|
|
/*
* encdata.c * * Encode a block into the output stream */
#include "encoder.h"
#define OUT_CHAR \
c = context->enc_LitData[l]; \ OUTPUT_BITS(context->enc_main_tree_len[c], context->enc_main_tree_code[c]);
/*
* Macro to output bits into the encoding stream */ #define OUTPUT_BITS(N,X) \
{ \ context->enc_bitbuf |= (((ulong) (X)) << (context->enc_bitcount-(N))); \ context->enc_bitcount -= (N); \ while (context->enc_bitcount <= 16) \ { \ if (context->enc_output_buffer_curpos >= context->enc_output_buffer_end) \ { \ context->enc_output_overflow = true; \ context->enc_output_buffer_curpos = context->enc_output_buffer_start; \ } \ *context->enc_output_buffer_curpos++ = (byte) ((context->enc_bitbuf >> 16) & 255); \ *context->enc_output_buffer_curpos++ = (byte) (context->enc_bitbuf >> 24); \ context->enc_bitbuf <<= 16; \ context->enc_bitcount += 16; \ } \ }
/*
* Given the initial state of the repeated offset buffers at * the beginning of this block, calculate the final state of the * repeated offset buffers after outputting this block as if it * were compressed data. * * First try to do it the quick way, by starting at the last * match and working backwards, to find three consecutive matches * which don't use repeated offsets. If this fails, we'll have * to take the initial state of the three offsets at the beginning * of the block, and evolve them to the end of the block. */ void get_final_repeated_offset_states(t_encoder_context *context, ulong distances) { ulong MatchPos; signed long d; /* must be signed */ byte consecutive;
consecutive = 0;
for (d = distances-1; d >= 0; d--) { if (context->enc_DistData[d] > 2) { /* NOT a repeated offset */ consecutive++;
/* do we have three consecutive non-repeated-offsets? */ if (consecutive >= 3) break; } else { consecutive = 0; } }
/*
* If we didn't find three consecutive matches which * don't use repeated offsets, then we have to start * from the beginning and evolve the repeated offsets. * * Otherwise, we start at the first of the consecutive * matches. */ if (consecutive < 3) { d = 0; }
for (; d < (signed long) distances; d++) { MatchPos = context->enc_DistData[d];
if (MatchPos == 0) { } else if (MatchPos <= 2) { ulong temp;
temp = context->enc_repeated_offset_at_literal_zero[MatchPos]; context->enc_repeated_offset_at_literal_zero[MatchPos] = context->enc_repeated_offset_at_literal_zero[0]; context->enc_repeated_offset_at_literal_zero[0] = temp; } else { context->enc_repeated_offset_at_literal_zero[2] = context->enc_repeated_offset_at_literal_zero[1]; context->enc_repeated_offset_at_literal_zero[1] = context->enc_repeated_offset_at_literal_zero[0]; context->enc_repeated_offset_at_literal_zero[0] = MatchPos-2; } } }
/*
* Encode a block with no compression * * bufpos is the position in the file from which the first * literal in this block starts. To reference memory, we will * use enc_MemWindow[bufpos] (remember that enc_MemWindow is * moved backwards every time we copymem). * * Since this data was originally matched into the compressor, * our recent match offsets will have been changed; however, * since this is an uncompressed block, the decoder won't be * updating them. Therefore, we need to tell the decoder * the state of the match offsets after it has finished * decoding the uncompressed data - we store these in this * block. */ void encode_uncompressed_block(t_encoder_context *context, ulong bufpos, ulong block_size) { int i; int j; bool block_size_odd; ulong val;
/*
* Align on a byte boundary */ output_bits(context, context->enc_bitcount-16, 0);
/*
* Now output the contents of the repeated offset * buffers, since we need to preserve the state of * the encoder */ for (i = 0; i < NUM_REPEATED_OFFSETS; i++) { val = context->enc_repeated_offset_at_literal_zero[i];
for (j = 0; j < sizeof(long); j++) { *context->enc_output_buffer_curpos++ = (byte) val; val >>= 8; } }
block_size_odd = block_size & 1;
/*
* Write out uncompressed data */ while (block_size > 0) { *context->enc_output_buffer_curpos++ = context->enc_MemWindow[bufpos];
bufpos++; block_size--; context->enc_input_running_total++;
if (context->enc_input_running_total == CHUNK_SIZE) { perform_flush_output_callback(context); context->enc_num_block_splits = 0; } }
/*
* Add pad byte to keep the output word-aligned */ if (block_size_odd) { *context->enc_output_buffer_curpos++ = 0; }
context->enc_bitcount = 32; context->enc_bitbuf = 0; }
/*
* Estimate the size of the data in the buffer, in bytes */ ulong estimate_compressed_block_size(t_encoder_context *context) { ulong block_size = 0; /* output size in bits */ ulong i; byte mpslot;
/* Estimation of tree size */ block_size = 150*8;
/* Tally bits to output characters */ for (i = 0; i < NUM_CHARS; i++) block_size += (context->enc_main_tree_len[i]*context->enc_main_tree_freq[i]);
/* Tally bits to output matches */ for (mpslot = 0; mpslot < context->enc_num_position_slots; mpslot++) { long element; int primary;
element = NUM_CHARS + (mpslot << NL_SHIFT);
/* For primary == NUM_PRIMARY_LENGTHS we have secondary lengths */ for (primary = 0; primary <= NUM_PRIMARY_LENGTHS; primary++) { block_size += ((context->enc_main_tree_len[element] + enc_extra_bits[mpslot]) * context->enc_main_tree_freq[element]); element++; } }
for (i = 0; i < NUM_SECONDARY_LENGTHS; i++) block_size += (context->enc_secondary_tree_freq[i] * context->enc_secondary_tree_len[i]);
/* round up */ return (block_size+7) >> 3; }
/*
* Encode block with NO special encoding of the lower 3 * position bits */ void encode_verbatim_block(t_encoder_context *context, ulong literal_to_end_at) { ulong MatchPos; ulong d = 0; ulong l = 0; byte MatchLength; byte c; byte mpSlot;
while (l < literal_to_end_at) { if (!IsMatch(l)) { OUT_CHAR; l++; context->enc_input_running_total++; } else { /* Note, 0 means MatchLen=3, 1 means MatchLen=4, ... */ MatchLength = context->enc_LitData[l++];
/* Delta match pos */ MatchPos = context->enc_DistData[d++];
mpSlot = (byte) MP_SLOT(MatchPos);
if (MatchLength < NUM_PRIMARY_LENGTHS) { OUTPUT_BITS( context->enc_main_tree_len[ NUM_CHARS+(mpSlot<<NL_SHIFT)+MatchLength], context->enc_main_tree_code[NUM_CHARS+(mpSlot<<NL_SHIFT)+MatchLength] ); } else { OUTPUT_BITS( context->enc_main_tree_len [(NUM_CHARS+NUM_PRIMARY_LENGTHS)+(mpSlot<<NL_SHIFT)], context->enc_main_tree_code[(NUM_CHARS+NUM_PRIMARY_LENGTHS)+(mpSlot<<NL_SHIFT)] );
OUTPUT_BITS( context->enc_secondary_tree_len[ MatchLength - NUM_PRIMARY_LENGTHS], context->enc_secondary_tree_code[MatchLength - NUM_PRIMARY_LENGTHS] ); }
if (enc_extra_bits[ mpSlot ]) { OUTPUT_BITS( enc_extra_bits[mpSlot], MatchPos & enc_slot_mask[mpSlot] ); }
context->enc_input_running_total += (MatchLength+MIN_MATCH); }
if (context->enc_input_running_total == CHUNK_SIZE) { perform_flush_output_callback(context); context->enc_num_block_splits = 0; }
_ASSERTE (context->enc_input_running_total < CHUNK_SIZE); } }
/*
* aligned block encoding */ void encode_aligned_block(t_encoder_context *context, ulong literal_to_end_at) { ulong MatchPos; byte MatchLength; byte c; byte mpSlot; byte Lower; ulong l = 0; ulong d = 0;
while (l < literal_to_end_at) { if (!IsMatch(l)) { OUT_CHAR; l++; context->enc_input_running_total++; } else { /* Note, 0 means MatchLen=3, 1 means MatchLen=4, ... */ MatchLength = context->enc_LitData[l++];
/* Delta match pos */ MatchPos = context->enc_DistData[d++]; mpSlot = (byte) MP_SLOT(MatchPos);
if (MatchLength < NUM_PRIMARY_LENGTHS) { OUTPUT_BITS( context->enc_main_tree_len[ NUM_CHARS+(mpSlot<<NL_SHIFT)+MatchLength], context->enc_main_tree_code[NUM_CHARS+(mpSlot<<NL_SHIFT)+MatchLength] ); } else { OUTPUT_BITS( context->enc_main_tree_len[ (NUM_CHARS+NUM_PRIMARY_LENGTHS)+(mpSlot<<NL_SHIFT)], context->enc_main_tree_code[(NUM_CHARS+NUM_PRIMARY_LENGTHS)+(mpSlot<<NL_SHIFT)] );
OUTPUT_BITS( context->enc_secondary_tree_len[ MatchLength - NUM_PRIMARY_LENGTHS], context->enc_secondary_tree_code[MatchLength - NUM_PRIMARY_LENGTHS] ); }
if (enc_extra_bits[ mpSlot ] >= 3) { if (enc_extra_bits[ mpSlot ] > 3) { OUTPUT_BITS( enc_extra_bits[mpSlot] - 3, (MatchPos >> 3) & ( (1 << (enc_extra_bits[mpSlot]-3)) -1) ); }
Lower = (byte) (MatchPos & 7);
OUTPUT_BITS( context->enc_aligned_tree_len[Lower], context->enc_aligned_tree_code[Lower] ); } else if (enc_extra_bits[ mpSlot ]) { OUTPUT_BITS( enc_extra_bits[mpSlot], MatchPos & enc_slot_mask[ mpSlot ] ); }
context->enc_input_running_total += (MatchLength+MIN_MATCH); }
if (context->enc_input_running_total == CHUNK_SIZE) { perform_flush_output_callback(context); context->enc_num_block_splits = 0; }
_ASSERTE (context->enc_input_running_total < CHUNK_SIZE); } }
void perform_flush_output_callback(t_encoder_context *context) { long output_size;
/*
* Do this only if there is any input to account for, so we don't * end up outputting blocks where comp_size > 0 and uncmp_size = 0. */ if (context->enc_input_running_total > 0) { flush_output_bit_buffer(context);
output_size = (long)(context->enc_output_buffer_curpos - context->enc_output_buffer_start);
if (output_size > 0) { (*context->enc_output_callback_function)( context->enc_fci_data, context->enc_output_buffer_start, (long) (context->enc_output_buffer_curpos - context->enc_output_buffer_start), context->enc_input_running_total ); } }
context->enc_input_running_total = 0; context->enc_output_buffer_curpos = context->enc_output_buffer_start;
/* initialise bit buffer */ context->enc_bitcount = 32; context->enc_bitbuf = 0; }
|