULL ) {
CloseHandle( TokenHandle );
}
//
// Free dynamic memory before returning
//
if( AbsoluteSd != NULL ) {
INetpMemoryFree( AbsoluteSd );
}
return( Error );
}
DWORD
INetDeleteSecurityObject(
IN PSECURITY_DESCRIPTOR *Descriptor
)
/*++
Routine Description:
This function deletes a security object that was created by calling
INetCreateSecurityObject() function.
Arguments:
Descriptor - Returns a pointer to the self-relative security descriptor
which represents the user-mode object.
Return Value:
WIN32 Error Code.
--*/
{
if( DestroyPrivateObjectSecurity( Descriptor ) == FALSE ) {
return( GetLastError() );
}
return( ERROR_SUCCESS );
}
DWORD
INetAccessCheckAndAuditW(
IN LPCWSTR SubsystemName,
IN LPWSTR ObjectTypeName,
IN PSECURITY_DESCRIPTOR SecurityDescriptor,
IN ACCESS_MASK DesiredAccess,
IN PGENERIC_MAPPING GenericMapping
)
/*++
Routine Description:
This function impersonates the caller so that it can perform access
validation using NtAccessCheckAndAuditAlarm; and reverts back to
itself before returning.
Arguments:
SubsystemName - Supplies a name string identifying the subsystem
calling this routine.
ObjectTypeName - Supplies the name of the type of the object being
accessed.
SecurityDescriptor - A pointer to the Security Descriptor against which
acccess is to be checked.
DesiredAccess - Supplies desired acccess mask. This mask must have been
previously mapped to contain no generic accesses.
GenericMapping - Supplies a pointer to the generic mapping associated
with this object type.
Return Value:
NET_API_STATUS - NERR_Success or reason for failure.
--*/
{
DWORD Error;
ACCESS_MASK GrantedAccess;
BOOL GenerateOnClose;
BOOL AccessStatus;
Error = RpcImpersonateClient( NULL ) ;
if( Error != ERROR_SUCCESS ) {
return( Error );
}
if( AccessCheckAndAuditAlarmW(
SubsystemName,
NULL, // No handle for object
ObjectTypeName,
NULL,
SecurityDescriptor,
DesiredAccess,
GenericMapping,
FALSE, // open existing object.
&GrantedAccess,
&AccessStatus,
&GenerateOnClose ) == FALSE ) {
Error = GetLastError();
goto Cleanup;
}
if ( AccessStatus == FALSE ) {
Error = ERROR_ACCESS_DENIED;
goto Cleanup;
}
Error = ERROR_SUCCESS;
Cleanup:
RpcRevertToSelf();
return( Error );
}
DWORD
INetAccessCheckAndAuditA(
IN LPCSTR SubsystemName,
IN LPSTR ObjectTypeName,
IN PSECURITY_DESCRIPTOR SecurityDescriptor,
IN ACCESS_MASK DesiredAccess,
IN PGENERIC_MAPPING GenericMapping
)
/*++
Routine Description:
This function impersonates the caller so that it can perform access
validation using NtAccessCheckAndAuditAlarm; and reverts back to
itself before returning.
Arguments:
SubsystemName - Supplies a name string identifying the subsystem
calling this routine.
ObjectTypeName - Supplies the name of the type of the object being
accessed.
SecurityDescriptor - A pointer to the Security Descriptor against which
acccess is to be checked.
DesiredAccess - Supplies desired acccess mask. This mask must have been
previously mapped to contain no generic accesses.
GenericMapping - Supplies a pointer to the generic mapping associated
with this object type.
Return Value:
NET_API_STATUS - NERR_Success or reason for failure.
--*/
{
DWORD Error;
ACCESS_MASK GrantedAccess;
BOOL GenerateOnClose;
BOOL AccessStatus;
Error = RpcImpersonateClient( NULL ) ;
if( Error != ERROR_SUCCESS ) {
return( Error );
}
if( AccessCheckAndAuditAlarmA(
SubsystemName,
NULL, // No handle for object
ObjectTypeName,
NULL,
SecurityDescriptor,
DesiredAccess,
GenericMapping,
FALSE, // open existing object.
&GrantedAccess,
&AccessStatus,
&GenerateOnClose ) == FALSE ) {
Error = GetLastError();
goto Cleanup;
}
if ( AccessStatus == FALSE ) {
Error = ERROR_ACCESS_DENIED;
goto Cleanup;
}
Error = ERROR_SUCCESS;
Cleanup:
RpcRevertToSelf();
return( Error );
}
DWORD
INetAccessCheck(
IN PSECURITY_DESCRIPTOR SecurityDescriptor,
IN ACCESS_MASK DesiredAccess,
IN PGENERIC_MAPPING GenericMapping
)
/*++
Routine Description:
This function impersonates the caller so that it can perform access
validation using NtAccessCheck; and reverts back to
itself before returning.
This routine differs from NetpAccessCheckAndAudit in that it doesn't require
the caller to have SE_AUDIT_PRIVILEGE nor does it generate audits.
That is typically fine since the passed in security descriptor typically doesn't
have a SACL requesting an audit.
Arguments:
SecurityDescriptor - A pointer to the Security Descriptor against which
acccess is to be checked.
DesiredAccess - Supplies desired acccess mask. This mask must have been
previously mapped to contain no generic accesses.
GenericMapping - Supplies a pointer to the generic mapping associated
with this object type.
Return Value:
NET_API_STATUS - NERR_Success or reason for failure.
--*/
{
DWORD Error;
HANDLE ClientToken = NULL;
DWORD GrantedAccess = 0;
BOOL AccessStatus;
BYTE PrivilegeSet[500]; // Large buffer
DWORD PrivilegeSetSize;
//
// Impersonate the client.
//
Error = RpcImpersonateClient(NULL);
if ( Error != ERROR_SUCCESS ) {
return( Error );
}
//
// Open the impersonated token.
//
if ( OpenThreadToken(
GetCurrentThread(),
TOKEN_QUERY,
TRUE, // use process security context to open token
&ClientToken ) == FALSE ) {
Error = GetLastError();
goto Cleanup;
}
//
// Check if the client has the required access.
//
PrivilegeSetSize = sizeof(PrivilegeSet);
if ( AccessCheck(
SecurityDescriptor,
ClientToken,
DesiredAccess,
GenericMapping,
(PPRIVILEGE_SET)&PrivilegeSet,
&PrivilegeSetSize,
&GrantedAccess,
&AccessStatus ) == FALSE ) {
Error = GetLastError();
goto Cleanup;
}
if ( AccessStatus == FALSE ) {
Error = ERROR_ACCESS_DENIED;
goto Cleanup;
}
//
// Success
//
Error = ERROR_SUCCESS;
Cleanup:
RpcRevertToSelf();
if ( ClientToken != NULL ) {
CloseHandle( ClientToken );
}
return( Error );
}