Leaked source code of windows server 2003
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

2178 lines
57 KiB

//----------------------------------------------------------------------------
//
// MASM-syntax expression evaluation.
//
// Copyright (C) Microsoft Corporation, 1990-2002.
//
//----------------------------------------------------------------------------
#include "ntsdp.hpp"
// token classes (< 100) and types (>= 100)
#define EOL_CLASS 0
#define ADDOP_CLASS 1
#define ADDOP_PLUS 100
#define ADDOP_MINUS 101
#define MULOP_CLASS 2
#define MULOP_MULT 200
#define MULOP_DIVIDE 201
#define MULOP_MOD 202
#define MULOP_SEG 203
//#define MULOP_64 204
#define LOGOP_CLASS 3
#define LOGOP_AND 300
#define LOGOP_OR 301
#define LOGOP_XOR 302
#define LRELOP_CLASS 4
#define LRELOP_EQ 400
#define LRELOP_NE 401
#define LRELOP_LT 402
#define LRELOP_GT 403
#define UNOP_CLASS 5
#define UNOP_NOT 500
#define UNOP_BY 501
#define UNOP_WO 502
#define UNOP_DWO 503
#define UNOP_POI 504
#define UNOP_LOW 505
#define UNOP_HI 506
#define UNOP_QWO 507
#define UNOP_VAL 508
#define LPAREN_CLASS 6
#define RPAREN_CLASS 7
#define LBRACK_CLASS 8
#define RBRACK_CLASS 9
#define REG_CLASS 10
#define NUMBER_CLASS 11
#define SYMBOL_CLASS 12
#define LINE_CLASS 13
#define SHIFT_CLASS 14
#define SHIFT_LEFT 1400
#define SHIFT_RIGHT_LOGICAL 1401
#define SHIFT_RIGHT_ARITHMETIC 1402
#define ERROR_CLASS 99 //only used for PeekToken()
#define INVALID_CLASS -1
struct Res
{
char chRes[3];
ULONG classRes;
ULONG valueRes;
};
Res g_Reserved[] =
{
{ 'o', 'r', '\0', LOGOP_CLASS, LOGOP_OR },
{ 'b', 'y', '\0', UNOP_CLASS, UNOP_BY },
{ 'w', 'o', '\0', UNOP_CLASS, UNOP_WO },
{ 'd', 'w', 'o', UNOP_CLASS, UNOP_DWO },
{ 'q', 'w', 'o', UNOP_CLASS, UNOP_QWO },
{ 'h', 'i', '\0', UNOP_CLASS, UNOP_HI },
{ 'm', 'o', 'd', MULOP_CLASS, MULOP_MOD },
{ 'x', 'o', 'r', LOGOP_CLASS, LOGOP_XOR },
{ 'a', 'n', 'd', LOGOP_CLASS, LOGOP_AND },
{ 'p', 'o', 'i', UNOP_CLASS, UNOP_POI },
{ 'n', 'o', 't', UNOP_CLASS, UNOP_NOT },
{ 'l', 'o', 'w', UNOP_CLASS, UNOP_LOW },
{ 'v', 'a', 'l', UNOP_CLASS, UNOP_VAL }
};
Res g_X86Reserved[] =
{
{ 'e', 'a', 'x', REG_CLASS, X86_EAX },
{ 'e', 'b', 'x', REG_CLASS, X86_EBX },
{ 'e', 'c', 'x', REG_CLASS, X86_ECX },
{ 'e', 'd', 'x', REG_CLASS, X86_EDX },
{ 'e', 'b', 'p', REG_CLASS, X86_EBP },
{ 'e', 's', 'p', REG_CLASS, X86_ESP },
{ 'e', 'i', 'p', REG_CLASS, X86_EIP },
{ 'e', 's', 'i', REG_CLASS, X86_ESI },
{ 'e', 'd', 'i', REG_CLASS, X86_EDI },
{ 'e', 'f', 'l', REG_CLASS, X86_EFL }
};
#define RESERVESIZE (sizeof(g_Reserved) / sizeof(Res))
#define X86_RESERVESIZE (sizeof(g_X86Reserved) / sizeof(Res))
char * g_X86SegRegs[] =
{
"cs", "ds", "es", "fs", "gs", "ss"
};
#define X86_SEGREGSIZE (sizeof(g_X86SegRegs) / sizeof(char *))
//----------------------------------------------------------------------------
//
// MasmEvalExpression.
//
//----------------------------------------------------------------------------
MasmEvalExpression::MasmEvalExpression(void)
: EvalExpression(DEBUG_EXPR_MASM,
"Microsoft Assembler expressions",
"MASM")
{
m_SavedClass = INVALID_CLASS;
m_ForcePositiveNumber = FALSE;
m_AddrExprType = 0;
m_TypedExpr = FALSE;
}
MasmEvalExpression::~MasmEvalExpression(void)
{
}
PCSTR
MasmEvalExpression::Evaluate(PCSTR Expr, PCSTR Desc, ULONG Flags,
TypedData* Result)
{
ULONG64 Value;
Start(Expr, Desc, Flags);
if (m_Flags & EXPRF_SINGLE_TERM)
{
m_SavedClass = INVALID_CLASS;
Value = GetTerm();
}
else
{
Value = GetCommonExpression();
}
ZeroMemory(Result, sizeof(*Result));
Result->SetToNativeType(DNTYPE_UINT64);
Result->m_U64 = Value;
Expr = m_Lex;
End(Result);
return Expr;
}
PCSTR
MasmEvalExpression::EvaluateAddr(PCSTR Expr, PCSTR Desc,
ULONG SegReg, PADDR Addr)
{
TypedData Result;
Start(Expr, Desc, EXPRF_DEFAULT);
Result.SetU64(GetCommonExpression());
Expr = m_Lex;
End(&Result);
ForceAddrExpression(SegReg, Addr, Result.m_U64);
return Expr;
}
void
MasmEvalExpression::ForceAddrExpression(ULONG SegReg, PADDR Address,
ULONG64 Value)
{
DESCRIPTOR64 DescBuf, *Desc = NULL;
*Address = m_TempAddr;
// Rewriting the offset may change flat address so
// be sure to recompute it later.
Off(*Address) = Value;
// If it wasn't an explicit address expression
// force it to be an address
if (!(m_AddrExprType & ~INSTR_POINTER))
{
// Default to a flat address.
m_AddrExprType = ADDR_FLAT;
// Apply various overrides.
if (g_X86InVm86)
{
m_AddrExprType = ADDR_V86;
}
else if (g_X86InCode16)
{
m_AddrExprType = ADDR_16;
}
else if (g_Machine &&
g_Machine->m_ExecTypes[0] == IMAGE_FILE_MACHINE_AMD64 &&
!g_Amd64InCode64)
{
m_AddrExprType = ADDR_1632;
}
Address->type = m_AddrExprType;
if (m_AddrExprType != ADDR_FLAT &&
SegReg < SEGREG_COUNT &&
g_Machine &&
g_Machine->GetSegRegDescriptor(SegReg, &DescBuf) == S_OK)
{
ContextSave* Push;
PCROSS_PLATFORM_CONTEXT ScopeContext =
GetCurrentScopeContext();
if (ScopeContext)
{
Push = g_Machine->PushContext(ScopeContext);
}
Address->seg = (USHORT)
g_Machine->FullGetVal32(g_Machine->GetSegRegNum(SegReg));
Desc = &DescBuf;
if (ScopeContext)
{
g_Machine->PopContext(Push);
}
}
else
{
Address->seg = 0;
}
}
else if fnotFlat(*Address)
{
// This case (i.e., m_AddrExprType && !flat) results from
// an override (i.e., %,,&, or #) being used but no segment
// being specified to force a flat address computation.
Type(*Address) = m_AddrExprType;
Address->seg = 0;
if (SegReg < SEGREG_COUNT)
{
// test flag for IP or EIP as register argument
// if so, use CS as default register
if (fInstrPtr(*Address))
{
SegReg = SEGREG_CODE;
}
if (g_Machine &&
g_Machine->GetSegRegDescriptor(SegReg, &DescBuf) == S_OK)
{
ContextSave* Push;
PCROSS_PLATFORM_CONTEXT ScopeContext =
GetCurrentScopeContext();
if (ScopeContext)
{
Push = g_Machine->PushContext(ScopeContext);
}
Address->seg = (USHORT)
g_Machine->FullGetVal32(g_Machine->GetSegRegNum(SegReg));
Desc = &DescBuf;
if (ScopeContext)
{
g_Machine->PopContext(Push);
}
}
}
}
// Force sign-extension of 32-bit flat addresses.
if (Address->type == ADDR_FLAT &&
g_Machine &&
!g_Machine->m_Ptr64)
{
Off(*Address) = EXTEND64(Off(*Address));
}
// Force an updated flat address to be computed.
NotFlat(*Address);
ComputeFlatAddress(Address, Desc);
}
/*
Inputs
Must be ([*|&] Sym[(.->)Field])
Outputs
Evaluates typed expression and returns value
*/
LONG64
MasmEvalExpression::GetTypedExpression(void)
{
ULONG64 Value=0;
BOOL AddrOf=FALSE, ValueAt=FALSE;
CHAR c;
static CHAR Name[MAX_NAME], Field[MAX_NAME];
c = Peek();
switch (c)
{
case '(':
m_Lex++;
Value = GetTypedExpression();
c = Peek();
if (c != ')')
{
EvalError(SYNTAX);
return 0;
}
++m_Lex;
return Value;
case '&':
// Get Offset/Address
// AddrOf = TRUE;
// m_Lex++;
// Peek();
break;
case '*':
default:
break;
}
#if 0
ULONG i=0;
ValueAt = TRUE;
m_Lex++;
Peek();
break;
c = Peek();
while ((c >= 'A' && c <= 'Z') || (c >= 'a' && c <= 'z') ||
(c >= '0' && c <= '9') || (c == '_') || (c == '$') ||
(c == '!'))
{
// Sym Name
Name[i++] = c;
c = *++m_Lex;
}
Name[i]=0;
if (c=='.')
{
++m_Lex;
}
else if (c=='-' && *++m_Lex == '>')
{
++m_Lex;
}
i=0;
c = Peek();
while ((c >= 'A' && c <= 'Z') || (c >= 'a' && c <= 'z') ||
(c >= '0' && c <= '9') || (c == '_') || (c == '$') ||
(c == '.') || (c == '-') || (c == '>'))
{
Field[i++]= c;
c = *++m_Lex;
}
Field[i] = 0;
SYM_DUMP_PARAM Sym = {0};
FIELD_INFO FieldInfo ={0};
Sym.size = sizeof(SYM_DUMP_PARAM);
Sym.sName = (PUCHAR) Name;
Sym.Options = DBG_DUMP_NO_PRINT;
if (Field[0])
{
Sym.nFields = 1;
Sym.Fields = &FieldInfo;
FieldInfo.fName = (PUCHAR) Field;
if (AddrOf)
{
FieldInfo.fOptions |= DBG_DUMP_FIELD_RETURN_ADDRESS;
}
}
else if (AddrOf)
{
PUCHAR pch = m_Lex;
m_Lex = &Name[0];
Value = GetMterm();
m_Lex = pch;
return Value;
}
else
{
Sym.Options |= DBG_DUMP_GET_SIZE_ONLY;
}
ULONG Status=0;
ULONG Size = SymbolTypeDump(0, NULL, &Sym, &Status);
if (!Status)
{
if (!Field[0] && (Size <= sizeof (Value)))
{
// Call routine again to read value
Sym.Options |= DBG_DUMP_COPY_TYPE_DATA;
Sym.Context = (PVOID) &Value;
if ((SymbolTypeDump(0, NULL, &Sym, &Status) == 8) && (Size == 4))
{
Value = (ULONG) Value;
}
}
else if (Field[0] && (FieldInfo.size <= sizeof(ULONG64)))
{
Value = FieldInfo.address;
}
else // too big
{
Value = 0;
}
}
#endif
ULONG PreferVal = m_Flags & EXPRF_PREFER_SYMBOL_VALUES;
m_Flags |= EXPRF_PREFER_SYMBOL_VALUES;
Value = GetMterm();
m_Flags = (m_Flags & ~EXPRF_PREFER_SYMBOL_VALUES) | PreferVal;
return Value;
}
/*
Evaluate the value in symbol expression Symbol
*/
BOOL
MasmEvalExpression::GetSymValue(PSTR Symbol, PULONG64 RetValue)
{
TYPES_INFO_ALL Typ;
if (GetExpressionTypeInfo(Symbol, &Typ))
{
if (Typ.Flags)
{
if (Typ.Flags & SYMFLAG_VALUEPRESENT)
{
*RetValue = Typ.Value;
return TRUE;
}
TranslateAddress(Typ.Module, Typ.Flags, Typ.Register,
&Typ.Address, &Typ.Value);
if (Typ.Value && (Typ.Flags & SYMFLAG_REGISTER))
{
*RetValue = Typ.Value;
return TRUE;
}
}
if (Symbol[0] == '&')
{
*RetValue = Typ.Address;
return TRUE;
}
else if (Typ.Size <= sizeof(*RetValue))
{
ULONG64 Val = 0;
if (CurReadAllVirtual(Typ.Address, &Val, Typ.Size) == S_OK)
{
*RetValue = Val;
return TRUE;
}
}
}
*RetValue = 0;
return FALSE;
}
char
MasmEvalExpression::Peek(void)
{
char Ch;
do
{
Ch = *m_Lex++;
} while (Ch == ' ' || Ch == '\t' || Ch == '\r' || Ch == '\n');
m_Lex--;
return Ch;
}
ULONG64
MasmEvalExpression::GetCommonExpression(void)
{
CHAR ch;
m_SavedClass = INVALID_CLASS;
ch = Peek();
switch(ch)
{
case '&':
m_Lex++;
m_AddrExprType = ADDR_V86;
break;
case '#':
m_Lex++;
m_AddrExprType = ADDR_16;
break;
case '%':
m_Lex++;
m_AddrExprType = ADDR_FLAT;
break;
default:
m_AddrExprType = ADDR_NONE;
break;
}
Peek();
return (ULONG64)StartExpr();
}
/*** StartExpr - Get expression
*
* Purpose:
* Parse logical-terms separated by logical operators into
* expression value.
*
* Input:
* m_Lex - present command line position
*
* Returns:
* long value of logical result.
*
* Exceptions:
* error exit: SYNTAX - bad expression or premature end-of-line
*
* Notes:
* may be called recursively.
* <expr> = <lterm> [<logic-op> <lterm>]*
* <logic-op> = AND (&), OR (|), XOR (^)
*
*************************************************************************/
LONG64
MasmEvalExpression::StartExpr(void)
{
LONG64 value1;
LONG64 value2;
ULONG opclass;
LONG64 oRetValue;
//dprintf("LONG64 StartExpr ()\n");
value1 = GetLRterm();
while ((opclass = PeekToken(&oRetValue)) == LOGOP_CLASS)
{
AcceptToken();
value2 = GetLRterm();
switch (oRetValue)
{
case LOGOP_AND:
value1 &= value2;
break;
case LOGOP_OR:
value1 |= value2;
break;
case LOGOP_XOR:
value1 ^= value2;
break;
default:
EvalError(SYNTAX);
}
}
return value1;
}
/*** GetLRterm - get logical relational term
*
* Purpose:
* Parse logical-terms separated by logical relational
* operators into the expression value.
*
* Input:
* m_Lex - present command line position
*
* Returns:
* long value of logical result.
*
* Exceptions:
* error exit: SYNTAX - bad expression or premature end-of-line
*
* Notes:
* may be called recursively.
* <expr> = <lterm> [<rel-logic-op> <lterm>]*
* <logic-op> = '==' or '=', '!=', '>', '<'
*
*************************************************************************/
LONG64
MasmEvalExpression::GetLRterm(void)
{
LONG64 value1;
LONG64 value2;
ULONG opclass;
LONG64 oRetValue;
//dprintf("LONG64 GetLRterm ()\n");
value1 = GetLterm();
while ((opclass = PeekToken(&oRetValue)) == LRELOP_CLASS)
{
AcceptToken();
value2 = GetLterm();
switch (oRetValue)
{
case LRELOP_EQ:
value1 = (value1 == value2);
break;
case LRELOP_NE:
value1 = (value1 != value2);
break;
case LRELOP_LT:
value1 = (value1 < value2);
break;
case LRELOP_GT:
value1 = (value1 > value2);
break;
default:
EvalError(SYNTAX);
}
}
return value1;
}
/*** GetLterm - get logical term
*
* Purpose:
* Parse shift-terms separated by shift operators into
* logical term value.
*
* Input:
* m_Lex - present command line position
*
* Returns:
* long value of sum.
*
* Exceptions:
* error exit: SYNTAX - bad logical term or premature end-of-line
*
* Notes:
* may be called recursively.
* <lterm> = <sterm> [<shift-op> <sterm>]*
* <shift-op> = <<, >>, >>>
*
*************************************************************************/
LONG64
MasmEvalExpression::GetLterm(void)
{
LONG64 value1 = GetShiftTerm();
LONG64 value2;
ULONG opclass;
LONG64 oRetValue;
//dprintf("LONG64 GetLterm ()\n");
while ((opclass = PeekToken(&oRetValue)) == SHIFT_CLASS)
{
AcceptToken();
value2 = GetShiftTerm();
switch (oRetValue)
{
case SHIFT_LEFT:
value1 <<= value2;
break;
case SHIFT_RIGHT_LOGICAL:
value1 = (LONG64)((ULONG64)value1 >> value2);
break;
case SHIFT_RIGHT_ARITHMETIC:
value1 >>= value2;
break;
default:
EvalError(SYNTAX);
}
}
return value1;
}
/*** GetShiftTerm - get logical term
*
* Purpose:
* Parse additive-terms separated by additive operators into
* shift term value.
*
* Input:
* m_Lex - present command line position
*
* Returns:
* long value of sum.
*
* Exceptions:
* error exit: SYNTAX - bad shift term or premature end-of-line
*
* Notes:
* may be called recursively.
* <sterm> = <aterm> [<add-op> <aterm>]*
* <add-op> = +, -
*
*************************************************************************/
LONG64
MasmEvalExpression::GetShiftTerm(void)
{
LONG64 value1 = GetAterm();
LONG64 value2;
ULONG opclass;
LONG64 oRetValue;
USHORT AddrType1 = m_AddrExprType;
//dprintf("LONG64 GetShifTerm ()\n");
while ((opclass = PeekToken(&oRetValue)) == ADDOP_CLASS)
{
AcceptToken();
value2 = GetAterm();
// If either item is an address we want
// to use the special address arithmetic functions.
// They only handle address+-value, so we may need
// to swap things around to allow their use.
// We can't swap the order of subtraction, plus the
// result of a subtraction should be a constant.
if (AddrType1 == ADDR_NONE && m_AddrExprType != ADDR_NONE &&
oRetValue == ADDOP_PLUS)
{
LONG64 Tmp = value1;
value1 = value2;
value2 = Tmp;
AddrType1 = m_AddrExprType;
}
if (AddrType1 & ~INSTR_POINTER)
{
switch (oRetValue)
{
case ADDOP_PLUS:
AddrAdd(&m_TempAddr, value2);
value1 += value2;
break;
case ADDOP_MINUS:
AddrSub(&m_TempAddr, value2);
value1 -= value2;
break;
default:
EvalError(SYNTAX);
}
}
else
{
switch (oRetValue)
{
case ADDOP_PLUS:
value1 += value2;
break;
case ADDOP_MINUS:
value1 -= value2;
break;
default:
EvalError(SYNTAX);
}
}
}
return value1;
}
/*** GetAterm - get additive term
*
* Purpose:
* Parse multiplicative-terms separated by multipicative operators
* into additive term value.
*
* Input:
* m_Lex - present command line position
*
* Returns:
* long value of product.
*
* Exceptions:
* error exit: SYNTAX - bad additive term or premature end-of-line
*
* Notes:
* may be called recursively.
* <aterm> = <mterm> [<mult-op> <mterm>]*
* <mult-op> = *, /, MOD (%)
*
*************************************************************************/
LONG64
MasmEvalExpression::GetAterm(void)
{
LONG64 value1;
LONG64 value2;
ULONG opclass;
LONG64 oRetValue;
//dprintf("LONG64 GetAterm ()\n");
value1 = GetMterm();
while ((opclass = PeekToken(&oRetValue)) == MULOP_CLASS)
{
AcceptToken();
value2 = GetMterm();
switch (oRetValue)
{
case MULOP_MULT:
value1 *= value2;
break;
case MULOP_DIVIDE:
if (value2 == 0)
{
EvalError(OPERAND);
}
value1 /= value2;
break;
case MULOP_MOD:
if (value2 == 0)
{
EvalError(OPERAND);
}
value1 %= value2;
break;
case MULOP_SEG:
PDESCRIPTOR64 pdesc;
DESCRIPTOR64 desc;
pdesc = NULL;
if (m_AddrExprType != ADDR_NONE)
{
Type(m_TempAddr) = m_AddrExprType;
}
else
{
// We don't know what kind of address this is
// Let's try to figure it out.
if (g_X86InVm86)
{
m_AddrExprType = Type(m_TempAddr) = ADDR_V86;
}
else if (g_Target->GetSelDescriptor
(g_Thread, g_Machine,
(ULONG)value1, &desc) != S_OK)
{
EvalError(BADSEG);
}
else
{
m_AddrExprType = Type(m_TempAddr) =
(desc.Flags & X86_DESC_DEFAULT_BIG) ?
ADDR_1632 : ADDR_16;
pdesc = &desc;
}
}
m_TempAddr.seg = (USHORT)value1;
m_TempAddr.off = value2;
ComputeFlatAddress(&m_TempAddr, pdesc);
value1 = value2;
break;
default:
EvalError(SYNTAX);
}
}
return value1;
}
/*** GetMterm - get multiplicative term
*
* Purpose:
* Parse basic-terms optionally prefaced by one or more
* unary operators into a multiplicative term.
*
* Input:
* m_Lex - present command line position
*
* Returns:
* long value of multiplicative term.
*
* Exceptions:
* error exit: SYNTAX - bad multiplicative term or premature end-of-line
*
* Notes:
* may be called recursively.
* <mterm> = [<unary-op>] <term> | <unary-op> <mterm>
* <unary-op> = <add-op>, ~ (NOT), BY, WO, DW, HI, LOW
*
*************************************************************************/
LONG64
MasmEvalExpression::GetMterm(void)
{
LONG64 value;
ULONG opclass;
LONG64 oRetValue;
ULONG size = 0;
//dprintf("LONG64 GetMterm ()\n");
if ((opclass = PeekToken(&oRetValue)) == UNOP_CLASS ||
opclass == ADDOP_CLASS)
{
AcceptToken();
if (oRetValue == UNOP_VAL)
{
// Do not use default expression handler for type expressions.
value = GetTypedExpression();
}
else
{
value = GetMterm();
}
switch (oRetValue)
{
case UNOP_NOT:
value = !value;
break;
case UNOP_BY:
size = 1;
break;
case UNOP_WO:
size = 2;
break;
case UNOP_DWO:
size = 4;
break;
case UNOP_POI:
size = 0xFFFF;
break;
case UNOP_QWO:
size = 8;
break;
case UNOP_LOW:
value &= 0xffff;
break;
case UNOP_HI:
value = (ULONG)value >> 16;
break;
case ADDOP_PLUS:
break;
case ADDOP_MINUS:
value = -value;
break;
case UNOP_VAL:
break;
default:
EvalError(SYNTAX);
}
if (size)
{
ADDR CurAddr;
NotFlat(CurAddr);
ForceAddrExpression(SEGREG_COUNT, &CurAddr, value);
value = 0;
//
// For pointers, call read pointer so we read the correct size
// and sign extend.
//
if (size == 0xFFFF)
{
if (g_Target->ReadPointer(g_Process, g_Machine,
Flat(CurAddr),
(PULONG64)&value) != S_OK)
{
EvalError(MEMORY);
}
}
else
{
if (g_Target->ReadAllVirtual(g_Process, Flat(CurAddr),
&value, size) != S_OK)
{
EvalError(MEMORY);
}
}
// We've looked up an arbitrary value so we can
// no longer consider this an address expression.
m_AddrExprType = ADDR_NONE;
}
}
else
{
value = GetTerm();
}
return value;
}
/*** GetTerm - get basic term
*
* Purpose:
* Parse numeric, variable, or register name into a basic
* term value.
*
* Input:
* m_Lex - present command line position
*
* Returns:
* long value of basic term.
*
* Exceptions:
* error exit: SYNTAX - empty basic term or premature end-of-line
*
* Notes:
* may be called recursively.
* <term> = ( <expr> ) | <register-value> | <number> | <variable>
* <register-value> = @<register-name>
*
*************************************************************************/
LONG64
MasmEvalExpression::GetTerm(void)
{
LONG64 value;
ULONG opclass;
LONG64 oRetValue;
//dprintf("LONG64 GetTerm ()\n");
opclass = GetTokenSym(&oRetValue);
if (opclass == LPAREN_CLASS)
{
value = StartExpr();
if (GetTokenSym(&oRetValue) != RPAREN_CLASS)
{
EvalError(SYNTAX);
}
}
else if (opclass == LBRACK_CLASS)
{
value = StartExpr();
if (GetTokenSym(&oRetValue) != RBRACK_CLASS)
{
EvalError(SYNTAX);
}
}
else if (opclass == REG_CLASS)
{
REGVAL Val;
if (g_Machine &&
((g_Machine->m_ExecTypes[0] == IMAGE_FILE_MACHINE_I386 &&
(oRetValue == X86_EIP || oRetValue == X86_IP)) ||
(g_Machine->m_ExecTypes[0] == IMAGE_FILE_MACHINE_AMD64 &&
(oRetValue == AMD64_RIP || oRetValue == AMD64_EIP ||
oRetValue == AMD64_IP))))
{
m_AddrExprType |= INSTR_POINTER;
}
GetPseudoOrRegVal(TRUE, (ULONG)oRetValue, &Val);
value = Val.I64;
}
else if (opclass == NUMBER_CLASS ||
opclass == SYMBOL_CLASS ||
opclass == LINE_CLASS)
{
value = oRetValue;
}
else
{
EvalErrorDesc(SYNTAX, m_ExprDesc);
}
return value;
}
ULONG
MasmEvalExpression::GetRegToken(char *str, PULONG64 value)
{
if ((*value = RegIndexFromName(str)) != REG_ERROR)
{
return REG_CLASS;
}
else
{
*value = BADREG;
return ERROR_CLASS;
}
}
/*** PeekToken - peek the next command line token
*
* Purpose:
* Return the next command line token, but do not advance
* the m_Lex pointer.
*
* Input:
* m_Lex - present command line position.
*
* Output:
* *RetValue - optional value of token
* Returns:
* class of token
*
* Notes:
* m_SavedClass, m_SavedValue, and m_SavedCommand saves the token getting
* state for future peeks. To get the next token, a GetToken or
* AcceptToken call must first be made.
*
*************************************************************************/
ULONG
MasmEvalExpression::PeekToken(PLONG64 RetValue)
{
PCSTR Temp;
//dprintf("ULONG PeekToken (PLONG64 RetValue)\n");
// Get next class and value, but do not
// move m_Lex, but save it in m_SavedCommand.
// Do not report any error condition.
if (m_SavedClass == INVALID_CLASS)
{
Temp = m_Lex;
m_SavedClass = NextToken(&m_SavedValue);
m_SavedCommand = m_Lex;
m_Lex = Temp;
if (m_SavedClass == ADDOP_CLASS && m_SavedValue == ADDOP_PLUS)
{
m_ForcePositiveNumber = TRUE;
}
else
{
m_ForcePositiveNumber = FALSE;
}
}
*RetValue = m_SavedValue;
return m_SavedClass;
}
/*** AcceptToken - accept any peeked token
*
* Purpose:
* To reset the PeekToken saved variables so the next PeekToken
* will get the next token in the command line.
*
* Input:
* None.
*
* Output:
* None.
*
*************************************************************************/
void
MasmEvalExpression::AcceptToken(void)
{
//dprintf("void AcceptToken (void)\n");
m_SavedClass = INVALID_CLASS;
m_Lex = m_SavedCommand;
}
/*** GetTokenSym - peek and accept the next token
*
* Purpose:
* Combines the functionality of PeekToken and AcceptToken
* to return the class and optional value of the next token
* as well as updating the command pointer m_Lex.
*
* Input:
* m_Lex - present command string pointer
*
* Output:
* *RetValue - pointer to the token value optionally set.
* Returns:
* class of the token read.
*
* Notes:
* An illegal token returns the value of ERROR_CLASS with *RetValue
* being the error number, but produces no actual error.
*
*************************************************************************/
ULONG
MasmEvalExpression::GetTokenSym(PLONG64 RetValue)
{
ULONG opclass;
//dprintf("ULONG GetTokenSym (PLONG RetValue)\n");
if (m_SavedClass != INVALID_CLASS)
{
opclass = m_SavedClass;
m_SavedClass = INVALID_CLASS;
*RetValue = m_SavedValue;
m_Lex = m_SavedCommand;
}
else
{
opclass = NextToken(RetValue);
}
if (opclass == ERROR_CLASS)
{
EvalError((ULONG)*RetValue);
}
return opclass;
}
struct DISPLAY_AMBIGUOUS_SYMBOLS
{
PSTR MatchString;
PSTR Module;
MachineInfo* Machine;
};
BOOL CALLBACK
DisplayAmbiguousSymbols(
PSYMBOL_INFO SymInfo,
ULONG Size,
PVOID UserContext
)
{
DISPLAY_AMBIGUOUS_SYMBOLS* Context =
(DISPLAY_AMBIGUOUS_SYMBOLS*)UserContext;
if (IgnoreEnumeratedSymbol(g_Process, Context->MatchString,
Context->Machine, SymInfo))
{
return TRUE;
}
dprintf("Matched: %s %s!%s",
FormatAddr64(SymInfo->Address), Context->Module, SymInfo->Name);
ShowSymbolInfo(SymInfo);
dprintf("\n");
return TRUE;
}
ULONG
MasmEvalExpression::EvalSymbol(PSTR Name, PULONG64 Value)
{
if (m_Process == NULL)
{
return INVALID_CLASS;
}
if (m_Flags & EXPRF_PREFER_SYMBOL_VALUES)
{
if (GetSymValue(Name, Value))
{
return SYMBOL_CLASS;
}
else
{
return INVALID_CLASS;
}
}
ULONG Count;
ImageInfo* Image;
if (!(Count = GetOffsetFromSym(g_Process, Name, Value, &Image)))
{
// If a valid module name was given we can assume
// the user really intended this as a symbol reference
// and return a not-found error rather than letting
// the text be checked for other kinds of matches.
if (Image != NULL)
{
*Value = VARDEF;
return ERROR_CLASS;
}
else
{
return INVALID_CLASS;
}
}
if (Count == 1)
{
// Found an unambiguous match.
Type(m_TempAddr) = ADDR_FLAT | FLAT_COMPUTED;
Flat(m_TempAddr) = Off(m_TempAddr) = *Value;
m_AddrExprType = Type(m_TempAddr);
return SYMBOL_CLASS;
}
//
// Multiple matches were found so the name is ambiguous.
// Enumerate the instances and display them.
//
Image = m_Process->FindImageByOffset(*Value, FALSE);
if (Image != NULL)
{
DISPLAY_AMBIGUOUS_SYMBOLS Context;
char FoundSymbol[MAX_SYMBOL_LEN];
ULONG64 Disp;
PSTR Bang;
// The symbol found may not have exactly the name
// passed in due to prefixing or other modifications.
// Look up the actual name found.
GetSymbol(*Value, FoundSymbol, sizeof(FoundSymbol), &Disp);
Bang = strchr(FoundSymbol, '!');
if (Bang &&
!_strnicmp(Image->m_ModuleName, FoundSymbol,
Bang - FoundSymbol))
{
Context.MatchString = Bang + 1;
}
else
{
Context.MatchString = FoundSymbol;
}
Context.Module = Image->m_ModuleName;
Context.Machine = MachineTypeInfo(g_Target, Image->GetMachineType());
if (Context.Machine == NULL)
{
Context.Machine = g_Machine;
}
SymEnumSymbols(m_Process->m_SymHandle, Image->m_BaseOfImage,
FoundSymbol, DisplayAmbiguousSymbols, &Context);
}
*Value = AMBIGUOUS;
return ERROR_CLASS;
}
/*** NextToken - process the next token
*
* Purpose:
* Parse the next token from the present command string.
* After skipping any leading white space, first check for
* any single character tokens or register variables. If
* no match, then parse for a number or variable. If a
* possible variable, check the reserved word list for operators.
*
* Input:
* m_Lex - pointer to present command string
*
* Output:
* *RetValue - optional value of token returned
* m_Lex - updated to point past processed token
* Returns:
* class of token returned
*
* Notes:
* An illegal token returns the value of ERROR_CLASS with *RetValue
* being the error number, but produces no actual error.
*
*************************************************************************/
ULONG
MasmEvalExpression::NextToken(PLONG64 RetValue)
{
ULONG Base = g_DefaultRadix;
BOOL AllowSignExtension;
CHAR Symbol[MAX_SYMBOL_LEN];
CHAR SymbolString[MAX_SYMBOL_LEN];
CHAR PreSym[9];
ULONG SymbolLen = 0;
BOOL IsNumber = TRUE;
BOOL IsSymbol = TRUE;
BOOL ForceReg = FALSE;
BOOL ForceSym = FALSE;
ULONG ErrNumber = 0;
CHAR Ch;
CHAR ChLow;
CHAR ChTemp;
CHAR Limit1 = '9';
CHAR Limit2 = '9';
BOOL IsDigit = FALSE;
ULONG64 Value = 0;
ULONG64 TmpValue;
ULONG Index;
PCSTR CmdSave;
BOOL WasDigit;
ULONG SymClass;
ULONG Len;
// Do sign extension for kernel only.
AllowSignExtension = IS_KERNEL_TARGET(g_Target);
Peek();
m_LexemeSourceStart = m_Lex;
Ch = *m_Lex++;
ChLow = (CHAR)tolower(Ch);
// Check to see if we're at a symbol prefix followed by
// a symbol character. Symbol prefixes often contain
// characters meaningful in other ways in expressions so
// this check must be performed before the specific expression
// character checks below.
if (g_Machine != NULL &&
g_Machine->m_SymPrefix != NULL &&
ChLow == g_Machine->m_SymPrefix[0] &&
(g_Machine->m_SymPrefixLen == 1 ||
!strncmp(m_Lex, g_Machine->m_SymPrefix + 1,
g_Machine->m_SymPrefixLen - 1)))
{
CHAR ChNext = *(m_Lex + g_Machine->m_SymPrefixLen - 1);
CHAR ChNextLow = (CHAR)tolower(ChNext);
if (ChNextLow == '_' ||
(ChNextLow >= 'a' && ChNextLow <= 'z'))
{
// A symbol character followed the prefix so assume it's
// a symbol.
SymbolLen = g_Machine->m_SymPrefixLen;
DBG_ASSERT(SymbolLen <= sizeof(PreSym));
m_Lex--;
memcpy(PreSym, m_Lex, g_Machine->m_SymPrefixLen);
memcpy(Symbol, m_Lex, g_Machine->m_SymPrefixLen);
m_Lex += g_Machine->m_SymPrefixLen + 1;
Ch = ChNext;
ChLow = ChNextLow;
ForceSym = TRUE;
ForceReg = FALSE;
IsNumber = FALSE;
goto ProbableSymbol;
}
}
// Test for special character operators and register variable.
switch(ChLow)
{
case '\0':
case ';':
m_Lex--;
return EOL_CLASS;
case '+':
*RetValue = ADDOP_PLUS;
return ADDOP_CLASS;
case '-':
*RetValue = ADDOP_MINUS;
return ADDOP_CLASS;
case '*':
*RetValue = MULOP_MULT;
return MULOP_CLASS;
case '/':
*RetValue = MULOP_DIVIDE;
return MULOP_CLASS;
case '%':
*RetValue = MULOP_MOD;
return MULOP_CLASS;
case '&':
*RetValue = LOGOP_AND;
return LOGOP_CLASS;
case '|':
*RetValue = LOGOP_OR;
return LOGOP_CLASS;
case '^':
*RetValue = LOGOP_XOR;
return LOGOP_CLASS;
case '=':
if (*m_Lex == '=')
{
m_Lex++;
}
*RetValue = LRELOP_EQ;
return LRELOP_CLASS;
case '>':
if (*m_Lex == '>')
{
m_Lex++;
if (*m_Lex == '>')
{
m_Lex++;
*RetValue = SHIFT_RIGHT_ARITHMETIC;
}
else
{
*RetValue = SHIFT_RIGHT_LOGICAL;
}
return SHIFT_CLASS;
}
*RetValue = LRELOP_GT;
return LRELOP_CLASS;
case '<':
if (*m_Lex == '<')
{
m_Lex++;
*RetValue = SHIFT_LEFT;
return SHIFT_CLASS;
}
*RetValue = LRELOP_LT;
return LRELOP_CLASS;
case '!':
if (*m_Lex != '=')
{
break;
}
m_Lex++;
*RetValue = LRELOP_NE;
return LRELOP_CLASS;
case '~':
*RetValue = UNOP_NOT;
return UNOP_CLASS;
case '(':
return LPAREN_CLASS;
case ')':
return RPAREN_CLASS;
case '[':
return LBRACK_CLASS;
case ']':
return RBRACK_CLASS;
case '.':
ContextSave* Push;
PCROSS_PLATFORM_CONTEXT ScopeContext;
if (!IS_CUR_MACHINE_ACCESSIBLE())
{
*RetValue = BADTHREAD;
return ERROR_CLASS;
}
ScopeContext = GetCurrentScopeContext();
if (ScopeContext)
{
Push = g_Machine->PushContext(ScopeContext);
}
g_Machine->GetPC(&m_TempAddr);
*RetValue = Flat(m_TempAddr);
m_AddrExprType = Type(m_TempAddr);
if (ScopeContext)
{
g_Machine->PopContext(Push);
}
return NUMBER_CLASS;
case ':':
*RetValue = MULOP_SEG;
return MULOP_CLASS;
}
//
// Look for source line expressions. Because source file names
// can contain a lot of expression characters which are meaningful
// to the lexer the whole expression is enclosed in ` characters.
// This makes them easy to identify and scan.
//
if (ChLow == '`')
{
ULONG FoundLine;
// Scan forward for closing `
CmdSave = m_Lex;
while (*m_Lex != '`' && *m_Lex != ';' && *m_Lex != 0)
{
m_Lex++;
}
if (*m_Lex == ';' || *m_Lex == 0)
{
*RetValue = SYNTAX;
return ERROR_CLASS;
}
Len = (ULONG)(m_Lex - CmdSave);
if (Len >= sizeof(m_LexemeBuffer))
{
EvalError(OVERFLOW);
}
memcpy(m_LexemeBuffer, CmdSave, Len);
m_LexemeBuffer[Len] = 0;
m_Lex++;
FoundLine = GetOffsetFromLine(m_LexemeBuffer, &Value);
if (FoundLine == LINE_NOT_FOUND && m_AllowUnresolvedSymbols)
{
m_NumUnresolvedSymbols++;
FoundLine = LINE_FOUND;
Value = 0;
}
if (FoundLine == LINE_FOUND)
{
*RetValue = Value;
Type(m_TempAddr) = ADDR_FLAT | FLAT_COMPUTED;
Flat(m_TempAddr) = Off(m_TempAddr) = Value;
m_AddrExprType = Type(m_TempAddr);
return LINE_CLASS;
}
else
{
*RetValue = NOTFOUND;
return ERROR_CLASS;
}
}
//
// Check for an alternate evaluator expression. As with line
// expressions alteval expressions have different
// lexical rules and therefore represent a text
// blob that is parsed with different rules.
//
if (ChLow == '@' && *m_Lex == '@')
{
TypedData Result;
//
// Scan to '(', picking up the optional evaluator name.
//
CmdSave = ++m_Lex;
while (*m_Lex != '(' && *m_Lex != ';' && *m_Lex != 0)
{
m_Lex++;
}
if (*m_Lex == ';' || *m_Lex == 0)
{
*RetValue = SYNTAX;
return ERROR_CLASS;
}
Len = (ULONG)(m_Lex - CmdSave);
if (Len >= sizeof(m_LexemeBuffer))
{
EvalError(OVERFLOW);
}
memcpy(m_LexemeBuffer, CmdSave, Len);
m_LexemeBuffer[Len] = 0;
m_Lex++;
EvalExpression* Eval;
if (Len > 0)
{
GetEvaluatorByName(m_LexemeBuffer, FALSE, &Eval);
}
else
{
Eval = GetEvaluator(DEBUG_EXPR_CPLUSPLUS, FALSE);
}
Eval->InheritStart(this);
// Allow all nested evaluators to get cleaned up.
Eval->m_ChainTop = FALSE;
m_Lex = (PSTR)Eval->
Evaluate(m_Lex, NULL, EXPRF_DEFAULT, &Result);
Eval->InheritEnd(this);
ReleaseEvaluator(Eval);
if (*m_Lex != ')')
{
*RetValue = SYNTAX;
return ERROR_CLASS;
}
m_Lex++;
if (ErrNumber = Result.ConvertToU64())
{
EvalError(ErrNumber);
}
*RetValue = Result.m_U64;
return NUMBER_CLASS;
}
// Special prefixes - '@' for register - '!' for symbol.
if (ChLow == '@' || ChLow == '!')
{
ForceReg = (BOOL)(ChLow == '@');
ForceSym = (BOOL)!ForceReg;
IsNumber = FALSE;
Ch = *m_Lex++;
ChLow = (CHAR)tolower(Ch);
}
// If string is followed by '!', but not '!=',
// then it is a module name and treat as text.
CmdSave = m_Lex;
WasDigit = FALSE;
while ((ChLow >= 'a' && ChLow <= 'z') ||
(ChLow >= '0' && ChLow <= '9') ||
((WasDigit || ForceSym) && ChLow == '`') ||
(ForceSym && ChLow == '\'') ||
(ChLow == '_') || (ChLow == '$') || (ChLow == '~') ||
(!ForceReg && ChLow == ':' && *m_Lex == ':'))
{
WasDigit = (ChLow >= '0' && ChLow <= '9') ||
(ChLow >= 'a' && ChLow <= 'f');
if (ChLow == ':')
{
// Colons must come in pairs so skip the second colon
// right away.
m_Lex++;
IsNumber = FALSE;
}
ChLow = (CHAR)tolower(*m_Lex);
m_Lex++;
}
// Treat as symbol if a nonnull string is followed by '!',
// but not '!='.
if (ChLow == '!' && *m_Lex != '=' && CmdSave != m_Lex)
{
IsNumber = FALSE;
}
m_Lex = CmdSave;
ChLow = (CHAR)tolower(Ch); // ch was NOT modified
if (IsNumber)
{
if (ChLow == '\'')
{
*RetValue = 0;
while (TRUE)
{
Ch = *m_Lex++;
if (!Ch)
{
*RetValue = SYNTAX;
return ERROR_CLASS;
}
if (Ch == '\'')
{
if (*m_Lex != '\'')
{
break;
}
Ch = *m_Lex++;
}
else if (Ch == '\\')
{
Ch = *m_Lex++;
}
*RetValue = (*RetValue << 8) | Ch;
}
return NUMBER_CLASS;
}
// If first character is a decimal digit, it cannot
// be a symbol. leading '0' implies octal, except
// a leading '0x' implies hexadecimal.
if (ChLow >= '0' && ChLow <= '9')
{
if (ForceReg)
{
*RetValue = SYNTAX;
return ERROR_CLASS;
}
IsSymbol = FALSE;
if (ChLow == '0')
{
//
// too many people type in leading 0x so we can't use it to
// deal with sign extension.
//
Ch = *m_Lex++;
ChLow = (CHAR)tolower(Ch);
if (ChLow == 'n')
{
Base = 10;
Ch = *m_Lex++;
ChLow = (CHAR)tolower(Ch);
IsDigit = TRUE;
}
else if (ChLow == 't')
{
Base = 8;
Ch = *m_Lex++;
ChLow = (CHAR)tolower(Ch);
IsDigit = TRUE;
}
else if (ChLow == 'x')
{
Base = 16;
Ch = *m_Lex++;
ChLow = (CHAR)tolower(Ch);
IsDigit = TRUE;
}
else if (ChLow == 'y')
{
Base = 2;
Ch = *m_Lex++;
ChLow = (CHAR)tolower(Ch);
IsDigit = TRUE;
}
else
{
// Leading zero is used only to imply a positive value
// that shouldn't get sign extended.
IsDigit = TRUE;
}
}
}
// A number can start with a letter only if base is
// hexadecimal and it is a hexadecimal digit 'a'-'f'.
else if ((ChLow < 'a' || ChLow > 'f') || Base != 16)
{
IsNumber = FALSE;
}
// Set limit characters for the appropriate base.
if (Base == 2)
{
Limit1 = '1';
}
else if (Base == 8)
{
Limit1 = '7';
}
else if (Base == 16)
{
Limit2 = 'f';
}
}
ProbableSymbol:
// Perform processing while character is a letter,
// digit, underscore, tilde or dollar-sign.
while ((ChLow >= 'a' && ChLow <= 'z') ||
(ChLow >= '0' && ChLow <= '9') ||
((ForceSym || (IsDigit && Base == 16)) && ChLow == '`') ||
(ForceSym && ChLow == '\'') ||
(ChLow == '_') || (ChLow == '$') || (ChLow == '~') ||
(!ForceReg && ChLow == ':' && *m_Lex == ':'))
{
if (ChLow == ':')
{
IsNumber = FALSE;
}
// If possible number, test if within proper range,
// and if so, accumulate sum.
if (IsNumber)
{
if ((ChLow >= '0' && ChLow <= Limit1) ||
(ChLow >= 'a' && ChLow <= Limit2))
{
IsDigit = TRUE;
TmpValue = Value * Base;
if (TmpValue < Value)
{
ErrNumber = OVERFLOW;
}
ChTemp = (CHAR)(ChLow - '0');
if (ChTemp > 9)
{
ChTemp -= 'a' - '0' - 10;
}
Value = TmpValue + (ULONG64)ChTemp;
if (Value < TmpValue)
{
ErrNumber = OVERFLOW;
}
}
else if (IsDigit && ChLow == '`')
{
// If ` character is seen, disallow sign extension.
AllowSignExtension = FALSE;
}
else
{
IsNumber = FALSE;
ErrNumber = SYNTAX;
}
}
if (IsSymbol)
{
if (SymbolLen < sizeof(PreSym))
{
PreSym[SymbolLen] = ChLow;
}
if (SymbolLen < MAX_SYMBOL_LEN - 1)
{
Symbol[SymbolLen++] = Ch;
}
// Colons must come in pairs so process the second colon.
if (ChLow == ':')
{
if (SymbolLen < sizeof(PreSym))
{
PreSym[SymbolLen] = ChLow;
}
if (SymbolLen < MAX_SYMBOL_LEN - 1)
{
Symbol[SymbolLen++] = Ch;
}
m_Lex++;
}
}
Ch = *m_Lex++;
if (m_Flags & EXPRF_PREFER_SYMBOL_VALUES)
{
if (Ch == '.')
{
Symbol[SymbolLen++] = Ch;
Ch = *m_Lex++;
}
else if (Ch == '-' && *m_Lex == '>')
{
Symbol[SymbolLen++] = Ch;
Ch = *m_Lex++;
Symbol[SymbolLen++] = Ch;
Ch = *m_Lex++;
}
}
ChLow = (CHAR)tolower(Ch);
}
// Back up pointer to first character after token.
m_Lex--;
if (SymbolLen < sizeof(PreSym))
{
PreSym[SymbolLen] = '\0';
}
if (g_Machine &&
(g_Machine->m_ExecTypes[0] == IMAGE_FILE_MACHINE_I386 ||
g_Machine->m_ExecTypes[0] == IMAGE_FILE_MACHINE_AMD64))
{
// Catch segment overrides.
if (!ForceReg && Ch == ':')
{
for (Index = 0; Index < X86_SEGREGSIZE; Index++)
{
if (!strncmp(PreSym, g_X86SegRegs[Index], 2))
{
ForceReg = TRUE;
IsSymbol = FALSE;
break;
}
}
}
}
// If ForceReg, check for register name and return
// success or failure.
if (ForceReg)
{
return GetRegToken(PreSym, (PULONG64)RetValue);
}
// Test if number.
if (IsNumber && !ErrNumber && IsDigit)
{
if (AllowSignExtension && !m_ForcePositiveNumber &&
((Value >> 32) == 0))
{
*RetValue = (LONG)Value;
}
else
{
*RetValue = Value;
}
return NUMBER_CLASS;
}
// Next test for reserved word and symbol string.
if (IsSymbol && !ForceReg)
{
// check lowercase string in PreSym for text operator
// or register name.
// otherwise, return symbol value from name in Symbol.
if (!ForceSym && (SymbolLen == 2 || SymbolLen == 3))
{
for (Index = 0; Index < RESERVESIZE; Index++)
{
if (!strncmp(PreSym, g_Reserved[Index].chRes, 3))
{
*RetValue = g_Reserved[Index].valueRes;
return g_Reserved[Index].classRes;
}
}
if (g_Machine &&
(g_Machine->m_ExecTypes[0] == IMAGE_FILE_MACHINE_I386 ||
g_Machine->m_ExecTypes[0] == IMAGE_FILE_MACHINE_AMD64))
{
for (Index = 0; Index < X86_RESERVESIZE; Index++)
{
if (!strncmp(PreSym,
g_X86Reserved[Index].chRes, 3))
{
*RetValue = g_X86Reserved[Index].valueRes;
return g_X86Reserved[Index].classRes;
}
}
}
}
// Start processing string as symbol.
Symbol[SymbolLen] = '\0';
// Test if symbol is a module name (followed by '!')
// if so, get next token and treat as symbol.
if (Peek() == '!')
{
// SymbolString holds the name of the symbol to be searched.
// Symbol holds the symbol image file name.
m_Lex++;
Ch = Peek();
m_Lex++;
// Scan prefix if one is present.
if (g_Machine != NULL &&
g_Machine->m_SymPrefix != NULL &&
Ch == g_Machine->m_SymPrefix[0] &&
(g_Machine->m_SymPrefixLen == 1 ||
!strncmp(m_Lex, g_Machine->m_SymPrefix + 1,
g_Machine->m_SymPrefixLen - 1)))
{
SymbolLen = g_Machine->m_SymPrefixLen;
memcpy(SymbolString, m_Lex - 1,
g_Machine->m_SymPrefixLen);
m_Lex += g_Machine->m_SymPrefixLen - 1;
Ch = *m_Lex++;
}
else
{
SymbolLen = 0;
}
while ((Ch >= 'A' && Ch <= 'Z') || (Ch >= 'a' && Ch <= 'z') ||
(Ch >= '0' && Ch <= '9') || (Ch == '_') || (Ch == '$') ||
(Ch == '`') || (Ch == '\'') ||
(Ch == ':' && *m_Lex == ':'))
{
SymbolString[SymbolLen++] = Ch;
// Handle :: and ::~.
if (Ch == ':')
{
SymbolString[SymbolLen++] = Ch;
m_Lex++;
if (*m_Lex == '~')
{
SymbolString[SymbolLen++] = '~';
m_Lex++;
}
}
Ch = *m_Lex++;
if (m_Flags & EXPRF_PREFER_SYMBOL_VALUES)
{
if (Ch == '.')
{
SymbolString[SymbolLen++] = Ch;
Ch = *m_Lex++;
}
else if (Ch == '-' && *m_Lex == '>')
{
SymbolString[SymbolLen++] = Ch;
Ch = *m_Lex++;
SymbolString[SymbolLen++] = Ch;
Ch = *m_Lex++;
}
}
}
SymbolString[SymbolLen] = '\0';
m_Lex--;
if (SymbolLen == 0)
{
*RetValue = SYNTAX;
return ERROR_CLASS;
}
CatString(Symbol, "!", DIMA(Symbol));
CatString(Symbol, SymbolString, DIMA(Symbol));
SymClass = EvalSymbol(Symbol, &Value);
if (SymClass != INVALID_CLASS)
{
*RetValue = Value;
return SymClass;
}
}
else
{
if (SymbolLen == 0)
{
*RetValue = SYNTAX;
return ERROR_CLASS;
}
SymClass = EvalSymbol(Symbol, &Value);
if (SymClass != INVALID_CLASS)
{
*RetValue = Value;
return SymClass;
}
// Quick test for register names too
if (!ForceSym &&
(TmpValue = GetRegToken(PreSym,
(PULONG64)RetValue)) != ERROR_CLASS)
{
return (ULONG)TmpValue;
}
}
//
// Symbol is undefined.
// If a possible hex number, do not set the error type.
//
if (!IsNumber)
{
ErrNumber = VARDEF;
}
}
//
// Last chance, undefined symbol and illegal number,
// so test for register, will handle old format.
//
if (!ForceSym &&
(TmpValue = GetRegToken(PreSym,
(PULONG64)RetValue)) != ERROR_CLASS)
{
return (ULONG)TmpValue;
}
if (m_AllowUnresolvedSymbols)
{
m_NumUnresolvedSymbols++;
*RetValue = 0;
Type(m_TempAddr) = ADDR_FLAT | FLAT_COMPUTED;
Flat(m_TempAddr) = Off(m_TempAddr) = *RetValue;
m_AddrExprType = Type(m_TempAddr);
return SYMBOL_CLASS;
}
//
// No success, so set error message and return.
//
*RetValue = (ULONG64)ErrNumber;
return ERROR_CLASS;
}