Source code of Windows XP (NT5)
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

937 lines
28 KiB

//-----------------------------------------------------------------------------
// File: objects.cpp
//
// Desc: Creates command lists for pipe primitive objects
//
// Copyright (c) 1994-2000 Microsoft Corporation
//-----------------------------------------------------------------------------
#include "stdafx.h"
//-----------------------------------------------------------------------------
// Name: OBJECT constructor
// Desc:
//-----------------------------------------------------------------------------
OBJECT::OBJECT( IDirect3DDevice8* pd3dDevice )
{
m_pd3dDevice = pd3dDevice;
m_pVB = NULL;
m_dwNumTriangles = 0;
}
//-----------------------------------------------------------------------------
// Name: OBJECT destructor
// Desc:
//-----------------------------------------------------------------------------
OBJECT::~OBJECT( )
{
SAFE_RELEASE( m_pVB );
}
//-----------------------------------------------------------------------------
// Name: Draw
// Desc: - Draw the object by calling its display list
//-----------------------------------------------------------------------------
void OBJECT::Draw( D3DXMATRIX* pWorldMat )
{
if( m_pVB )
{
m_pd3dDevice->SetTransform( D3DTS_WORLD, pWorldMat );
m_pd3dDevice->SetVertexShader( D3DFVF_VERTEX );
m_pd3dDevice->SetStreamSource( 0, m_pVB, sizeof(D3DVERTEX) );
m_pd3dDevice->DrawPrimitive( D3DPT_TRIANGLELIST,
0, m_dwNumTriangles );
}
}
//-----------------------------------------------------------------------------
// Name: PIPE_OBJECT constructors
// Desc:
//-----------------------------------------------------------------------------
PIPE_OBJECT::PIPE_OBJECT( IDirect3DDevice8* pd3dDevice, OBJECT_BUILD_INFO *pBuildInfo, float len ) : OBJECT(pd3dDevice)
{
Build( pBuildInfo, len, 0.0f, 0.0f );
}
//-----------------------------------------------------------------------------
// Name:
// Desc:
//-----------------------------------------------------------------------------
PIPE_OBJECT::PIPE_OBJECT( IDirect3DDevice8* pd3dDevice, OBJECT_BUILD_INFO *pBuildInfo, float len,
float s_start, float s_end ) : OBJECT(pd3dDevice)
{
Build( pBuildInfo, len, s_start, s_end );
}
//-----------------------------------------------------------------------------
// Name: ELBOW_OBJECT constructors
// Desc:
//-----------------------------------------------------------------------------
ELBOW_OBJECT::ELBOW_OBJECT( IDirect3DDevice8* pd3dDevice, OBJECT_BUILD_INFO *pBuildInfo,
int notch ) : OBJECT(pd3dDevice)
{
Build( pBuildInfo, notch, 0.0f, 0.0f );
}
//-----------------------------------------------------------------------------
// Name:
// Desc:
//-----------------------------------------------------------------------------
ELBOW_OBJECT::ELBOW_OBJECT( IDirect3DDevice8* pd3dDevice, OBJECT_BUILD_INFO *pBuildInfo, int notch, float s_start, float s_end ) : OBJECT(pd3dDevice)
{
Build( pBuildInfo, notch, s_start, s_end );
}
//-----------------------------------------------------------------------------
// Name: BALLJOINT_OBJECT constructor
// Desc:
//-----------------------------------------------------------------------------
BALLJOINT_OBJECT::BALLJOINT_OBJECT( IDirect3DDevice8* pd3dDevice, OBJECT_BUILD_INFO *pBuildInfo,
int notch, float s_start, float s_end ) : OBJECT(pd3dDevice)
{
Build( pBuildInfo, notch, s_start, s_end );
}
//-----------------------------------------------------------------------------
// Name: SPHERE_OBJECT constructors
// Desc:
//-----------------------------------------------------------------------------
SPHERE_OBJECT::SPHERE_OBJECT( IDirect3DDevice8* pd3dDevice, OBJECT_BUILD_INFO *pBuildInfo, float radius ) : OBJECT(pd3dDevice)
{
Build( pBuildInfo, radius, 0.0f, 0.0f );
}
//-----------------------------------------------------------------------------
// Name:
// Desc:
//-----------------------------------------------------------------------------
SPHERE_OBJECT::SPHERE_OBJECT( IDirect3DDevice8* pd3dDevice, OBJECT_BUILD_INFO *pBuildInfo,
float radius, float s_start, float s_end ) : OBJECT(pd3dDevice)
{
Build( pBuildInfo, radius, s_start, s_end );
}
//-----------------------------------------------------------------------------
// Name:
// Desc: rotate circle around x-axis, with edge attached to anchor
//-----------------------------------------------------------------------------
static void TransformCircle( float angle, D3DXVECTOR3 *inPoint, D3DXVECTOR3 *outPoint,
int num, D3DXVECTOR3 *anchor )
{
D3DXMATRIX matrix1, matrix2, matrix3;
int i;
// translate anchor point to origin
D3DXMatrixIdentity( &matrix1 );
D3DXMatrixTranslation( &matrix1, -anchor->x, -anchor->y, -anchor->z );
// rotate by angle, cw around x-axis
D3DXMatrixIdentity( &matrix2 );
D3DXMatrixRotationYawPitchRoll( &matrix2, 0.0f, angle, 0.0f );
// concat these 2
D3DXMatrixMultiply( &matrix3, &matrix1, &matrix2 );
// translate back
D3DXMatrixIdentity( &matrix2 );
D3DXMatrixTranslation( &matrix2, anchor->x, anchor->y, anchor->z );
// concat these 2
D3DXMatrixMultiply( &matrix1, &matrix3, &matrix2 );
// transform all the points, + center
for( i = 0; i < num; i ++, outPoint++, inPoint++ )
{
D3DXVECTOR4 tmp;
D3DXVec3Transform( &tmp, inPoint, &matrix1 );
outPoint->x = tmp.x;
outPoint->y = tmp.y;
outPoint->z = tmp.z;
}
}
//-----------------------------------------------------------------------------
// Name:
// Desc:
//-----------------------------------------------------------------------------
static void CalcNormals( D3DXVECTOR3 *p, D3DXVECTOR3 *n, D3DXVECTOR3 *center,
int num )
{
D3DXVECTOR3 vec;
int i;
for( i = 0; i < num; i ++, n++, p++ )
{
n->x = p->x - center->x;
n->y = p->y - center->y;
n->z = p->z - center->z;
D3DXVec3Normalize( n, n );
}
}
#define CACHE_SIZE 100
//-----------------------------------------------------------------------------
// Name: BuildElbow
// Desc: - builds elbows, by rotating a circle in the y=r plane
// centered at (0,r,-r), CW around the x-axis at anchor pt.
// (r = radius of the circle)
// - rotation is 90.0 degrees, ending at circle in z=0 plane,
// centered at origin.
// - in order to 'mate' texture coords with the cylinders
// generated with glu, we generate 4 elbows, each corresponding
// to the 4 possible CW 90 degree orientations of the start point
// for each circle.
// - We call this start point the 'notch'. If we characterize
// each notch by the axis it points down in the starting and
// ending circles of the elbow, then we get the following axis
// pairs for our 4 notches:
// - +z,+y
// - +x,+x
// - -z,-y
// - -x,-x
// Since the start of the elbow always points down +y, the 4
// start notches give all possible 90.0 degree orientations
// around y-axis.
// - We can keep track of the current 'notch' vector to provide
// proper mating between primitives.
// - Each circle of points is described CW from the start point,
// assuming looking down the +y axis(+y direction).
// - texture 's' starts at 0.0, and goes to 2.0*r/divSize at
// end of the elbow. (Then a short pipe would start with this
// 's', and run it to 1.0).
//-----------------------------------------------------------------------------
void ELBOW_OBJECT::Build( OBJECT_BUILD_INFO *pBuildInfo, int notch,
float s_start, float s_end )
{
int stacks, slices;
float angle, startAng;
int numPoints;
float s_delta;
D3DXVECTOR3 pi[CACHE_SIZE]; // initial row of points + center
D3DXVECTOR3 p0[CACHE_SIZE]; // 2 rows of points
D3DXVECTOR3 p1[CACHE_SIZE];
D3DXVECTOR3 n0[CACHE_SIZE]; // 2 rows of normals
D3DXVECTOR3 n1[CACHE_SIZE];
float tex_t[CACHE_SIZE];// 't' texture coords
float* curTex_t;
float tex_s[2]; // 's' texture coords
D3DXVECTOR3 center; // center of circle
D3DXVECTOR3 anchor; // where circle is anchored
D3DXVECTOR3* pA;
D3DXVECTOR3* pB;
D3DXVECTOR3* nA;
D3DXVECTOR3* nB;
D3DXVECTOR3* pTA;
D3DXVECTOR3* pTB;
D3DXVECTOR3* nTA;
D3DXVECTOR3* nTB;
int i,j;
IPOINT2D* texRep = pBuildInfo->m_texRep;
float radius = pBuildInfo->m_radius;
slices = pBuildInfo->m_nSlices;
stacks = slices / 2;
if (slices >= CACHE_SIZE) slices = CACHE_SIZE-1;
if (stacks >= CACHE_SIZE) stacks = CACHE_SIZE-1;
s_delta = s_end - s_start;
// calculate 't' texture coords
if( texRep )
{
for( i = 0; i <= slices; i ++ )
{
tex_t[i] = (float) i * texRep->y / slices;
}
}
numPoints = slices + 1;
// starting angle increment 90.0 degrees each time
startAng = notch * PI / 2;
// calc initial circle of points for circle centered at 0,r,-r
// points start at (0,r,0), and rotate circle CCW
for( i = 0; i <= slices; i ++ )
{
angle = startAng + (2 * PI * i / slices);
pi[i].x = radius * (float) sin(angle);
pi[i].y = radius;
// translate z by -r, cuz these cos calcs are for circle at origin
pi[i].z = radius * (float) cos(angle) - radius;
}
// center point, tacked onto end of circle of points
pi[i].x = 0.0f;
pi[i].y = radius;
pi[i].z = -radius;
center = pi[i];
// anchor point
anchor.x = anchor.z = 0.0f;
anchor.y = radius;
// calculate initial normals
CalcNormals( pi, n0, &center, numPoints );
// initial 's' texture coordinate
tex_s[0] = s_start;
// setup pointers
pA = pi;
pB = p0;
nA = n0;
nB = n1;
DWORD dwNumQuadStripsPerStack = numPoints - 1;
DWORD dwNumQuadStrips = dwNumQuadStripsPerStack * stacks;
m_dwNumTriangles = dwNumQuadStrips * 2;
DWORD dwNumVertices = m_dwNumTriangles * 3;
if( FAILED( m_pd3dDevice->CreateVertexBuffer( dwNumVertices*sizeof(D3DVERTEX),
D3DUSAGE_WRITEONLY, D3DFVF_VERTEX,
D3DPOOL_MANAGED, &m_pVB ) ) )
return;
D3DVERTEX* vQuad;
D3DVERTEX* vCurQuad;
vQuad = new D3DVERTEX[dwNumVertices];
ZeroMemory( vQuad, sizeof(D3DVERTEX) * dwNumVertices );
vCurQuad = vQuad;
for( i = 1; i <= stacks; i ++ )
{
// ! this angle must be negative, for correct vertex orientation !
angle = - 0.5f * PI * i / stacks;
// transform to get next circle of points + center
TransformCircle( angle, pi, pB, numPoints+1, &anchor );
// calculate normals
center = pB[numPoints];
CalcNormals( pB, nB, &center, numPoints );
// calculate next 's' texture coord
tex_s[1] = (float) s_start + s_delta * i / stacks;
curTex_t = tex_t;
pTA = pA;
pTB = pB;
nTA = nA;
nTB = nB;
for (j = 0; j < numPoints; j++)
{
vCurQuad->p = *pTA++;
vCurQuad->n = *nTA++;
if( texRep )
{
vCurQuad->tu = (float) tex_s[0];
vCurQuad->tv = (float) *curTex_t;
}
vCurQuad++;
vCurQuad->p = *pTB++;
vCurQuad->n = *nTB++;
if( texRep )
{
vCurQuad->tu = (float) tex_s[1];
vCurQuad->tv = (float) *curTex_t++;
}
vCurQuad++;
}
// reset pointers
pA = pB;
nA = nB;
pB = (pB == p0) ? p1 : p0;
nB = (nB == n0) ? n1 : n0;
tex_s[0] = tex_s[1];
}
D3DVERTEX* v;
DWORD dwCurQuad = 0;
DWORD dwVert = 0;
m_pVB->Lock( 0, 0, (BYTE**)&v, 0 );
for (j = 0; j < stacks; j++)
{
for (i = 0; i < numPoints; i++)
{
if( i==0 )
{
dwCurQuad++;
continue;
}
// Vertices 2n-1, 2n, 2n+2, and 2n+1 define quadrilateral n
DWORD dwTemp = dwCurQuad*2-1;
v[dwVert++] = vQuad[dwTemp];
v[dwVert++] = vQuad[dwTemp-1];
v[dwVert++] = vQuad[dwTemp+2];
v[dwVert++] = vQuad[dwTemp-1];
v[dwVert++] = vQuad[dwTemp+1];
v[dwVert++] = vQuad[dwTemp+2];
dwCurQuad++;
}
}
m_pVB->Unlock();
SAFE_DELETE_ARRAY( vQuad );
}
//-----------------------------------------------------------------------------
// Name: BuildBallJoint
// Desc: - These are very similar to the elbows, in that the starting
// and ending positions are almost identical. The difference
// here is that the circles in the sweep describe a sphere as
// they are rotated.
//-----------------------------------------------------------------------------
void BALLJOINT_OBJECT::Build( OBJECT_BUILD_INFO *pBuildInfo, int notch,
float s_start, float s_end )
{
float ballRadius;
float angle, delta_a, startAng, theta;
int numPoints;
float s_delta;
D3DXVECTOR3 pi0[CACHE_SIZE]; // 2 circles of untransformed points
D3DXVECTOR3 pi1[CACHE_SIZE];
D3DXVECTOR3 p0[CACHE_SIZE]; // 2 rows of transformed points
D3DXVECTOR3 p1[CACHE_SIZE];
D3DXVECTOR3 n0[CACHE_SIZE]; // 2 rows of normals
D3DXVECTOR3 n1[CACHE_SIZE];
float r[CACHE_SIZE]; // radii of the circles
float tex_t[CACHE_SIZE];// 't' texture coords
float tex_s[2]; // 's' texture coords
D3DXVECTOR3 center; // center of circle
D3DXVECTOR3 anchor; // where circle is anchored
D3DXVECTOR3 *pA, *pB, *nA, *nB;
float* curTex_t;
D3DXVECTOR3* pTA;
D3DXVECTOR3* pTB;
D3DXVECTOR3* nTA;
D3DXVECTOR3* nTB;
int i, j, k;
int stacks, slices;
IPOINT2D *texRep = pBuildInfo->m_texRep;
float radius = pBuildInfo->m_radius;
slices = pBuildInfo->m_nSlices;
stacks = slices;
if (slices >= CACHE_SIZE) slices = CACHE_SIZE-1;
if (stacks >= CACHE_SIZE) stacks = CACHE_SIZE-1;
// calculate the radii for each circle in the sweep, where
// r[i] = y = sin(angle)/r
angle = PI / 4; // first radius always at 45.0 degrees
delta_a = (PI / 2.0f) / stacks;
ballRadius = ROOT_TWO * radius;
for( i = 0; i <= stacks; i ++, angle += delta_a )
{
r[i] = (float) sin(angle) * ballRadius;
}
// calculate 't' texture coords
for( i = 0; i <= slices; i ++ )
{
tex_t[i] = (float) i * texRep->y / slices;
}
s_delta = s_end - s_start;
numPoints = slices + 1;
// unlike the elbow, the center for the ball joint is constant
center.x = center.y = 0.0f;
center.z = -radius;
// starting angle along circle, increment 90.0 degrees each time
startAng = notch * PI / 2;
// calc initial circle of points for circle centered at 0,r,-r
// points start at (0,r,0), and rotate circle CCW
delta_a = 2 * PI / slices;
for( i = 0, theta = startAng; i <= slices; i ++, theta += delta_a )
{
pi0[i].x = r[0] * (float) sin(theta);
pi0[i].y = radius;
// translate z by -r, cuz these cos calcs are for circle at origin
pi0[i].z = r[0] * (float) cos(theta) - r[0];
}
// anchor point
anchor.x = anchor.z = 0.0f;
anchor.y = radius;
// calculate initial normals
CalcNormals( pi0, n0, &center, numPoints );
// initial 's' texture coordinate
tex_s[0] = s_start;
// setup pointers
pA = pi0; // circles of transformed points
pB = p0;
nA = n0; // circles of transformed normals
nB = n1;
DWORD dwNumQuadStripsPerStack = numPoints - 1;
DWORD dwNumQuadStrips = dwNumQuadStripsPerStack * stacks;
m_dwNumTriangles = dwNumQuadStrips * 2;
DWORD dwNumVertices = m_dwNumTriangles * 3;
if( FAILED( m_pd3dDevice->CreateVertexBuffer( dwNumVertices*sizeof(D3DVERTEX),
D3DUSAGE_WRITEONLY, D3DFVF_VERTEX,
D3DPOOL_MANAGED, &m_pVB ) ) )
return;
D3DVERTEX* vQuad;
D3DVERTEX* vCurQuad;
vQuad = new D3DVERTEX[dwNumVertices];
ZeroMemory( vQuad, sizeof(D3DVERTEX) * dwNumVertices );
vCurQuad = vQuad;
for( i = 1; i <= stacks; i ++ )
{
// ! this angle must be negative, for correct vertex orientation !
angle = - 0.5f * PI * i / stacks;
for( k = 0, theta = startAng; k <= slices; k ++, theta+=delta_a )
{
pi1[k].x = r[i] * (float) sin(theta);
pi1[k].y = radius;
// translate z by -r, cuz calcs are for circle at origin
pi1[k].z = r[i] * (float) cos(theta) - r[i];
}
// transform to get next circle of points + center
TransformCircle( angle, pi1, pB, numPoints, &anchor );
// calculate normals
CalcNormals( pB, nB, &center, numPoints );
// calculate next 's' texture coord
tex_s[1] = (float) s_start + s_delta * i / stacks;
curTex_t = tex_t;
pTA = pA;
pTB = pB;
nTA = nA;
nTB = nB;
for (j = 0; j < numPoints; j++)
{
vCurQuad->p = *pTA++;
vCurQuad->n = *nTA++;
if( texRep )
{
vCurQuad->tu = (float) tex_s[0];
vCurQuad->tv = (float) *curTex_t;
}
vCurQuad++;
vCurQuad->p = *pTB++;
vCurQuad->n = *nTB++;
if( texRep )
{
vCurQuad->tu = (float) tex_s[1];
vCurQuad->tv = (float) *curTex_t++;
}
vCurQuad++;
}
// reset pointers
pA = pB;
nA = nB;
pB = (pB == p0) ? p1 : p0;
nB = (nB == n0) ? n1 : n0;
tex_s[0] = tex_s[1];
}
D3DVERTEX* v;
DWORD dwCurQuad = 0;
DWORD dwVert = 0;
m_pVB->Lock( 0, 0, (BYTE**)&v, 0 );
for (j = 0; j < stacks; j++)
{
for (i = 0; i < numPoints; i++)
{
if( i==0 )
{
dwCurQuad++;
continue;
}
// Vertices 2n-1, 2n, 2n+2, and 2n+1 define quadrilateral n
DWORD dwTemp = dwCurQuad*2-1;
v[dwVert++] = vQuad[dwTemp];
v[dwVert++] = vQuad[dwTemp-1];
v[dwVert++] = vQuad[dwTemp+2];
v[dwVert++] = vQuad[dwTemp-1];
v[dwVert++] = vQuad[dwTemp+1];
v[dwVert++] = vQuad[dwTemp+2];
dwCurQuad++;
}
}
m_pVB->Unlock();
SAFE_DELETE_ARRAY( vQuad );
}
// 'glu' routines
#ifdef _EXTENSIONS_
#define COS cosf
#define SIN sinf
#define SQRT sqrtf
#else
#define COS cos
#define SIN sin
#define SQRT sqrt
#endif
//-----------------------------------------------------------------------------
// Name: BuildCylinder
// Desc:
//-----------------------------------------------------------------------------
void PIPE_OBJECT::Build( OBJECT_BUILD_INFO *pBuildInfo, float length, float s_start,
float s_end )
{
int stacks, slices;
int i,j;
float sinCache[CACHE_SIZE];
float cosCache[CACHE_SIZE];
float sinCache2[CACHE_SIZE];
float cosCache2[CACHE_SIZE];
float angle;
float zNormal;
float s_delta;
float zHigh, zLow;
IPOINT2D *texRep = pBuildInfo->m_texRep;
float radius = pBuildInfo->m_radius;
slices = pBuildInfo->m_nSlices;
stacks = (int) SS_ROUND_UP( (length/pBuildInfo->m_divSize) * (float)slices) ;
if (slices >= CACHE_SIZE) slices = CACHE_SIZE-1;
if (stacks >= CACHE_SIZE) stacks = CACHE_SIZE-1;
zNormal = 0.0f;
s_delta = s_end - s_start;
for (i = 0; i < slices; i++)
{
angle = 2 * PI * i / slices;
sinCache2[i] = (float) SIN(angle);
cosCache2[i] = (float) COS(angle);
sinCache[i] = (float) SIN(angle);
cosCache[i] = (float) COS(angle);
}
sinCache[slices] = sinCache[0];
cosCache[slices] = cosCache[0];
sinCache2[slices] = sinCache2[0];
cosCache2[slices] = cosCache2[0];
DWORD dwNumQuadStripsPerStack = slices;
DWORD dwNumQuadStrips = dwNumQuadStripsPerStack * stacks;
m_dwNumTriangles = dwNumQuadStrips * 2;
DWORD dwNumVertices = m_dwNumTriangles * 3;
if( FAILED( m_pd3dDevice->CreateVertexBuffer( dwNumVertices*sizeof(D3DVERTEX),
D3DUSAGE_WRITEONLY, D3DFVF_VERTEX,
D3DPOOL_MANAGED, &m_pVB ) ) )
return;
D3DVERTEX* vQuad;
D3DVERTEX* vCurQuad;
vQuad = new D3DVERTEX[dwNumVertices];
ZeroMemory( vQuad, sizeof(D3DVERTEX) * dwNumVertices );
vCurQuad = vQuad;
for (j = 0; j < stacks; j++)
{
zLow = j * length / stacks;
zHigh = (j + 1) * length / stacks;
for (i = 0; i <= slices; i++)
{
vCurQuad->p = D3DXVECTOR3( radius * sinCache[i], radius * cosCache[i], zLow );
vCurQuad->n = D3DXVECTOR3( sinCache2[i], cosCache2[i], zNormal );
if( texRep )
{
vCurQuad->tu = (float) s_start + s_delta * j / stacks;
vCurQuad->tv = (float) i * texRep->y / slices;
}
vCurQuad++;
vCurQuad->p = D3DXVECTOR3( radius * sinCache[i], radius * cosCache[i], zHigh );
vCurQuad->n = D3DXVECTOR3( sinCache2[i], cosCache2[i], zNormal );
if( texRep )
{
vCurQuad->tu = (float) s_start + s_delta*(j+1) / stacks;
vCurQuad->tv = (float) i * texRep->y / slices;
}
vCurQuad++;
}
}
D3DVERTEX* v;
DWORD dwCurQuad = 0;
DWORD dwVert = 0;
m_pVB->Lock( 0, 0, (BYTE**)&v, 0 );
for (j = 0; j < stacks; j++)
{
for (i = 0; i <= slices; i++)
{
if( i==0 )
{
dwCurQuad++;
continue;
}
// Vertices 2n-1, 2n, 2n+2, and 2n+1 define quadrilateral n
DWORD dwTemp = dwCurQuad*2-1;
v[dwVert++] = vQuad[dwTemp];
v[dwVert++] = vQuad[dwTemp-1];
v[dwVert++] = vQuad[dwTemp+2];
v[dwVert++] = vQuad[dwTemp-1];
v[dwVert++] = vQuad[dwTemp+1];
v[dwVert++] = vQuad[dwTemp+2];
dwCurQuad++;
}
}
m_pVB->Unlock();
SAFE_DELETE_ARRAY( vQuad );
}
//-----------------------------------------------------------------------------
// Name: pipeSphere
// Desc:
//-----------------------------------------------------------------------------
void SPHERE_OBJECT::Build( OBJECT_BUILD_INFO *pBuildInfo, float radius,
float s_start, float s_end)
{
int i,j;
float sinCache1a[CACHE_SIZE];
float cosCache1a[CACHE_SIZE];
float sinCache2a[CACHE_SIZE];
float cosCache2a[CACHE_SIZE];
float sinCache1b[CACHE_SIZE];
float cosCache1b[CACHE_SIZE];
float sinCache2b[CACHE_SIZE];
float cosCache2b[CACHE_SIZE];
float angle;
float s_delta;
int stacks, slices;
IPOINT2D *texRep = pBuildInfo->m_texRep;
slices = pBuildInfo->m_nSlices;
stacks = slices;
if (slices >= CACHE_SIZE) slices = CACHE_SIZE-1;
if (stacks >= CACHE_SIZE) stacks = CACHE_SIZE-1;
// invert sense of s - it seems the glu sphere is not built similarly
// to the glu cylinder
// (this probably means stacks don't grow along +z - check it out)
s_delta = s_start;
s_start = s_end;
s_end = s_delta;
s_delta = s_end - s_start;
// Cache is the vertex locations cache
// Cache2 is the various normals at the vertices themselves
for (i = 0; i < slices; i++)
{
angle = 2 * PI * i / slices;
sinCache1a[i] = (float) SIN(angle);
cosCache1a[i] = (float) COS(angle);
sinCache2a[i] = sinCache1a[i];
cosCache2a[i] = cosCache1a[i];
}
for (j = 0; j <= stacks; j++)
{
angle = PI * j / stacks;
sinCache2b[j] = (float) SIN(angle);
cosCache2b[j] = (float) COS(angle);
sinCache1b[j] = radius * (float) SIN(angle);
cosCache1b[j] = radius * (float) COS(angle);
}
// Make sure it comes to a point
sinCache1b[0] = 0.0f;
sinCache1b[stacks] = 0.0f;
sinCache1a[slices] = sinCache1a[0];
cosCache1a[slices] = cosCache1a[0];
sinCache2a[slices] = sinCache2a[0];
cosCache2a[slices] = cosCache2a[0];
int start, finish;
float zLow, zHigh;
float sintemp1, sintemp2, sintemp3, sintemp4;
float costemp3, costemp4;
start = 0;
finish = stacks;
DWORD dwNumQuadStripsPerStack = slices;
DWORD dwNumQuadStrips = dwNumQuadStripsPerStack * (finish-start);
m_dwNumTriangles = dwNumQuadStrips * 2;
DWORD dwNumVertices = m_dwNumTriangles * 3;
if( FAILED( m_pd3dDevice->CreateVertexBuffer( dwNumVertices*sizeof(D3DVERTEX),
D3DUSAGE_WRITEONLY, D3DFVF_VERTEX,
D3DPOOL_MANAGED, &m_pVB ) ) )
return;
D3DVERTEX* vQuad;
D3DVERTEX* vCurQuad;
vQuad = new D3DVERTEX[dwNumVertices];
ZeroMemory( vQuad, sizeof(D3DVERTEX) * dwNumVertices );
vCurQuad = vQuad;
for (j = 0; j < stacks; j++)
{
zLow = cosCache1b[j];
zHigh = cosCache1b[j+1];
sintemp1 = sinCache1b[j];
sintemp2 = sinCache1b[j+1];
sintemp3 = sinCache2b[j+1];
costemp3 = cosCache2b[j+1];
sintemp4 = sinCache2b[j];
costemp4 = cosCache2b[j];
for (i = 0; i <= slices; i++)
{
vCurQuad->p = D3DXVECTOR3( sintemp2 * sinCache1a[i], sintemp2 * cosCache1a[i], zHigh );
vCurQuad->n = D3DXVECTOR3( sinCache2a[i] * sintemp3, cosCache2a[i] * sintemp3, costemp3 );
if( texRep )
{
vCurQuad->tu = (float) s_start + s_delta*(j+1) / stacks;
vCurQuad->tv = (float) i * texRep->y / slices;
}
vCurQuad++;
vCurQuad->p = D3DXVECTOR3( sintemp1 * sinCache1a[i], sintemp1 * cosCache1a[i], zLow );
vCurQuad->n = D3DXVECTOR3( sinCache2a[i] * sintemp4, cosCache2a[i] * sintemp4, costemp4 );
if( texRep )
{
vCurQuad->tu = (float) s_start + s_delta * j / stacks;
vCurQuad->tv = (float) i * texRep->y / slices;
}
vCurQuad++;
}
}
D3DVERTEX* v;
DWORD dwCurQuad = 0;
DWORD dwVert = 0;
m_pVB->Lock( 0, 0, (BYTE**)&v, 0 );
for (j = 0; j < stacks; j++)
{
for (i = 0; i <= slices; i++)
{
if( i==0 )
{
dwCurQuad++;
continue;
}
// Vertices 2n-1, 2n, 2n+2, and 2n+1 define quadrilateral n
DWORD dwTemp = dwCurQuad*2-1;
v[dwVert++] = vQuad[dwTemp];
v[dwVert++] = vQuad[dwTemp-1];
v[dwVert++] = vQuad[dwTemp+2];
v[dwVert++] = vQuad[dwTemp-1];
v[dwVert++] = vQuad[dwTemp+1];
v[dwVert++] = vQuad[dwTemp+2];
dwCurQuad++;
}
}
m_pVB->Unlock();
SAFE_DELETE_ARRAY( vQuad );
}