Leaked source code of windows server 2003
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

434 lines
14 KiB

/*==========================================================================
*
* Copyright (C) 1998-2000 Microsoft Corporation. All Rights Reserved.
*
* File: ThreadPool.h
* Content: Functions to manage a thread pool
*
* History:
* Date By Reason
* ==== == ======
* 03/01/99 jtk Derived from Utils.h
***************************************************************************/
#ifndef __THREAD_POOL_H__
#define __THREAD_POOL_H__
//**********************************************************************
// Constant definitions
//**********************************************************************
//
// max handles that can be waited on for Win9x
//
#define MAX_WIN9X_HANDLE_COUNT 64
//
// job definitions
//
typedef enum _JOB_TYPE
{
JOB_UNINITIALIZED, // uninitialized value
JOB_DELAYED_COMMAND, // callback provided
JOB_REFRESH_TIMER_JOBS, // revisit timer jobs
} JOB_TYPE;
//**********************************************************************
// Macro definitions
//**********************************************************************
//**********************************************************************
// Function prototypes
//**********************************************************************
typedef void JOB_FUNCTION( THREAD_POOL_JOB *const pJobInfo );
typedef void TIMER_EVENT_CALLBACK( void *const pContext );
typedef void TIMER_EVENT_COMPLETE( const HRESULT hCompletionCode, void *const pContext );
typedef void DIALOG_FUNCTION( void *const pDialogContext );
//
// functions for managing the job pool
//
BOOL ThreadPoolJob_Alloc( void *pvItem, void* pvContext );
void ThreadPoolJob_Get( void *pvItem, void* pvContext );
void ThreadPoolJob_Release( void *pvItem );
//
// functions for managing the timer data pool
//
BOOL ModemTimerEntry_Alloc( void *pvItem, void* pvContext );
void ModemTimerEntry_Get( void *pvItem, void* pvContext );
void ModemTimerEntry_Release( void *pvItem );
void ModemTimerEntry_Dealloc( void *pvItem );
//**********************************************************************
// Structure definitions
//**********************************************************************
//
// forward class and structure references
//
class CDataPort;
class CModemThreadPool;
typedef struct _THREAD_POOL_JOB THREAD_POOL_JOB;
typedef struct _WIN9X_CORE_DATA WIN9X_CORE_DATA;
typedef struct _TIMER_OPERATION_ENTRY
{
CBilink Linkage; // list links
void *pContext; // user context passed back in timer events
//
// timer information
//
UINT_PTR uRetryCount; // number of times to retry this event
BOOL fRetryForever; // Boolean for retrying forever
DWORD dwRetryInterval; // time between enums (milliseconds)
DWORD dwIdleTimeout; // time at which the command sits idle after all retrys are complete
BOOL fIdleWaitForever; // Boolean for waiting forever in idle state
DWORD dwNextRetryTime; // time at which this event will fire next (milliseconds)
TIMER_EVENT_CALLBACK *pTimerCallback; // callback for when this event fires
TIMER_EVENT_COMPLETE *pTimerComplete; // callback for when this event is complete
#undef DPF_MODNAME
#define DPF_MODNAME "_TIMER_OPERATION_ENTRY::TimerOperationFromLinkage"
static _TIMER_OPERATION_ENTRY *TimerOperationFromLinkage( CBilink *const pLinkage )
{
DNASSERT( pLinkage != NULL );
DBG_CASSERT( OFFSETOF( _TIMER_OPERATION_ENTRY, Linkage ) == 0 );
return reinterpret_cast<_TIMER_OPERATION_ENTRY*>( pLinkage );
}
} TIMER_OPERATION_ENTRY;
//**********************************************************************
// Variable definitions
//**********************************************************************
//**********************************************************************
// Class prototypes
//**********************************************************************
//
// class for thread pool
//
class CModemThreadPool
{
public:
void Lock( void ) { DNEnterCriticalSection( &m_Lock ); }
void Unlock( void ) { DNLeaveCriticalSection( &m_Lock ); }
void LockReadData( void ) { DNEnterCriticalSection( &m_IODataLock ); }
void UnlockReadData( void ) { DNLeaveCriticalSection( &m_IODataLock ); }
void LockWriteData( void ) { DNEnterCriticalSection( &m_IODataLock ); }
void UnlockWriteData( void ) { DNLeaveCriticalSection( &m_IODataLock ); }
#undef DPF_MODNAME
#define DPF_MODNAME "CModemThreadPool::AddRef"
void AddRef( void )
{
DNASSERT( m_iRefCount != 0 );
DNInterlockedIncrement( &m_iRefCount );
}
#undef DPF_MODNAME
#define DPF_MODNAME "CModemThreadPool::DecRef"
void DecRef( void )
{
DNASSERT( m_iRefCount != 0 );
if ( DNInterlockedDecrement( &m_iRefCount ) == 0 )
{
ReturnSelfToPool();
}
}
static BOOL PoolAllocFunction( void* pvItem, void* pvContext );
static void PoolInitFunction( void* pvItem, void* pvContext );
static void PoolDeallocFunction( void* pvItem );
BOOL Initialize( void );
void Deinitialize( void );
#ifdef WINNT
#undef DPF_MODNAME
#define DPF_MODNAME "CModemThreadPool::GetIOCompletionPort"
HANDLE GetIOCompletionPort( void ) const
{
DNASSERT( m_hIOCompletionPort != NULL );
return m_hIOCompletionPort;
}
#endif // WINNT
//
// functions for handling I/O data
//
CModemReadIOData *CreateReadIOData( void );
void ReturnReadIOData( CModemReadIOData *const pReadIOData );
CModemWriteIOData *CreateWriteIOData( void );
void ReturnWriteIOData( CModemWriteIOData *const pWriteData );
#ifdef WIN95
#undef DPF_MODNAME
#define DPF_MODNAME "CModemThreadPool::ReinsertInReadList"
void ReinsertInReadList( CModemReadIOData *const pReadIOData )
{
//
// Win9x operations are removed from the active list when they
// complete and need to be readded if they're going to be reattempted.
// WinNT doesn't remove items from the list until they're processed.
//
DNASSERT( pReadIOData != NULL );
DNASSERT( pReadIOData->m_OutstandingReadListLinkage.IsEmpty() != FALSE );
LockReadData();
pReadIOData->m_OutstandingReadListLinkage.InsertBefore( &m_OutstandingReadList );
UnlockReadData();
}
#endif // WIN95
//
// TAPI functions
//
const TAPI_INFO *GetTAPIInfo( void ) const { return &m_TAPIInfo; }
BOOL TAPIAvailable( void ) const { return m_fTAPIAvailable; }
HRESULT SubmitDelayedCommand( JOB_FUNCTION *const pFunction,
JOB_FUNCTION *const pCancelFunction,
void *const pContext );
HRESULT SubmitTimerJob( const UINT_PTR uRetryCount,
const BOOL fRetryForever,
const DWORD dwRetryInterval,
const BOOL fIdleWaitForever,
const DWORD dwIdleTimeout,
TIMER_EVENT_CALLBACK *const pTimerCallbackFunction,
TIMER_EVENT_COMPLETE *const pTimerCompleteFunction,
void *const pContext );
BOOL StopTimerJob( void *const pContext, const HRESULT hCommandResult );
//
// thread functions
//
HRESULT SpawnDialogThread( DIALOG_FUNCTION *const pDialogFunction, void *const pDialogContext );
LONG GetIntendedThreadCount( void ) const { return m_iIntendedThreadCount; }
void SetIntendedThreadCount( const LONG iIntendedThreadCount ) { m_iIntendedThreadCount = iIntendedThreadCount; }
LONG ThreadCount( void ) const { return m_iTotalThreadCount; }
#ifdef WINNT
LONG NTCompletionThreadCount( void ) const { return m_iNTCompletionThreadCount; }
#endif // WINNT
void IncrementActiveThreadCount( void ) { DNInterlockedIncrement( const_cast<LONG*>( &m_iTotalThreadCount ) ); }
void DecrementActiveThreadCount( void ) { DNInterlockedDecrement( const_cast<LONG*>( &m_iTotalThreadCount ) ); }
#ifdef WINNT
void IncrementActiveNTCompletionThreadCount( void )
{
IncrementActiveThreadCount();
DNInterlockedIncrement( const_cast<LONG*>( &m_iNTCompletionThreadCount ) );
}
void DecrementActiveNTCompletionThreadCount( void )
{
DNInterlockedDecrement( const_cast<LONG*>( &m_iNTCompletionThreadCount ) );
DecrementActiveThreadCount();
}
#endif // WINNT
HRESULT GetIOThreadCount( LONG *const piThreadCount );
HRESULT SetIOThreadCount( const LONG iMaxThreadCount );
BOOL IsThreadCountReductionAllowed( void ) const { return m_fAllowThreadCountReduction; }
HRESULT PreventThreadPoolReduction( void );
//
// data port handle functions
//
HRESULT CreateDataPortHandle( CDataPort *const pDataPort );
void CloseDataPortHandle( CDataPort *const pDataPort );
CDataPort *DataPortFromHandle( const DPNHANDLE hDataPort );
protected:
private:
BYTE m_Sig[4]; // debugging signature ('THPL')
volatile LONG m_iRefCount;
#ifndef DPNBUILD_ONLYONETHREAD
DNCRITICAL_SECTION m_Lock; // local lock
#endif // !DPNBUILD_ONLYONETHREAD
volatile LONG m_iTotalThreadCount; // number of active threads
#ifdef WINNT
volatile LONG m_iNTCompletionThreadCount; // count of NT I/O completion threads
HANDLE m_hIOCompletionPort; // I/O completion port for NT
#endif // WINNT
BOOL m_fAllowThreadCountReduction; // Boolean indicating that the thread count is locked from being reduced
LONG m_iIntendedThreadCount; // how many threads will be started
DNHANDLE m_hStopAllThreads; // handle used to stop all non-I/O completion threads
#ifdef WIN95
DNHANDLE m_hSendComplete; // send complete on a data port
DNHANDLE m_hReceiveComplete; // receive complete on a data port
DNHANDLE m_hTAPIEvent; // handle to be used for TAPI messages, this handle is not closed on exit
DNHANDLE m_hFakeTAPIEvent; // Fake TAPI event so the Win9x threads can always wait on a fixed
// number of events. If TAPI cannot be initialzed, this event needs to be
// created and copied to m_hTAPIEvent (though it will never be signalled)
#endif // WIN95
//
// Handle table to prevent TAPI messages from going to CModemPorts when
// they're no longer in use.
//
CHandleTable m_DataPortHandleTable;
//
// list of pending network operations, it doesn't really matter if they're
// reads or writes, they're just pending. Since serial isn't under extreme
// loads, share one lock for all of the data
//
#ifndef DPNBUILD_ONLYONETHREAD
DNCRITICAL_SECTION m_IODataLock; // lock for all read data
#endif // !DPNBUILD_ONLYONETHREAD
CBilink m_OutstandingReadList; // list of outstanding reads
CBilink m_OutstandingWriteList; // list of outstanding writes
//
// The Job data lock covers all items through and including m_fNTTimerThreadRunning
//
#ifndef DPNBUILD_ONLYONETHREAD
DNCRITICAL_SECTION m_JobDataLock; // lock for job queue/pool
#endif // !DPNBUILD_ONLYONETHREAD
CJobQueue m_JobQueue; // job queue
//
// Data used by the the timer thread. This data is protected by m_TimerDataLock.
// This data is cleaned by the timer thread. Since only one timer thread
// is allowed to run at any given time, the status of the NT timer thread
// can be determined by m_fNTEnumThreadRunning. Win9x doesn't have a timer
// thread, the main thread loop is timed.
//
#ifndef DPNBUILD_ONLYONETHREAD
DNCRITICAL_SECTION m_TimerDataLock;
#endif // !DPNBUILD_ONLYONETHREAD
CBilink m_TimerJobList;
#ifdef WINNT
BOOL m_fNTTimerThreadRunning;
#endif // WINNT
//
// TAPI information. This is required to be in the thread pool because
// it's needed for thread initialzation.
//
BOOL m_fTAPIAvailable;
TAPI_INFO m_TAPIInfo;
struct
{
BOOL fTAPILoaded : 1;
BOOL fLockInitialized : 1;
BOOL fIODataLockInitialized : 1;
BOOL fJobDataLockInitialized : 1;
BOOL fTimerDataLockInitialized : 1;
BOOL fDataPortHandleTableInitialized :1 ;
BOOL fJobQueueInitialized : 1;
} m_InitFlags;
void LockJobData( void ) { DNEnterCriticalSection( &m_JobDataLock ); }
void UnlockJobData( void ) { DNLeaveCriticalSection( &m_JobDataLock ); }
void LockTimerData( void ) { DNEnterCriticalSection( &m_TimerDataLock ); }
void UnlockTimerData( void ) { DNLeaveCriticalSection( &m_TimerDataLock ); }
#ifdef WIN95
#undef DPF_MODNAME
#define DPF_MODNAME "CModemThreadPool::GetSendCompleteEvent"
DNHANDLE GetSendCompleteEvent( void ) const
{
DNASSERT( m_hSendComplete != NULL );
return m_hSendComplete;
}
#endif // WIN95
#ifdef WIN95
#undef DPF_MODNAME
#define DPF_MODNAME "CModemThreadPool::GetReceiveCompleteEvent"
DNHANDLE GetReceiveCompleteEvent( void ) const
{
DNASSERT( m_hReceiveComplete != NULL );
return m_hReceiveComplete;
}
#endif // WIN95
#ifdef WIN95
#undef DPF_MODNAME
#define DPF_MODNAME "CModemThreadPool::GetTAPIMessageEvent"
DNHANDLE GetTAPIMessageEvent( void ) const
{
DNASSERT( m_hTAPIEvent != NULL );
return m_hTAPIEvent;
}
#endif // WIN95
#ifdef WINNT
HRESULT WinNTInit( void );
#else // WIN95
HRESULT Win9xInit( void );
#endif // WINNT
BOOL ProcessTimerJobs( const CBilink *const pJobList, DWORD *const pdwNextJobTime);
BOOL ProcessTimedOperation( TIMER_OPERATION_ENTRY *const pJob,
const DWORD dwCurrentTime,
DWORD *const pdwNextJobTime );
#ifdef WINNT
HRESULT StartNTTimerThread( void );
void WakeNTTimerThread( void );
#endif // WINNT
void RemoveTimerOperationEntry( TIMER_OPERATION_ENTRY *const pTimerOperationData, const HRESULT hReturnCode );
#ifdef WIN95
void CompleteOutstandingSends( const DNHANDLE hSendCompleteEvent );
void CompleteOutstandingReceives( const DNHANDLE hReceiveCompleteEvent );
static DWORD WINAPI PrimaryWin9xThread( void *pParam );
#endif // WIN95
#ifdef WINNT
static DWORD WINAPI WinNTIOCompletionThread( void *pParam );
static DWORD WINAPI WinNTTimerThread( void *pParam );
#endif // WINNT
static DWORD WINAPI DialogThreadProc( void *pParam );
HRESULT SubmitWorkItem( THREAD_POOL_JOB *const pJob );
THREAD_POOL_JOB *GetWorkItem( void );
#ifdef WIN95
void ProcessWin9xEvents( WIN9X_CORE_DATA *const pCoreData );
void ProcessWin9xJob( WIN9X_CORE_DATA *const pCoreData );
#endif // WIN95
void ProcessTapiEvent( void );
#ifdef WINNT
void StartNTCompletionThread( void );
#endif // WINNT
void StopAllThreads( void );
// void CancelOutstandingJobs( void );
void CancelOutstandingIO( void );
void ReturnSelfToPool( void );
//
// prevent unwarranted copies
//
CModemThreadPool( const CModemThreadPool & );
CModemThreadPool& operator=( const CModemThreadPool & );
};
#undef DPF_MODNAME
#endif // __THREAD_POOL_H__