|
|
//-----------------------------------------------------------------------------
// File: objects.cpp
//
// Desc: Creates command lists for pipe primitive objects
//
// Copyright (c) 1994-2000 Microsoft Corporation
//-----------------------------------------------------------------------------
#include "stdafx.h"
//-----------------------------------------------------------------------------
// Name: OBJECT constructor
// Desc:
//-----------------------------------------------------------------------------
OBJECT::OBJECT( IDirect3DDevice8* pd3dDevice ) { m_pd3dDevice = pd3dDevice; m_pVB = NULL; m_dwNumTriangles = 0; }
//-----------------------------------------------------------------------------
// Name: OBJECT destructor
// Desc:
//-----------------------------------------------------------------------------
OBJECT::~OBJECT( ) { SAFE_RELEASE( m_pVB ); }
//-----------------------------------------------------------------------------
// Name: Draw
// Desc: - Draw the object by calling its display list
//-----------------------------------------------------------------------------
void OBJECT::Draw( D3DXMATRIX* pWorldMat ) { if( m_pVB ) { m_pd3dDevice->SetTransform( D3DTS_WORLD, pWorldMat );
m_pd3dDevice->SetVertexShader( D3DFVF_VERTEX ); m_pd3dDevice->SetStreamSource( 0, m_pVB, sizeof(D3DVERTEX) ); m_pd3dDevice->DrawPrimitive( D3DPT_TRIANGLELIST, 0, m_dwNumTriangles ); } }
//-----------------------------------------------------------------------------
// Name: PIPE_OBJECT constructors
// Desc:
//-----------------------------------------------------------------------------
PIPE_OBJECT::PIPE_OBJECT( IDirect3DDevice8* pd3dDevice, OBJECT_BUILD_INFO *pBuildInfo, float len ) : OBJECT(pd3dDevice) { Build( pBuildInfo, len, 0.0f, 0.0f ); }
//-----------------------------------------------------------------------------
// Name:
// Desc:
//-----------------------------------------------------------------------------
PIPE_OBJECT::PIPE_OBJECT( IDirect3DDevice8* pd3dDevice, OBJECT_BUILD_INFO *pBuildInfo, float len, float s_start, float s_end ) : OBJECT(pd3dDevice) { Build( pBuildInfo, len, s_start, s_end ); }
//-----------------------------------------------------------------------------
// Name: ELBOW_OBJECT constructors
// Desc:
//-----------------------------------------------------------------------------
ELBOW_OBJECT::ELBOW_OBJECT( IDirect3DDevice8* pd3dDevice, OBJECT_BUILD_INFO *pBuildInfo, int notch ) : OBJECT(pd3dDevice) { Build( pBuildInfo, notch, 0.0f, 0.0f ); }
//-----------------------------------------------------------------------------
// Name:
// Desc:
//-----------------------------------------------------------------------------
ELBOW_OBJECT::ELBOW_OBJECT( IDirect3DDevice8* pd3dDevice, OBJECT_BUILD_INFO *pBuildInfo, int notch, float s_start, float s_end ) : OBJECT(pd3dDevice) { Build( pBuildInfo, notch, s_start, s_end ); }
//-----------------------------------------------------------------------------
// Name: BALLJOINT_OBJECT constructor
// Desc:
//-----------------------------------------------------------------------------
BALLJOINT_OBJECT::BALLJOINT_OBJECT( IDirect3DDevice8* pd3dDevice, OBJECT_BUILD_INFO *pBuildInfo, int notch, float s_start, float s_end ) : OBJECT(pd3dDevice) { Build( pBuildInfo, notch, s_start, s_end ); }
//-----------------------------------------------------------------------------
// Name: SPHERE_OBJECT constructors
// Desc:
//-----------------------------------------------------------------------------
SPHERE_OBJECT::SPHERE_OBJECT( IDirect3DDevice8* pd3dDevice, OBJECT_BUILD_INFO *pBuildInfo, float radius ) : OBJECT(pd3dDevice) { Build( pBuildInfo, radius, 0.0f, 0.0f ); }
//-----------------------------------------------------------------------------
// Name:
// Desc:
//-----------------------------------------------------------------------------
SPHERE_OBJECT::SPHERE_OBJECT( IDirect3DDevice8* pd3dDevice, OBJECT_BUILD_INFO *pBuildInfo, float radius, float s_start, float s_end ) : OBJECT(pd3dDevice) { Build( pBuildInfo, radius, s_start, s_end ); }
//-----------------------------------------------------------------------------
// Name:
// Desc: rotate circle around x-axis, with edge attached to anchor
//-----------------------------------------------------------------------------
static void TransformCircle( float angle, D3DXVECTOR3 *inPoint, D3DXVECTOR3 *outPoint, int num, D3DXVECTOR3 *anchor ) { D3DXMATRIX matrix1, matrix2, matrix3; int i;
// translate anchor point to origin
D3DXMatrixIdentity( &matrix1 ); D3DXMatrixTranslation( &matrix1, -anchor->x, -anchor->y, -anchor->z );
// rotate by angle, cw around x-axis
D3DXMatrixIdentity( &matrix2 ); D3DXMatrixRotationYawPitchRoll( &matrix2, 0.0f, angle, 0.0f );
// concat these 2
D3DXMatrixMultiply( &matrix3, &matrix1, &matrix2 );
// translate back
D3DXMatrixIdentity( &matrix2 ); D3DXMatrixTranslation( &matrix2, anchor->x, anchor->y, anchor->z );
// concat these 2
D3DXMatrixMultiply( &matrix1, &matrix3, &matrix2 );
// transform all the points, + center
for( i = 0; i < num; i ++, outPoint++, inPoint++ ) { D3DXVECTOR4 tmp; D3DXVec3Transform( &tmp, inPoint, &matrix1 ); outPoint->x = tmp.x; outPoint->y = tmp.y; outPoint->z = tmp.z; } }
//-----------------------------------------------------------------------------
// Name:
// Desc:
//-----------------------------------------------------------------------------
static void CalcNormals( D3DXVECTOR3 *p, D3DXVECTOR3 *n, D3DXVECTOR3 *center, int num ) { D3DXVECTOR3 vec; int i;
for( i = 0; i < num; i ++, n++, p++ ) { n->x = p->x - center->x; n->y = p->y - center->y; n->z = p->z - center->z; D3DXVec3Normalize( n, n ); } }
#define CACHE_SIZE 100
//-----------------------------------------------------------------------------
// Name: BuildElbow
// Desc: - builds elbows, by rotating a circle in the y=r plane
// centered at (0,r,-r), CW around the x-axis at anchor pt.
// (r = radius of the circle)
// - rotation is 90.0 degrees, ending at circle in z=0 plane,
// centered at origin.
// - in order to 'mate' texture coords with the cylinders
// generated with glu, we generate 4 elbows, each corresponding
// to the 4 possible CW 90 degree orientations of the start point
// for each circle.
// - We call this start point the 'notch'. If we characterize
// each notch by the axis it points down in the starting and
// ending circles of the elbow, then we get the following axis
// pairs for our 4 notches:
// - +z,+y
// - +x,+x
// - -z,-y
// - -x,-x
// Since the start of the elbow always points down +y, the 4
// start notches give all possible 90.0 degree orientations
// around y-axis.
// - We can keep track of the current 'notch' vector to provide
// proper mating between primitives.
// - Each circle of points is described CW from the start point,
// assuming looking down the +y axis(+y direction).
// - texture 's' starts at 0.0, and goes to 2.0*r/divSize at
// end of the elbow. (Then a short pipe would start with this
// 's', and run it to 1.0).
//-----------------------------------------------------------------------------
void ELBOW_OBJECT::Build( OBJECT_BUILD_INFO *pBuildInfo, int notch, float s_start, float s_end ) { int stacks, slices; float angle, startAng; int numPoints; float s_delta; D3DXVECTOR3 pi[CACHE_SIZE]; // initial row of points + center
D3DXVECTOR3 p0[CACHE_SIZE]; // 2 rows of points
D3DXVECTOR3 p1[CACHE_SIZE]; D3DXVECTOR3 n0[CACHE_SIZE]; // 2 rows of normals
D3DXVECTOR3 n1[CACHE_SIZE]; float tex_t[CACHE_SIZE];// 't' texture coords
float* curTex_t; float tex_s[2]; // 's' texture coords
D3DXVECTOR3 center; // center of circle
D3DXVECTOR3 anchor; // where circle is anchored
D3DXVECTOR3* pA; D3DXVECTOR3* pB; D3DXVECTOR3* nA; D3DXVECTOR3* nB;
D3DXVECTOR3* pTA; D3DXVECTOR3* pTB; D3DXVECTOR3* nTA; D3DXVECTOR3* nTB;
int i,j; IPOINT2D* texRep = pBuildInfo->m_texRep; float radius = pBuildInfo->m_radius;
slices = pBuildInfo->m_nSlices; stacks = slices / 2;
if (slices >= CACHE_SIZE) slices = CACHE_SIZE-1; if (stacks >= CACHE_SIZE) stacks = CACHE_SIZE-1;
s_delta = s_end - s_start;
// calculate 't' texture coords
if( texRep ) { for( i = 0; i <= slices; i ++ ) { tex_t[i] = (float) i * texRep->y / slices; } }
numPoints = slices + 1;
// starting angle increment 90.0 degrees each time
startAng = notch * PI / 2;
// calc initial circle of points for circle centered at 0,r,-r
// points start at (0,r,0), and rotate circle CCW
for( i = 0; i <= slices; i ++ ) { angle = startAng + (2 * PI * i / slices); pi[i].x = radius * (float) sin(angle); pi[i].y = radius; // translate z by -r, cuz these cos calcs are for circle at origin
pi[i].z = radius * (float) cos(angle) - radius; }
// center point, tacked onto end of circle of points
pi[i].x = 0.0f; pi[i].y = radius; pi[i].z = -radius; center = pi[i];
// anchor point
anchor.x = anchor.z = 0.0f; anchor.y = radius;
// calculate initial normals
CalcNormals( pi, n0, ¢er, numPoints );
// initial 's' texture coordinate
tex_s[0] = s_start;
// setup pointers
pA = pi; pB = p0; nA = n0; nB = n1;
DWORD dwNumQuadStripsPerStack = numPoints - 1; DWORD dwNumQuadStrips = dwNumQuadStripsPerStack * stacks; m_dwNumTriangles = dwNumQuadStrips * 2; DWORD dwNumVertices = m_dwNumTriangles * 3; if( FAILED( m_pd3dDevice->CreateVertexBuffer( dwNumVertices*sizeof(D3DVERTEX), D3DUSAGE_WRITEONLY, D3DFVF_VERTEX, D3DPOOL_MANAGED, &m_pVB ) ) ) return;
D3DVERTEX* vQuad; D3DVERTEX* vCurQuad; vQuad = new D3DVERTEX[dwNumVertices]; ZeroMemory( vQuad, sizeof(D3DVERTEX) * dwNumVertices );
vCurQuad = vQuad; for( i = 1; i <= stacks; i ++ ) { // ! this angle must be negative, for correct vertex orientation !
angle = - 0.5f * PI * i / stacks;
// transform to get next circle of points + center
TransformCircle( angle, pi, pB, numPoints+1, &anchor );
// calculate normals
center = pB[numPoints]; CalcNormals( pB, nB, ¢er, numPoints );
// calculate next 's' texture coord
tex_s[1] = (float) s_start + s_delta * i / stacks;
curTex_t = tex_t; pTA = pA; pTB = pB; nTA = nA; nTB = nB;
for (j = 0; j < numPoints; j++) { vCurQuad->p = *pTA++; vCurQuad->n = *nTA++; if( texRep ) { vCurQuad->tu = (float) tex_s[0]; vCurQuad->tv = (float) *curTex_t; } vCurQuad++;
vCurQuad->p = *pTB++; vCurQuad->n = *nTB++; if( texRep ) { vCurQuad->tu = (float) tex_s[1]; vCurQuad->tv = (float) *curTex_t++; } vCurQuad++; }
// reset pointers
pA = pB; nA = nB; pB = (pB == p0) ? p1 : p0; nB = (nB == n0) ? n1 : n0; tex_s[0] = tex_s[1]; }
D3DVERTEX* v; DWORD dwCurQuad = 0; DWORD dwVert = 0;
m_pVB->Lock( 0, 0, (BYTE**)&v, 0 );
for (j = 0; j < stacks; j++) { for (i = 0; i < numPoints; i++) { if( i==0 ) { dwCurQuad++; continue; }
// Vertices 2n-1, 2n, 2n+2, and 2n+1 define quadrilateral n
DWORD dwTemp = dwCurQuad*2-1;
v[dwVert++] = vQuad[dwTemp]; v[dwVert++] = vQuad[dwTemp-1]; v[dwVert++] = vQuad[dwTemp+2];
v[dwVert++] = vQuad[dwTemp-1]; v[dwVert++] = vQuad[dwTemp+1]; v[dwVert++] = vQuad[dwTemp+2];
dwCurQuad++; } }
m_pVB->Unlock();
SAFE_DELETE_ARRAY( vQuad ); }
//-----------------------------------------------------------------------------
// Name: BuildBallJoint
// Desc: - These are very similar to the elbows, in that the starting
// and ending positions are almost identical. The difference
// here is that the circles in the sweep describe a sphere as
// they are rotated.
//-----------------------------------------------------------------------------
void BALLJOINT_OBJECT::Build( OBJECT_BUILD_INFO *pBuildInfo, int notch, float s_start, float s_end ) { float ballRadius; float angle, delta_a, startAng, theta; int numPoints; float s_delta; D3DXVECTOR3 pi0[CACHE_SIZE]; // 2 circles of untransformed points
D3DXVECTOR3 pi1[CACHE_SIZE]; D3DXVECTOR3 p0[CACHE_SIZE]; // 2 rows of transformed points
D3DXVECTOR3 p1[CACHE_SIZE]; D3DXVECTOR3 n0[CACHE_SIZE]; // 2 rows of normals
D3DXVECTOR3 n1[CACHE_SIZE]; float r[CACHE_SIZE]; // radii of the circles
float tex_t[CACHE_SIZE];// 't' texture coords
float tex_s[2]; // 's' texture coords
D3DXVECTOR3 center; // center of circle
D3DXVECTOR3 anchor; // where circle is anchored
D3DXVECTOR3 *pA, *pB, *nA, *nB; float* curTex_t; D3DXVECTOR3* pTA; D3DXVECTOR3* pTB; D3DXVECTOR3* nTA; D3DXVECTOR3* nTB; int i, j, k; int stacks, slices; IPOINT2D *texRep = pBuildInfo->m_texRep; float radius = pBuildInfo->m_radius;
slices = pBuildInfo->m_nSlices; stacks = slices;
if (slices >= CACHE_SIZE) slices = CACHE_SIZE-1; if (stacks >= CACHE_SIZE) stacks = CACHE_SIZE-1;
// calculate the radii for each circle in the sweep, where
// r[i] = y = sin(angle)/r
angle = PI / 4; // first radius always at 45.0 degrees
delta_a = (PI / 2.0f) / stacks;
ballRadius = ROOT_TWO * radius; for( i = 0; i <= stacks; i ++, angle += delta_a ) { r[i] = (float) sin(angle) * ballRadius; }
// calculate 't' texture coords
for( i = 0; i <= slices; i ++ ) { tex_t[i] = (float) i * texRep->y / slices; }
s_delta = s_end - s_start; numPoints = slices + 1;
// unlike the elbow, the center for the ball joint is constant
center.x = center.y = 0.0f; center.z = -radius;
// starting angle along circle, increment 90.0 degrees each time
startAng = notch * PI / 2;
// calc initial circle of points for circle centered at 0,r,-r
// points start at (0,r,0), and rotate circle CCW
delta_a = 2 * PI / slices; for( i = 0, theta = startAng; i <= slices; i ++, theta += delta_a ) { pi0[i].x = r[0] * (float) sin(theta); pi0[i].y = radius; // translate z by -r, cuz these cos calcs are for circle at origin
pi0[i].z = r[0] * (float) cos(theta) - r[0]; }
// anchor point
anchor.x = anchor.z = 0.0f; anchor.y = radius;
// calculate initial normals
CalcNormals( pi0, n0, ¢er, numPoints );
// initial 's' texture coordinate
tex_s[0] = s_start;
// setup pointers
pA = pi0; // circles of transformed points
pB = p0; nA = n0; // circles of transformed normals
nB = n1;
DWORD dwNumQuadStripsPerStack = numPoints - 1; DWORD dwNumQuadStrips = dwNumQuadStripsPerStack * stacks; m_dwNumTriangles = dwNumQuadStrips * 2; DWORD dwNumVertices = m_dwNumTriangles * 3; if( FAILED( m_pd3dDevice->CreateVertexBuffer( dwNumVertices*sizeof(D3DVERTEX), D3DUSAGE_WRITEONLY, D3DFVF_VERTEX, D3DPOOL_MANAGED, &m_pVB ) ) ) return;
D3DVERTEX* vQuad; D3DVERTEX* vCurQuad; vQuad = new D3DVERTEX[dwNumVertices]; ZeroMemory( vQuad, sizeof(D3DVERTEX) * dwNumVertices );
vCurQuad = vQuad; for( i = 1; i <= stacks; i ++ ) { // ! this angle must be negative, for correct vertex orientation !
angle = - 0.5f * PI * i / stacks;
for( k = 0, theta = startAng; k <= slices; k ++, theta+=delta_a ) { pi1[k].x = r[i] * (float) sin(theta); pi1[k].y = radius; // translate z by -r, cuz calcs are for circle at origin
pi1[k].z = r[i] * (float) cos(theta) - r[i]; }
// transform to get next circle of points + center
TransformCircle( angle, pi1, pB, numPoints, &anchor );
// calculate normals
CalcNormals( pB, nB, ¢er, numPoints );
// calculate next 's' texture coord
tex_s[1] = (float) s_start + s_delta * i / stacks;
curTex_t = tex_t; pTA = pA; pTB = pB; nTA = nA; nTB = nB;
for (j = 0; j < numPoints; j++) { vCurQuad->p = *pTA++; vCurQuad->n = *nTA++; if( texRep ) { vCurQuad->tu = (float) tex_s[0]; vCurQuad->tv = (float) *curTex_t; } vCurQuad++;
vCurQuad->p = *pTB++; vCurQuad->n = *nTB++; if( texRep ) { vCurQuad->tu = (float) tex_s[1]; vCurQuad->tv = (float) *curTex_t++; } vCurQuad++; }
// reset pointers
pA = pB; nA = nB; pB = (pB == p0) ? p1 : p0; nB = (nB == n0) ? n1 : n0; tex_s[0] = tex_s[1]; }
D3DVERTEX* v; DWORD dwCurQuad = 0; DWORD dwVert = 0;
m_pVB->Lock( 0, 0, (BYTE**)&v, 0 );
for (j = 0; j < stacks; j++) { for (i = 0; i < numPoints; i++) { if( i==0 ) { dwCurQuad++; continue; }
// Vertices 2n-1, 2n, 2n+2, and 2n+1 define quadrilateral n
DWORD dwTemp = dwCurQuad*2-1;
v[dwVert++] = vQuad[dwTemp]; v[dwVert++] = vQuad[dwTemp-1]; v[dwVert++] = vQuad[dwTemp+2];
v[dwVert++] = vQuad[dwTemp-1]; v[dwVert++] = vQuad[dwTemp+1]; v[dwVert++] = vQuad[dwTemp+2];
dwCurQuad++; } }
m_pVB->Unlock(); SAFE_DELETE_ARRAY( vQuad ); }
// 'glu' routines
#ifdef _EXTENSIONS_
#define COS cosf
#define SIN sinf
#define SQRT sqrtf
#else
#define COS cos
#define SIN sin
#define SQRT sqrt
#endif
//-----------------------------------------------------------------------------
// Name: BuildCylinder
// Desc:
//-----------------------------------------------------------------------------
void PIPE_OBJECT::Build( OBJECT_BUILD_INFO *pBuildInfo, float length, float s_start, float s_end ) { int stacks, slices; int i,j; float sinCache[CACHE_SIZE]; float cosCache[CACHE_SIZE]; float sinCache2[CACHE_SIZE]; float cosCache2[CACHE_SIZE]; float angle; float zNormal; float s_delta; float zHigh, zLow; IPOINT2D *texRep = pBuildInfo->m_texRep; float radius = pBuildInfo->m_radius;
slices = pBuildInfo->m_nSlices; stacks = (int) SS_ROUND_UP( (length/pBuildInfo->m_divSize) * (float)slices) ;
if (slices >= CACHE_SIZE) slices = CACHE_SIZE-1; if (stacks >= CACHE_SIZE) stacks = CACHE_SIZE-1; zNormal = 0.0f;
s_delta = s_end - s_start;
for (i = 0; i < slices; i++) { angle = 2 * PI * i / slices; sinCache2[i] = (float) SIN(angle); cosCache2[i] = (float) COS(angle); sinCache[i] = (float) SIN(angle); cosCache[i] = (float) COS(angle); }
sinCache[slices] = sinCache[0]; cosCache[slices] = cosCache[0]; sinCache2[slices] = sinCache2[0]; cosCache2[slices] = cosCache2[0];
DWORD dwNumQuadStripsPerStack = slices; DWORD dwNumQuadStrips = dwNumQuadStripsPerStack * stacks; m_dwNumTriangles = dwNumQuadStrips * 2; DWORD dwNumVertices = m_dwNumTriangles * 3; if( FAILED( m_pd3dDevice->CreateVertexBuffer( dwNumVertices*sizeof(D3DVERTEX), D3DUSAGE_WRITEONLY, D3DFVF_VERTEX, D3DPOOL_MANAGED, &m_pVB ) ) ) return;
D3DVERTEX* vQuad; D3DVERTEX* vCurQuad; vQuad = new D3DVERTEX[dwNumVertices]; ZeroMemory( vQuad, sizeof(D3DVERTEX) * dwNumVertices );
vCurQuad = vQuad; for (j = 0; j < stacks; j++) { zLow = j * length / stacks; zHigh = (j + 1) * length / stacks;
for (i = 0; i <= slices; i++) { vCurQuad->p = D3DXVECTOR3( radius * sinCache[i], radius * cosCache[i], zLow ); vCurQuad->n = D3DXVECTOR3( sinCache2[i], cosCache2[i], zNormal ); if( texRep ) { vCurQuad->tu = (float) s_start + s_delta * j / stacks; vCurQuad->tv = (float) i * texRep->y / slices; } vCurQuad++;
vCurQuad->p = D3DXVECTOR3( radius * sinCache[i], radius * cosCache[i], zHigh ); vCurQuad->n = D3DXVECTOR3( sinCache2[i], cosCache2[i], zNormal ); if( texRep ) { vCurQuad->tu = (float) s_start + s_delta*(j+1) / stacks; vCurQuad->tv = (float) i * texRep->y / slices; } vCurQuad++; } }
D3DVERTEX* v; DWORD dwCurQuad = 0; DWORD dwVert = 0;
m_pVB->Lock( 0, 0, (BYTE**)&v, 0 );
for (j = 0; j < stacks; j++) { for (i = 0; i <= slices; i++) { if( i==0 ) { dwCurQuad++; continue; } // Vertices 2n-1, 2n, 2n+2, and 2n+1 define quadrilateral n
DWORD dwTemp = dwCurQuad*2-1;
v[dwVert++] = vQuad[dwTemp]; v[dwVert++] = vQuad[dwTemp-1]; v[dwVert++] = vQuad[dwTemp+2];
v[dwVert++] = vQuad[dwTemp-1]; v[dwVert++] = vQuad[dwTemp+1]; v[dwVert++] = vQuad[dwTemp+2];
dwCurQuad++; } }
m_pVB->Unlock();
SAFE_DELETE_ARRAY( vQuad ); }
//-----------------------------------------------------------------------------
// Name: pipeSphere
// Desc:
//-----------------------------------------------------------------------------
void SPHERE_OBJECT::Build( OBJECT_BUILD_INFO *pBuildInfo, float radius, float s_start, float s_end) { int i,j; float sinCache1a[CACHE_SIZE]; float cosCache1a[CACHE_SIZE]; float sinCache2a[CACHE_SIZE]; float cosCache2a[CACHE_SIZE]; float sinCache1b[CACHE_SIZE]; float cosCache1b[CACHE_SIZE]; float sinCache2b[CACHE_SIZE]; float cosCache2b[CACHE_SIZE]; float angle; float s_delta; int stacks, slices; IPOINT2D *texRep = pBuildInfo->m_texRep;
slices = pBuildInfo->m_nSlices; stacks = slices; if (slices >= CACHE_SIZE) slices = CACHE_SIZE-1; if (stacks >= CACHE_SIZE) stacks = CACHE_SIZE-1;
// invert sense of s - it seems the glu sphere is not built similarly
// to the glu cylinder
// (this probably means stacks don't grow along +z - check it out)
s_delta = s_start; s_start = s_end; s_end = s_delta;
s_delta = s_end - s_start;
// Cache is the vertex locations cache
// Cache2 is the various normals at the vertices themselves
for (i = 0; i < slices; i++) { angle = 2 * PI * i / slices; sinCache1a[i] = (float) SIN(angle); cosCache1a[i] = (float) COS(angle); sinCache2a[i] = sinCache1a[i]; cosCache2a[i] = cosCache1a[i]; }
for (j = 0; j <= stacks; j++) { angle = PI * j / stacks; sinCache2b[j] = (float) SIN(angle); cosCache2b[j] = (float) COS(angle); sinCache1b[j] = radius * (float) SIN(angle); cosCache1b[j] = radius * (float) COS(angle); }
// Make sure it comes to a point
sinCache1b[0] = 0.0f; sinCache1b[stacks] = 0.0f;
sinCache1a[slices] = sinCache1a[0]; cosCache1a[slices] = cosCache1a[0]; sinCache2a[slices] = sinCache2a[0]; cosCache2a[slices] = cosCache2a[0];
int start, finish; float zLow, zHigh; float sintemp1, sintemp2, sintemp3, sintemp4; float costemp3, costemp4;
start = 0; finish = stacks;
DWORD dwNumQuadStripsPerStack = slices; DWORD dwNumQuadStrips = dwNumQuadStripsPerStack * (finish-start); m_dwNumTriangles = dwNumQuadStrips * 2; DWORD dwNumVertices = m_dwNumTriangles * 3; if( FAILED( m_pd3dDevice->CreateVertexBuffer( dwNumVertices*sizeof(D3DVERTEX), D3DUSAGE_WRITEONLY, D3DFVF_VERTEX, D3DPOOL_MANAGED, &m_pVB ) ) ) return;
D3DVERTEX* vQuad; D3DVERTEX* vCurQuad; vQuad = new D3DVERTEX[dwNumVertices]; ZeroMemory( vQuad, sizeof(D3DVERTEX) * dwNumVertices );
vCurQuad = vQuad; for (j = 0; j < stacks; j++) { zLow = cosCache1b[j]; zHigh = cosCache1b[j+1]; sintemp1 = sinCache1b[j]; sintemp2 = sinCache1b[j+1];
sintemp3 = sinCache2b[j+1]; costemp3 = cosCache2b[j+1]; sintemp4 = sinCache2b[j]; costemp4 = cosCache2b[j];
for (i = 0; i <= slices; i++) {
vCurQuad->p = D3DXVECTOR3( sintemp2 * sinCache1a[i], sintemp2 * cosCache1a[i], zHigh ); vCurQuad->n = D3DXVECTOR3( sinCache2a[i] * sintemp3, cosCache2a[i] * sintemp3, costemp3 ); if( texRep ) { vCurQuad->tu = (float) s_start + s_delta*(j+1) / stacks; vCurQuad->tv = (float) i * texRep->y / slices; } vCurQuad++;
vCurQuad->p = D3DXVECTOR3( sintemp1 * sinCache1a[i], sintemp1 * cosCache1a[i], zLow ); vCurQuad->n = D3DXVECTOR3( sinCache2a[i] * sintemp4, cosCache2a[i] * sintemp4, costemp4 ); if( texRep ) { vCurQuad->tu = (float) s_start + s_delta * j / stacks; vCurQuad->tv = (float) i * texRep->y / slices; } vCurQuad++;
} }
D3DVERTEX* v; DWORD dwCurQuad = 0; DWORD dwVert = 0;
m_pVB->Lock( 0, 0, (BYTE**)&v, 0 );
for (j = 0; j < stacks; j++) { for (i = 0; i <= slices; i++) { if( i==0 ) { dwCurQuad++; continue; } // Vertices 2n-1, 2n, 2n+2, and 2n+1 define quadrilateral n
DWORD dwTemp = dwCurQuad*2-1;
v[dwVert++] = vQuad[dwTemp]; v[dwVert++] = vQuad[dwTemp-1]; v[dwVert++] = vQuad[dwTemp+2];
v[dwVert++] = vQuad[dwTemp-1]; v[dwVert++] = vQuad[dwTemp+1]; v[dwVert++] = vQuad[dwTemp+2];
dwCurQuad++; } }
m_pVB->Unlock();
SAFE_DELETE_ARRAY( vQuad ); }
|