Leaked source code of windows server 2003
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1411 lines
44 KiB

/*++
Copyright (c) 1999 Microsoft Corporation
Module Name:
async.c
Abstract:
miniport transfer code for control, interrupt and bulk
Environment:
kernel mode only
Notes:
THIS CODE AND INFORMATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A PARTICULAR
PURPOSE.
Copyright (c) 1999 Microsoft Corporation. All Rights Reserved.
Revision History:
6-26-99 : created, jdunn
--*/
#include "common.h"
//implements the following miniport functions:
//non paged
//OHCI_OpenControlEndpoint
//OHCI_InterruptTransfer
//OHCI_OpenControlEndpoint
USB_MINIPORT_STATUS
OHCI_ControlTransfer(
PDEVICE_DATA DeviceData,
PENDPOINT_DATA EndpointData,
PTRANSFER_PARAMETERS TransferParameters,
PTRANSFER_CONTEXT TransferContext,
PTRANSFER_SG_LIST TransferSGList
)
{
PHCD_TRANSFER_DESCRIPTOR lastTd, td;
ULONG lengthMapped, dataTDCount = 0;
ULONG toggleForDataPhase = HcTDToggle_Data1;
// see if we can handle this transfer (put it on the HW)
// if not return BUSY, port driver will retry later
ASSERT_TRANSFER(DeviceData, TransferContext);
// NOTE: we can gate the number of transfers
// by a number of methods:
// - fixed count
// - available TDs
// - registry key
// bugbug fixed to one transfer at a time for now
//if (EndpointData->PendingTransfers ==
// EndpointData->MaxPendingTransfers) {
// TEST_TRAP();
// return USBMP_STATUS_BUSY;
//}
// Need one TD for every page of the data buffer, plus one for the SETUP
// TD and one for the STATUS TD.
//
if (TransferSGList->SgCount + 2 >
OHCI_FreeTds(DeviceData, EndpointData)) {
// not enough TDs!
return USBMP_STATUS_BUSY;
}
EndpointData->PendingTransfers++;
// we have enough tds, program the transfer
//
// first prepare a TD for the setup packet
//
LOGENTRY(DeviceData, G, '_CTR', EndpointData, TransferParameters, 0);
//
// grab the dummy TD from the tail of the queue
//
lastTd = td = EndpointData->HcdTailP;
OHCI_ASSERT(DeviceData, td->Flags & TD_FLAG_BUSY);
INITIALIZE_TD_FOR_TRANSFER(td, TransferContext);
// count setup TD
TransferContext->PendingTds++;
//
// Move setup data into TD (8 chars long)
//
RtlCopyMemory(&td->HwTD.Packet[0],
&TransferParameters->SetupPacket[0],
8);
td->HwTD.CBP = (ULONG)(((PCHAR) & td->HwTD.Packet[0])
- ((PCHAR) &td->HwTD)) + td->PhysicalAddress;
td->HwTD.BE = td->HwTD.CBP + 7;
td->HwTD.Control = 0;
td->HwTD.Asy.Direction = HcTDDirection_Setup;
td->HwTD.Asy.IntDelay = HcTDIntDelay_NoInterrupt;
td->HwTD.Asy.Toggle = HcTDToggle_Data0;
td->HwTD.Asy.ConditionCode = HcCC_NotAccessed;
LOGENTRY(DeviceData,
G, '_set',
td,
*((PLONG) &TransferParameters->SetupPacket[0]),
*((PLONG) &TransferParameters->SetupPacket[4]));
// allocate another TD
lastTd = td;
td = OHCI_ALLOC_TD(DeviceData, EndpointData);
OHCI_ASSERT(DeviceData, td != USB_BAD_PTR);
INITIALIZE_TD_FOR_TRANSFER(td, TransferContext);
SET_NEXT_TD(lastTd, td);
//
// now setup the data phase
//
lengthMapped = 0;
while (lengthMapped < TransferParameters->TransferBufferLength) {
//
// fields for data TD
//
dataTDCount++;
// count this Data TD
TransferContext->PendingTds++;
if (IN_TRANSFER(TransferParameters)) {
td->HwTD.Asy.Direction = HcTDDirection_In;
} else {
td->HwTD.Asy.Direction = HcTDDirection_Out;
}
td->HwTD.Asy.IntDelay = HcTDIntDelay_NoInterrupt;
td->HwTD.Asy.Toggle = toggleForDataPhase;
td->HwTD.Asy.ConditionCode = HcCC_NotAccessed;
// after the first TD get the toggle from ED
toggleForDataPhase = HcTDToggle_FromEd;
LOGENTRY(DeviceData,
G, '_dta', td, lengthMapped, TransferParameters->TransferBufferLength);
lengthMapped =
OHCI_MapAsyncTransferToTd(DeviceData,
EndpointData->Parameters.MaxPacketSize,
lengthMapped,
TransferContext,
td,
TransferSGList);
// allocate another TD
lastTd = td;
td = OHCI_ALLOC_TD(DeviceData, EndpointData);
OHCI_ASSERT(DeviceData, td != USB_BAD_PTR);
INITIALIZE_TD_FOR_TRANSFER(td, TransferContext);
SET_NEXT_TD(lastTd, td);
}
//
// set the shortxfer OK bit on the last TD only
//
if (SHORT_TRANSFER_OK(TransferParameters)) {
lastTd->HwTD.Asy.ShortXferOk = 1;
SET_FLAG(TransferContext->TcFlags, TC_FLAGS_SHORT_XFER_OK);
}
//
// now do the status phase
//
LOGENTRY(DeviceData, G, '_sta', td, 0, dataTDCount);
#if DBG
if (dataTDCount > 1) {
TEST_TRAP();
}
#endif
// status direction is opposite data direction,
// specify interrupt on completion
td->HwTD.Control = 0;
td->HwTD.Asy.IntDelay = HcTDIntDelay_0ms;
td->HwTD.Asy.Toggle = HcTDToggle_Data1;
td->HwTD.Asy.ConditionCode = HcCC_NotAccessed;
td->HwTD.CBP = 0;
td->HwTD.BE = 0;
// status phase moves no data
td->TransferCount = 0;
SET_FLAG(td->Flags, TD_FLAG_CONTROL_STATUS);
if (IN_TRANSFER(TransferParameters)) {
td->HwTD.Asy.Direction = HcTDDirection_Out;
} else {
td->HwTD.Asy.Direction = HcTDDirection_In;
td->HwTD.Asy.ShortXferOk = 1;
}
// count status TD
TransferContext->StatusTd = td;
TransferContext->PendingTds++;
OHCI_ASSERT(DeviceData, TransferContext->PendingTds == dataTDCount+2);
//
// now put a new dummy TD on the tail of the EP queue
//
// allocate the new dummy tail
lastTd = td;
td = OHCI_ALLOC_TD(DeviceData, EndpointData);
OHCI_ASSERT(DeviceData, td != USB_BAD_PTR);
SET_NEXT_TD(lastTd, td);
SET_NEXT_TD_NULL(td);
//
// Set new TailP in ED
// note: This is the last TD in the list and the place holder.
//
EndpointData->HcdTailP =
TransferContext->NextXferTd = td;
// put the request on the hardware queue
LOGENTRY(DeviceData, G,
'_Tal', TransferContext->PendingTds,
td->PhysicalAddress, EndpointData->HcdEd->HwED.HeadP);
EndpointData->HcdEd->HwED.TailP = td->PhysicalAddress;
// tell the hc we have control transfers available
OHCI_EnableList(DeviceData, EndpointData);
return USBMP_STATUS_SUCCESS;
}
USB_MINIPORT_STATUS
OHCI_BulkOrInterruptTransfer(
PDEVICE_DATA DeviceData,
PENDPOINT_DATA EndpointData,
PTRANSFER_PARAMETERS TransferParameters,
PTRANSFER_CONTEXT TransferContext,
PTRANSFER_SG_LIST TransferSGList
)
{
PHCD_TRANSFER_DESCRIPTOR lastTd, td;
ULONG lengthMapped;
// see if we have enough free TDs to handle this transfer
// if not return BUSY, port driver will retry later
LOGENTRY(DeviceData, G, '_ITR', EndpointData, TransferParameters,
TransferContext);
ASSERT_TRANSFER(DeviceData, TransferContext);
//if (EndpointData->PendingTransfers ==
// EndpointData->MaxPendingTransfers) {
// LOGENTRY(DeviceData, G, '_bsy', EndpointData, TransferContext,
// TransferParameters);
//
// return USBMP_STATUS_BUSY;
//}
if (TransferSGList->SgCount >
OHCI_FreeTds(DeviceData, EndpointData)) {
// not enough TDs
return USBMP_STATUS_BUSY;
}
EndpointData->PendingTransfers++;
// we have enough tds, program the transfer
LOGENTRY(DeviceData, G, '_nby', EndpointData, TransferParameters,
EndpointData->HcdEd);
//
// grab the dummy TD from the tail of the queue
//
lastTd = td = EndpointData->HcdTailP;
OHCI_ASSERT(DeviceData, td->Flags & TD_FLAG_BUSY);
//
// now setup the data TDs
//
// always build at least one data td
lengthMapped = 0;
do {
INITIALIZE_TD_FOR_TRANSFER(td, TransferContext);
//
// fields for data TD
//
td->HwTD.Control = 0;
td->HwTD.Asy.IntDelay = HcTDIntDelay_NoInterrupt;
td->HwTD.Asy.Toggle = HcTDToggle_FromEd;
td->HwTD.Asy.ConditionCode = HcCC_NotAccessed;
if (IN_TRANSFER(TransferParameters)) {
td->HwTD.Asy.Direction = HcTDDirection_In;
} else {
// short transfers are OK on out packets.
// actually I'm not even sure what this does
// for outbound requests
td->HwTD.Asy.Direction = HcTDDirection_Out;
td->HwTD.Asy.ShortXferOk = 1;
}
LOGENTRY(DeviceData,
G, '_ita', td, lengthMapped, TransferParameters->TransferBufferLength);
TransferContext->PendingTds++;
if (TransferParameters->TransferBufferLength != 0) {
lengthMapped =
OHCI_MapAsyncTransferToTd(DeviceData,
EndpointData->Parameters.MaxPacketSize,
lengthMapped,
TransferContext,
td,
TransferSGList);
} else {
OHCI_ASSERT(DeviceData, TransferSGList->SgCount == 0);
td->HwTD.CBP = 0;
td->HwTD.BE = 0;
td->TransferCount = 0;
}
// allocate another TD
lastTd = td;
td = OHCI_ALLOC_TD(DeviceData, EndpointData);
OHCI_ASSERT(DeviceData, td != USB_BAD_PTR);
SET_NEXT_TD(lastTd, td);
} while (lengthMapped < TransferParameters->TransferBufferLength);
//
// About ShortXferOk:
//
// This bit will trigger the controller to generate an error
// and halt the ed if it is not set. The client may specify
// behavior on short transfers (packets) in the transfersFlags
// field of the URB.
//
// we must not set short transfer OK on split transfers since
// the next transfer may not be a new transfer
if (SHORT_TRANSFER_OK(TransferParameters) &&
!TEST_FLAG(TransferParameters->MiniportFlags, MPTX_SPLIT_TRANSFER)) {
// we can only set this bit in the last TD of the
// transfer since that TD points to the next transfer.
//
// All other TDs must still generate an error and the
// ed must be resumed by us.
lastTd->HwTD.Asy.ShortXferOk = 1;
SET_FLAG(TransferContext->TcFlags, TC_FLAGS_SHORT_XFER_OK);
}
lastTd->HwTD.Asy.IntDelay = HcTDIntDelay_0ms;
//
// now put a new dummy TD on the tail of the EP queue
//
SET_NEXT_TD(lastTd, td);
SET_NEXT_TD_NULL(td);
//
// Set new TailP in ED
// note: This is the last TD in the list and the place holder.
//
TransferContext->NextXferTd =
EndpointData->HcdTailP = td;
// put the request on the hardware queue
LOGENTRY(DeviceData, G,
'_Tal', TransferContext->PendingTds ,
td->PhysicalAddress, EndpointData->HcdEd->HwED.HeadP);
EndpointData->HcdEd->HwED.TailP = td->PhysicalAddress;
LOGENTRY(DeviceData, G, '_ego', EndpointData->HcdHeadP,
TransferContext->TcFlags, 0);
// tell the hc we have bulk/interrupt transfers available
OHCI_EnableList(DeviceData, EndpointData);
return USBMP_STATUS_SUCCESS;
}
USB_MINIPORT_STATUS
OHCI_OpenControlEndpoint(
PDEVICE_DATA DeviceData,
PENDPOINT_PARAMETERS EndpointParameters,
PENDPOINT_DATA EndpointData
)
/*++
Routine Description:
Arguments:
Return Value:
--*/
{
PUCHAR buffer;
HW_32BIT_PHYSICAL_ADDRESS phys, edPhys;
PHCD_ENDPOINT_DESCRIPTOR ed;
ULONG i, available, tdCount;
LOGENTRY(DeviceData, G, '_opC', 0, 0, 0);
buffer = EndpointParameters->CommonBufferVa;
phys = EndpointParameters->CommonBufferPhys;
available = EndpointParameters->CommonBufferBytes;
#if DBG
{
ULONG offset;
offset = BYTE_OFFSET(buffer);
// OHCI requires 16 byte alignemnt
OHCI_ASSERT(DeviceData, (offset % 16) == 0);
}
#endif
// use control list
EndpointData->StaticEd =
&DeviceData->StaticEDList[ED_CONTROL];
// make the Ed
ed = (PHCD_ENDPOINT_DESCRIPTOR) buffer;
edPhys = phys;
phys += sizeof(HCD_ENDPOINT_DESCRIPTOR);
buffer += sizeof(HCD_ENDPOINT_DESCRIPTOR);
available -= sizeof(HCD_ENDPOINT_DESCRIPTOR);
EndpointData->TdList = (PHCD_TD_LIST) buffer;
tdCount = available/sizeof(HCD_TRANSFER_DESCRIPTOR);
LOGENTRY(DeviceData, G, '_tdC', tdCount, TDS_PER_CONTROL_ENDPOINT, 0);
OHCI_ASSERT(DeviceData, tdCount >= TDS_PER_CONTROL_ENDPOINT);
EndpointData->TdCount = tdCount;
for (i=0; i<tdCount; i++) {
OHCI_InitializeTD(DeviceData,
EndpointData,
&EndpointData->TdList->Td[i],
phys);
phys += sizeof(HCD_TRANSFER_DESCRIPTOR);
}
EndpointData->HcdEd =
OHCI_InitializeED(DeviceData,
EndpointData,
ed,
&EndpointData->TdList->Td[0],
edPhys);
// control endpoints do not halt
ed->EdFlags = EDFLAG_CONTROL | EDFLAG_NOHALT;
OHCI_InsertEndpointInSchedule(DeviceData,
EndpointData);
return USBMP_STATUS_SUCCESS;
}
USB_MINIPORT_STATUS
OHCI_OpenInterruptEndpoint(
PDEVICE_DATA DeviceData,
PENDPOINT_PARAMETERS EndpointParameters,
PENDPOINT_DATA EndpointData
)
/*++
Routine Description:
Arguments:
Return Value:
--*/
{
PUCHAR buffer;
HW_32BIT_PHYSICAL_ADDRESS phys, edPhys;
PHCD_ENDPOINT_DESCRIPTOR ed;
ULONG i, bytes, offset;
// this is an index table that converts the
// period to a list index
UCHAR periodTable[8] = {
ED_INTERRUPT_1ms, //period = 1ms
ED_INTERRUPT_2ms, //period = 2ms
ED_INTERRUPT_4ms, //period = 4ms
ED_INTERRUPT_8ms, //period = 8ms
ED_INTERRUPT_16ms,//period = 16ms
ED_INTERRUPT_32ms,//period = 32ms
ED_INTERRUPT_32ms,//period = 64ms
ED_INTERRUPT_32ms //period = 128ms
};
// carve up our common buffer
// TDS_PER_ENDPOINT TDs plus an ED
LOGENTRY(DeviceData, G, '_opI', 0, 0, EndpointParameters->Period);
// select the proper list
// the period is a power of 2 ie
// 32,16,8,4,2,1
// we just need to find which bit is set
GET_BIT_SET(EndpointParameters->Period, i);
OHCI_ASSERT(DeviceData, i < 8);
OHCI_ASSERT(DeviceData, EndpointParameters->Period < 64);
buffer = EndpointParameters->CommonBufferVa;
phys = EndpointParameters->CommonBufferPhys;
bytes = EndpointParameters->CommonBufferBytes;
offset = EndpointParameters->ScheduleOffset;
EndpointData->StaticEd =
&DeviceData->StaticEDList[periodTable[i]+offset];
LOGENTRY(DeviceData, G, '_lst', i, periodTable[i], offset);
// we found the correct base list
EndpointData->StaticEd->AllocatedBandwidth +=
EndpointParameters->Bandwidth;
// make the Ed
ed = (PHCD_ENDPOINT_DESCRIPTOR) buffer;
edPhys = phys;
phys += sizeof(HCD_ENDPOINT_DESCRIPTOR);
buffer += sizeof(HCD_ENDPOINT_DESCRIPTOR);
bytes -= sizeof(HCD_ENDPOINT_DESCRIPTOR);
EndpointData->TdList = (PHCD_TD_LIST) buffer;
EndpointData->TdCount = bytes/sizeof(HCD_TRANSFER_DESCRIPTOR);
OHCI_ASSERT(DeviceData,
EndpointData->TdCount >= TDS_PER_INTERRUPT_ENDPOINT);
// Bugbug - use what we get
for (i=0; i<EndpointData->TdCount; i++) {
OHCI_InitializeTD(DeviceData,
EndpointData,
&EndpointData->TdList->Td[i],
phys);
phys += sizeof(HCD_TRANSFER_DESCRIPTOR);
}
EndpointData->HcdEd =
OHCI_InitializeED(DeviceData,
EndpointData,
ed,
&EndpointData->TdList->Td[0],
edPhys);
OHCI_InsertEndpointInSchedule(DeviceData,
EndpointData);
return USBMP_STATUS_SUCCESS;
}
USB_MINIPORT_STATUS
OHCI_OpenBulkEndpoint(
PDEVICE_DATA DeviceData,
PENDPOINT_PARAMETERS EndpointParameters,
PENDPOINT_DATA EndpointData
)
/*++
Routine Description:
Arguments:
Return Value:
--*/
{
PUCHAR buffer;
HW_32BIT_PHYSICAL_ADDRESS phys, edPhys;
PHCD_ENDPOINT_DESCRIPTOR ed;
ULONG i, bytes;
LOGENTRY(DeviceData, G, '_opB', 0, 0, 0);
buffer = EndpointParameters->CommonBufferVa;
phys = EndpointParameters->CommonBufferPhys;
bytes = EndpointParameters->CommonBufferBytes;
// use control list
EndpointData->StaticEd =
&DeviceData->StaticEDList[ED_BULK];
// make the Ed
ed = (PHCD_ENDPOINT_DESCRIPTOR) buffer;
edPhys = phys;
phys += sizeof(HCD_ENDPOINT_DESCRIPTOR);
buffer += sizeof(HCD_ENDPOINT_DESCRIPTOR);
bytes -= sizeof(HCD_ENDPOINT_DESCRIPTOR);
EndpointData->TdList = (PHCD_TD_LIST) buffer;
EndpointData->TdCount = bytes/sizeof(HCD_TRANSFER_DESCRIPTOR);
OHCI_ASSERT(DeviceData,
EndpointData->TdCount >= TDS_PER_BULK_ENDPOINT);
// Bugbug - use what we get
for (i=0; i<EndpointData->TdCount; i++) {
OHCI_InitializeTD(DeviceData,
EndpointData,
&EndpointData->TdList->Td[i],
phys);
phys += sizeof(HCD_TRANSFER_DESCRIPTOR);
}
EndpointData->HcdEd =
OHCI_InitializeED(DeviceData,
EndpointData,
ed,
&EndpointData->TdList->Td[0],
edPhys);
OHCI_InsertEndpointInSchedule(DeviceData,
EndpointData);
return USBMP_STATUS_SUCCESS;
}
//
// When the HEADP is set to a new value we risk loosing
// the current data toggle stored there.
// This macro resets headp and preserves the flags which
// include the toggle.
//
#define RESET_HEADP(dd, ed, address) \
{\
ULONG headp;\
headp = ((ed)->HwED.HeadP & HcEDHeadP_FLAGS) | (address);\
LOGENTRY((dd), G, '_rhp', headp, (ed), 0); \
(ed)->HwED.HeadP = headp; \
}
VOID
OHCI_PollAsyncEndpoint(
PDEVICE_DATA DeviceData,
PENDPOINT_DATA EndpointData
)
/*++
Routine Description:
Called when the endpoint 'needs attention'
The goal here is to determine which TDs, if any,
have completed and complete ant associated transfers
Arguments:
Return Value:
--*/
{
PHCD_TRANSFER_DESCRIPTOR td, currentTd;
PHCD_ENDPOINT_DESCRIPTOR ed;
ULONG i;
PTRANSFER_CONTEXT transfer;
BOOLEAN clearHalt = FALSE;
HW_32BIT_PHYSICAL_ADDRESS headP;
ed = EndpointData->HcdEd;
LOGENTRY(DeviceData, G, '_pol', ed, EndpointData, 0);
// note it is important the the compiler generate a
// dword move when reading the queuehead HeadP register
// since this location is also accessed by the host
// hardware
headP = ed->HwED.HeadP;
// get the 'currentTD'
currentTd = (PHCD_TRANSFER_DESCRIPTOR)
USBPORT_PHYSICAL_TO_VIRTUAL(headP & ~HcEDHeadP_FLAGS,
DeviceData,
EndpointData);
LOGENTRY(DeviceData, G, '_cTD', currentTd,
headP & ~HcEDHeadP_FLAGS,
TRANSFER_CONTEXT_PTR(currentTd->TransferContext));
if (ed->HwED.HeadP & HcEDHeadP_HALT) {
// ed is 'halted'
LOGENTRY(DeviceData, G, '_hlt', ed, EndpointData->HcdHeadP, 0);
clearHalt = (BOOLEAN) (ed->EdFlags & EDFLAG_NOHALT);
// walk the swHeadP to the currentTD this (this will
// be the first TD after the offending TD)
td = EndpointData->HcdHeadP;
while (td != currentTd) {
transfer = TRANSFER_CONTEXT_PTR(td->TransferContext);
ASSERT_TRANSFER(DeviceData, transfer);
OHCI_ASSERT(DeviceData, !TEST_FLAG(td->Flags, TD_FLAG_DONE));
LOGENTRY(DeviceData, G, '_wtd', td, transfer->TcFlags, transfer);
if (td->HwTD.Asy.ConditionCode == HcCC_NoError) {
// not the offending TD,
// mark this TD done
SET_FLAG(td->Flags, TD_FLAG_DONE);
OHCI_ASSERT(DeviceData, td->DoneLink.Flink == NULL &&
td->DoneLink.Blink == NULL);
InsertTailList(&EndpointData->DoneTdList,
&td->DoneLink);
} else {
// some kind of error
if (td->HwTD.Asy.ConditionCode == HcCC_NotAccessed) {
// if the 'current transfer' is DONE because
// of a short packet then the remaining TDs
// need to be flushed out.
// current TD should be pointing at the next
// TD to run (next transfer or status for control)
SET_FLAG(td->Flags, TD_FLAG_DONE);
SET_FLAG(td->Flags, TD_FLAG_SKIP);
OHCI_ASSERT(DeviceData, td->DoneLink.Flink == NULL &&
td->DoneLink.Blink == NULL);
InsertTailList(&EndpointData->DoneTdList,
&td->DoneLink);
LOGENTRY(DeviceData, G, '_fld', td, 0, 0);
} else if (td->HwTD.Asy.ConditionCode == HcCC_DataUnderrun &&
TEST_FLAG(transfer->TcFlags, TC_FLAGS_SHORT_XFER_OK)) {
// special case HcCC_DataUnderrun. this error
// needs to be ignored if shortxferOK is set.
// cases handled (HcCC_DataUnderrun):
//
// 1. control transfer and error before the status phase w/
// short xfer OK
// we need to advance to the status phase and ignore
// error and resume ep
//
// 2. interrupt/bulk with short xfer OK, ignore the error
// advance to the next transfer resume ep
//
LOGENTRY(DeviceData, G, '_sok', td, 0, 0);
// reset the error on the offending Td
td->HwTD.Asy.ConditionCode = HcCC_NoError;
// resume the ep
clearHalt = TRUE;
// if this is a control transfer bump
// HW headp to the status phase
if (!TEST_FLAG(td->Flags, TD_FLAG_CONTROL_STATUS) &&
transfer->StatusTd != NULL) {
// control transfer data phase, bump
// HW headp to the status phase
TEST_TRAP();
RESET_HEADP(DeviceData, ed, transfer->StatusTd->PhysicalAddress);
currentTd = transfer->StatusTd;
} else {
// if the current transfer is a split we must flush
// all other split elements as well.
if (transfer->TransferParameters->MiniportFlags &
MPTX_SPLIT_TRANSFER) {
PTRANSFER_CONTEXT tmpTransfer;
PHCD_TRANSFER_DESCRIPTOR tmpTd;
ULONG seq;
TEST_TRAP();
seq = transfer->TransferParameters->SequenceNumber;
tmpTd = transfer->NextXferTd;
tmpTransfer =
TRANSFER_CONTEXT_PTR(tmpTd->TransferContext);
// find the first tranfer with a new sequence
// number or the tail of the list
while (tmpTransfer != FREE_TD_CONTEXT &&
tmpTransfer->TransferParameters->SequenceNumber
== seq) {
// mark all TDs done for this transfer
tmpTd = tmpTransfer->NextXferTd;
tmpTransfer =
TRANSFER_CONTEXT_PTR(tmpTd->TransferContext);
}
RESET_HEADP(DeviceData, ed, tmpTd->PhysicalAddress);
currentTd = tmpTd;
} else {
// bump HW headp to the next transfer
RESET_HEADP(DeviceData, ed, transfer->NextXferTd->PhysicalAddress);
currentTd = transfer->NextXferTd;
}
}
SET_FLAG(td->Flags, TD_FLAG_DONE);
OHCI_ASSERT(DeviceData, td->DoneLink.Flink == NULL &&
td->DoneLink.Blink == NULL);
InsertTailList(&EndpointData->DoneTdList,
&td->DoneLink);
} else {
// general error, mark the TD as completed
// update Headp to point to the next transfer
LOGENTRY(DeviceData, G, '_ger', td, 0, 0);
SET_FLAG(td->Flags, TD_FLAG_DONE);
OHCI_ASSERT(DeviceData, td->DoneLink.Flink == NULL &&
td->DoneLink.Blink == NULL);
InsertTailList(&EndpointData->DoneTdList,
&td->DoneLink);
RESET_HEADP(DeviceData, ed, transfer->NextXferTd->PhysicalAddress)
currentTd = transfer->NextXferTd;
}
}
// we walk the SW links
td = TRANSFER_DESCRIPTOR_PTR(td->NextHcdTD);
} /* while */
} else {
// ed is not 'halted'
// First walk the swHeadP to the current TD (hw headp)
// mark all TDs we find as completed
//
// NOTE: this step may be skipped if the
// done queue is reliable
td = EndpointData->HcdHeadP;
LOGENTRY(DeviceData, G, '_nht', td, currentTd, 0);
while (td != currentTd) {
LOGENTRY(DeviceData, G, '_mDN', td, 0, 0);
SET_FLAG(td->Flags, TD_FLAG_DONE);
OHCI_ASSERT(DeviceData, td->DoneLink.Flink == NULL &&
td->DoneLink.Blink == NULL);
InsertTailList(&EndpointData->DoneTdList,
&td->DoneLink);
td = TRANSFER_DESCRIPTOR_PTR(td->NextHcdTD);
}
}
// set the sw headp to the new current head
EndpointData->HcdHeadP = currentTd;
// now flush all completed TDs
// do this in order of completion
// now flush all completed TDs. Do it in order of completion.
while (!IsListEmpty(&EndpointData->DoneTdList)) {
PLIST_ENTRY listEntry;
listEntry = RemoveHeadList(&EndpointData->DoneTdList);
td = (PHCD_TRANSFER_DESCRIPTOR) CONTAINING_RECORD(
listEntry,
struct _HCD_TRANSFER_DESCRIPTOR,
DoneLink);
if ((td->Flags & (TD_FLAG_XFER | TD_FLAG_DONE)) ==
(TD_FLAG_XFER | TD_FLAG_DONE)) {
OHCI_ProcessDoneAsyncTd(DeviceData,
td,
TRUE);
}
}
#if 0
for (i=0; i<EndpointData->TdCount; i++) {
td = &EndpointData->TdList->Td[i];
if ((td->Flags & (TD_FLAG_XFER | TD_FLAG_DONE)) ==
(TD_FLAG_XFER | TD_FLAG_DONE)) {
OHCI_ProcessDoneAsyncTd(DeviceData,
td,
TRUE);
}
}
#endif
if (clearHalt) {
// auto clear the halt condition and
// resume processing on the endpoint
LOGENTRY(DeviceData, G, '_cht', ed, 0, 0);
ed->HwED.HeadP &= ~HcEDHeadP_HALT;
}
}
VOID
OHCI_ProcessDoneAsyncTd(
PDEVICE_DATA DeviceData,
PHCD_TRANSFER_DESCRIPTOR Td,
BOOLEAN CompleteTransfer
)
/*++
Routine Description:
process a completed TD
Parameters
--*/
{
PTRANSFER_CONTEXT transferContext;
PENDPOINT_DATA endpointData;
USBD_STATUS usbdStatus;
transferContext = TRANSFER_CONTEXT_PTR(Td->TransferContext);
transferContext->PendingTds--;
endpointData = transferContext->EndpointData;
LOGENTRY(DeviceData, G, '_Dtd', transferContext,
Td->HwTD.Asy.ConditionCode,
Td);
if (TEST_FLAG(Td->Flags, TD_FLAG_SKIP)) {
OHCI_ASSERT(DeviceData, HcCC_NotAccessed == Td->HwTD.Asy.ConditionCode);
// td was unused, part of short-transfer
LOGENTRY(DeviceData, G, '_skT', Td, transferContext, 0);
Td->HwTD.Asy.ConditionCode = HcCC_NoError;
} else {
if (Td->HwTD.CBP) {
//
// A value of 0 here indicates a zero length data packet
// or that all bytes have been transfered.
//
// A non-zero value means we recieved a short packet and
// therefore need to adjust the transferCount to reflect bytes
// transferred
//
// The buffer is only spec'ed for length up to two 4K pages.
// (BE is the physical address of the last byte in the
// TD buffer. CBP is the current byte pointer)
//
// TransferCount is intailized to the number of bytes to transfer,
// we need to subtract the difference between the end and
// current ptr (ie end-current = bytes not transferred) and
// update the TransferCount.
// transfer count should never go negative
// TransferCount will be zero on the status
// phase of a control transfer so we skip
// the calculation
if (Td->TransferCount) {
Td->TransferCount -=
/* have we gone further than a page? */
((((Td->HwTD.BE ^ Td->HwTD.CBP) & ~OHCI_PAGE_SIZE_MASK)
? OHCI_PAGE_SIZE : 0) +
/* minus the data buffer not used */
((Td->HwTD.BE & OHCI_PAGE_SIZE_MASK) -
(Td->HwTD.CBP & OHCI_PAGE_SIZE_MASK)+1));
}
LOGENTRY(DeviceData, G, '_xfB', Td->HwTD.BE & OHCI_PAGE_SIZE_MASK,
Td->HwTD.CBP & OHCI_PAGE_SIZE_MASK,
Td->TransferCount);
}
if (HcTDDirection_Setup != Td->HwTD.Asy.Direction) {
// data phase of a control transfer or a bulk/int
// data transfer
LOGENTRY(DeviceData, G, '_Idt', Td, transferContext, Td->TransferCount);
transferContext->BytesTransferred += Td->TransferCount;
}
if (HcCC_NoError == Td->HwTD.Asy.ConditionCode) {
LOGENTRY(DeviceData, G, '_tOK', Td->HwTD.CBP, 0, 0);
} else {
// map the error to code in USBDI.H
transferContext->UsbdStatus =
(Td->HwTD.Asy.ConditionCode | 0xC0000000);
LOGENTRY(DeviceData, G, '_tER', transferContext->UsbdStatus, 0, 0);
}
}
// mark the TD free
OHCI_FREE_TD(DeviceData, endpointData, Td);
if (transferContext->PendingTds == 0 && CompleteTransfer) {
// all TDs for this transfer are done
// clear the HAVE_TRANSFER flag to indicate
// we can teake another
endpointData->PendingTransfers--;
LOGENTRY(DeviceData, G, '_cpt',
transferContext->UsbdStatus,
transferContext,
transferContext->BytesTransferred);
USBPORT_COMPLETE_TRANSFER(DeviceData,
endpointData,
transferContext->TransferParameters,
transferContext->UsbdStatus,
transferContext->BytesTransferred);
}
}
// figure out which sgentry a particular offset in to
// a client buffer falls
#define GET_SG_INDEX(sg, i, offset)\
do {\
for((i)=0; (i) < (sg)->SgCount; (i)++) {\
if ((offset) >= (sg)->SgEntry[(i)].StartOffset &&\
(offset) < (sg)->SgEntry[(i)].StartOffset+\
(sg)->SgEntry[(i)].Length) {\
break;\
}\
}\
} while (0)
#define GET_SG_OFFSET(sg, i, offset, sgoffset)\
(sgoffset) = (offset) - (sg)->SgEntry[(i)].StartOffset
ULONG
OHCI_MapAsyncTransferToTd(
PDEVICE_DATA DeviceData,
ULONG MaxPacketSize,
ULONG LengthMapped,
PTRANSFER_CONTEXT TransferContext,
PHCD_TRANSFER_DESCRIPTOR Td,
PTRANSFER_SG_LIST SgList
)
/*++
Routine Description:
Maps a data buffer to TDs according to OHCI rules
An OHCI TD can cover up to 8k with a single page crossing.
Each sg entry represents one 4k OHCI 'page'
x = pagebreak
c = current ptr
b = buffer start
e = buffer end
{..sg[sgIdx]..}
b...|---
x--c----
[ ]
\
sgOffset
[ ]
\
LengthMapped
case 1: (1 sg entry remains)
(A)- transfer < 4k, no page breaks (if c=b sgOffset = 0)
{.sg0...}
| b---->e
x-c------x
[..TD.]
(B)- last part of a transfer
{..sgN..}
b.....|.c---->e
x--------x
[..TD.]
case 2: (2 sg entries remain)
(A)- transfer < 8k, one page break (if c=b sgOffset = 0)
{..sg0..}{..sg1..}
| b----|----->e
x---c----x--------x
[.....TD....]
(B)- last 8k of transfer
{.sgN-1.}{..sgN..}
b....|--------|---->e
x-c------x--------x
[.....TD.......]
case 3: (3+ sg entries remain)
(A)- transfer 8k, two page breaks (c=b)
{..sg0..}{..sg1..}{..sg2..}
b----|--------|--->e
x---c----x--------x--------x
[.....TD...<>]
<>=<TD length must be multiple of MaxPacketSize>
(B)- continuation of large tarnsfer
{.sgN-2.}{.sgN-1.}{..sgN..}
b..|--------------------->e
x--c-----x--------x--------x
[.....TD......]
<TD length must be multiple of MaxPacketSize>
Interesting DMA tests (USBTEST):
length, offset - cases hit
4096 0 - 1a
4160 0 - 2a
4096 512 - 2a
8192 512 - 3a, 1b
8192 513 - 3a, 2b
12288 1 - 3a, 3b, 2b
Arguments:
Returns:
LengthMapped
--*/
{
HW_32BIT_PHYSICAL_ADDRESS logicalStart, logicalEnd;
ULONG sgIdx, sgOffset;
ULONG lengthThisTd;
PTRANSFER_PARAMETERS transferParameters;
// A TD can have up to one page crossing. This means we
// can put two sg entries in to one TD, one for the first
// physical page, and one for the second.
// point to first entry
LOGENTRY(DeviceData, G, '_Mpr', TransferContext,
0, LengthMapped);
transferParameters = TransferContext->TransferParameters;
OHCI_ASSERT(DeviceData, SgList->SgCount != 0);
GET_SG_INDEX(SgList, sgIdx, LengthMapped);
LOGENTRY(DeviceData, G, '_Mpp', SgList, 0, sgIdx);
OHCI_ASSERT(DeviceData, sgIdx < SgList->SgCount);
// check for one special case where the SG entries
// all map to the same physical page
if (TEST_FLAG(SgList->SgFlags, USBMP_SGFLAG_SINGLE_PHYSICAL_PAGE)) {
// in this case we map each sg entry to a single TD
LOGENTRY(DeviceData, G, '_cOD', SgList, 0, sgIdx);
// TEST_TRAP();
// adjust for the amount of buffer consumed by the
// previous TD
logicalStart =
SgList->SgEntry[sgIdx].LogicalAddress.Hw32;
lengthThisTd = SgList->SgEntry[sgIdx].Length;
logicalEnd = SgList->SgEntry[sgIdx].LogicalAddress.Hw32;
logicalEnd += lengthThisTd;
OHCI_ASSERT(DeviceData, lengthThisTd <= OHCI_PAGE_SIZE)
goto OHCI_MapAsyncTransferToTd_Done;
}
if ((SgList->SgCount-sgIdx) == 1) {
// first case, 1 entries left
// ie <4k, we can fit this in
// a single TD.
#if DBG
if (sgIdx == 0) {
// case 1A
// USBT dma test length 4096, offset 0
// will hit this case
// TEST_TRAP();
LOGENTRY(DeviceData, G, '_c1a', SgList, 0, sgIdx);
} else {
// case 1B
// USBT dma test length 8192 offset 512
// will hit this case
LOGENTRY(DeviceData, G, '_c1b', SgList, 0, sgIdx);
}
#endif
lengthThisTd =
transferParameters->TransferBufferLength - LengthMapped;
// compute offset into this TD
GET_SG_OFFSET(SgList, sgIdx, LengthMapped, sgOffset);
LOGENTRY(DeviceData, G, '_sgO', sgOffset, sgIdx, LengthMapped);
// adjust for the amount of buffer consumed by the
// previous TD
logicalStart =
SgList->SgEntry[sgIdx].LogicalAddress.Hw32 + sgOffset;
lengthThisTd -= sgOffset;
logicalEnd = SgList->SgEntry[sgIdx].LogicalAddress.Hw32;
logicalEnd += lengthThisTd;
LOGENTRY(DeviceData, G, '_sg1', logicalStart, 0, logicalEnd);
} else if ((SgList->SgCount - sgIdx) == 2) {
// second case, 2 entries left
// ie <8k we can also fit this in
// a single TD.
#if DBG
if (sgIdx == 0) {
// case 2A
// USBT dma test length 4160 offset 0
// will hit this case
LOGENTRY(DeviceData, G, '_c2a', SgList, 0, sgIdx);
} else {
// case 2B
// USBT dma test length 8192 offset 513
// will hit this case
LOGENTRY(DeviceData, G, '_c2b', SgList, 0, sgIdx);
//TEST_TRAP();
// bugbug run with DMA test
}
#endif
lengthThisTd =
transferParameters->TransferBufferLength - LengthMapped;
// compute offset into first TD
GET_SG_OFFSET(SgList, sgIdx, LengthMapped, sgOffset);
LOGENTRY(DeviceData, G, '_sgO', sgOffset, sgIdx, LengthMapped);
#if DBG
if (sgIdx == 0) {
OHCI_ASSERT(DeviceData, sgOffset == 0);
}
#endif
// adjust pointers for amount consumed by previous TD
logicalStart = SgList->SgEntry[sgIdx].LogicalAddress.Hw32 +
sgOffset;
logicalEnd = SgList->SgEntry[sgIdx+1].LogicalAddress.Hw32;
logicalEnd += SgList->SgEntry[sgIdx+1].Length;
LOGENTRY(DeviceData, G, '_sg2', logicalStart,
lengthThisTd, logicalEnd);
} else {
// third case, more than 2 sg entries.
//
ULONG adjust, packetCount;
#if DBG
if (sgIdx == 0) {
// case 3A
// USBT dma test length 8192 offset 512
// will hit this case
LOGENTRY(DeviceData, G, '_c3a', SgList, 0, sgIdx);
} else {
// case 3B
// USBT dma test length 12288 offset 1
// will hit this case
LOGENTRY(DeviceData, G, '_c3b', SgList, 0, sgIdx);
}
#endif
// sg offset is the offset in to the current TD to start
// using
// ie it is the number of bytes already consumed by the
// previous td
GET_SG_OFFSET(SgList, sgIdx, LengthMapped, sgOffset);
LOGENTRY(DeviceData, G, '_sgO', sgOffset, sgIdx, LengthMapped);
#if DBG
if (sgIdx == 0) {
OHCI_ASSERT(DeviceData, sgOffset == 0);
}
#endif
//
// consume the next two sg entrys
//
logicalStart = SgList->SgEntry[sgIdx].LogicalAddress.Hw32+
sgOffset;
logicalEnd = SgList->SgEntry[sgIdx+1].LogicalAddress.Hw32+
SgList->SgEntry[sgIdx+1].Length;
lengthThisTd = SgList->SgEntry[sgIdx].Length +
SgList->SgEntry[sgIdx+1].Length -
sgOffset;
// round TD length down to the highest multiple
// of max_packet size
packetCount = lengthThisTd/MaxPacketSize;
LOGENTRY(DeviceData, G, '_sg3', logicalStart, packetCount, logicalEnd);
adjust = lengthThisTd - packetCount*MaxPacketSize;
lengthThisTd = packetCount*MaxPacketSize;
if (adjust) {
OHCI_ASSERT(DeviceData, adjust > (logicalEnd & 0x00000FFF));
logicalEnd-=adjust;
LOGENTRY(DeviceData, G, '_adj', adjust, lengthThisTd, logicalEnd);
}
OHCI_ASSERT(DeviceData, lengthThisTd != 0);
OHCI_ASSERT(DeviceData, lengthThisTd >= SgList->SgEntry[sgIdx].Length);
}
OHCI_MapAsyncTransferToTd_Done:
Td->HwTD.CBP = logicalStart;
Td->HwTD.BE = logicalEnd-1;
LengthMapped += lengthThisTd;
Td->TransferCount = lengthThisTd;
LOGENTRY(DeviceData, G, '_Mp1', LengthMapped, lengthThisTd, Td);
return LengthMapped;
}