|
|
//$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
//
// Copyright (c) 2001 Microsoft Corporation. All rights reserved.
//
// Module:
// hound.h
//
// Description:
// Definitions for the hound project.
//
// Author:
// jbenn
//
//$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
#ifndef __INCLUDE_HOUND
#define __INCLUDE_HOUND
#include "common.h"
#ifdef __cplusplus
extern "C" { #endif
////
//// Structures to hold the Hound database.
////
// Limit we force on the number of components in one model. Most models have
// a much smaller number of components.
#define MAX_HOUND_COMPONENTS 20
// Limit on the number of features in a single feature vector. Currently
// the max strokes Zilla allows times the # of features per stroke.
#define MAX_HOUND_FEATURES (29 * 4)
// MAx stroke count at which we use the midpoints of each stroke.
#define MAX_HOUND_STROKES_USE_MIDPOINT 4
// Pair of features referenced by dependency.
typedef struct tagDEPEND_PAIR { BYTE dependor; BYTE depende; } DEPEND_PAIR;
// Weight structure used for dependencies.
typedef struct tagDEPEND_WEIGHT { signed char weight; BYTE scale; } DEPEND_WEIGHT;
// Per space information.
// Store size of space as two WORDs so we only have to have WORD alignment,
// instead of DWORD alignment. This data is in the resource, and is read-
// only as a result.
typedef struct tagHOUND_SPACE { WORD spaceSizeLow; // Space size, low word.
WORD spaceSizeHigh; // Space size, high word.
BYTE spaceNumber; // Space number (stroke count, after cracking)
BYTE numFeat; // Number of features per sample.
BYTE spare; BYTE maxComponents; // Max components in any model in the space.
WORD maxDependancy; // Max dependencies in any model in the space.
WORD cPairOneByte; // Count of 1 byte dependency pair table entries.
WORD cPairTable; // Count of all dependency pair table entries.
WORD cWeightOneByte; // Count of 1 byte dependency weight table entries.
WORD cWeightTable; // Count of all dependency weight table entries.
BYTE modelData[2]; // Variable size array containing model tables and data.
} HOUND_SPACE;
// The main header.
typedef struct tagHOUND_DB { int cSpaces; // Number of spaces loaded.
UINT minSpace; // Min and Max space numbers loaded
UINT maxSpace; // (minSpace - maxSpace) + 1 == cSpaces
HOUND_SPACE **ppSpaces; // Data on each space loaded.
BYTE **appModelIndex[30]; // Index for each model in each space (set when used).
} HOUND_DB;
// Global holding information to access loaded hound database.
extern HOUND_DB g_houndDB;
////
//// Functions for handling Hound DB.
////
// Load the resource file with the hound data.
BOOL HoundLoadRes(HINSTANCE hInst, int resNumber, int resType, LOCRUN_INFO *pLocRunInfo);
// Unload the resource file with the hound data. Actually just frees allocated memory, but if we
// ever need to actually unload the resources, this is where it will go.
BOOL HoundUnLoadRes();
// Load hound data from a file.
BOOL HoundLoadFile( LOCRUN_INFO *pLocRunInfo, LOAD_INFO *pLoadInfo, wchar_t *pwchPathName );
// Unload hound data loaded from a file.
BOOL HoundUnLoadFile(LOAD_INFO *pInfo);
#ifndef HWX_PRODUCT
// Load hound data for a single space from a file.
extern HOUND_SPACE *HoundSpaceLoadFile(wchar_t *pwchFileName);
// Parse a Hound space and record the location of each model in it.
extern BOOL ParseHoundSpace(HOUND_SPACE *pSpace);
// Print out each code point supported and the number of models it has.
extern BOOL HoundPrintModelList(FILE *pFile);
// Variables set by ParseHoundSpace.
extern int g_maxModelsPerCP; extern int g_iMinModelHead; extern int g_iMaxModelHead;
// Given a data sample and a code point, give the score for each model for
// that code point. This fills in the scores in order of the models in
// the DB. The array must be big enough to hold all the scores. The return
// value give the number of entries filled in.
extern int HoundMatchCodePoint( wchar_t dchLabel, const BYTE * const pSampleVector, double *pScores );
// Copy one of the loaded models to an output file.
extern int HoundCopyModelToFile(FILE *pFile, wchar_t dchLabel, int iModel);
#endif
// Find the most likely model (code point) given a case
extern BOOL HoundMatch(UINT iSpace, const BYTE * const pSampleVector, ALT_LIST *pAltList);
// Find the most likely model (code point) given a case with numFeatSample / 4 strokes
// log p(model|x) = log p(x|model) - normalization value
// normalization constant = log( \sum_i p(x|model_i) * p(model_i) )
// We are only interested in ranking models, and it is therefore not necessary to normalize.
// This would not be the case if we want to return the actualy probability for model(s)
// Notice: If bounding boxes didn't change (too much) each time a new stroke is added
// there is a HUGE possibility for improving computational efficiency for this function.
// In this case most of the computations from previous strokes can be re-used.
// Do all spaces from current length up.
extern VOID HoundStartMatch( const BYTE * pSampleVector, BYTE numFeatSample, ALT_LIST *pAltList, const DWORD *pdwAbort, // Address of abort parameter
DWORD cstrk // Number of strokes in character
);
// Given a data sample and a code point, give the score for that model.
extern BOOL HoundMatchSingle( UINT iSpace, wchar_t dchLabel, const BYTE * const pSampleVector, double *pScore );
#ifdef __cplusplus
}; #endif
#endif // !__INCLUDE_HOUND
|