|
|
// Copyright (c) 1997, Microsoft Corporation, all rights reserved
// Copyright (c) 1997, Parallel Technologies, Inc., all rights reserved
//
// mp.c
// RAS DirectParallel WAN mini-port/call-manager driver
// Mini-port routines
//
// 01/07/97 Steve Cobb
// 09/15/97 Jay Lowe, Parallel Technologies, Inc.
#include "ptiwan.h"
#include "ptilink.h"
// The adapter control block address is recorded in this global as a debugging
// aid. This global must not be read by any code.
//
ADAPTERCB* g_pDebugAdapter;
// Default settings for the NDIS_WAN_CO_INFO capabilities of an adapter.
//
static NDIS_WAN_CO_INFO g_infoDefaults = { PTI_MaxFrameSize, // MaxFrameSize
1, // MaxSendWindow (placeholder)
PPP_FRAMING // FramingBits
| PPP_COMPRESS_ADDRESS_CONTROL | PPP_COMPRESS_PROTOCOL_FIELD, 0, // DesiredACCM
};
// String constants for Win9x UNIMODEM emulation
//
CHAR g_szClient[] = "CLIENT"; #define CLIENTLEN 6
CHAR g_szClientServer[] = "CLIENTSERVER"; #define CLIENTSERVERLEN 12
// Async framing definitions.
//
#define PPPFLAGBYTE 0x7E
#define PPPESCBYTE 0x7D
#if DBG
BOOLEAN g_fAssumeWin9x = FALSE; BOOLEAN g_fNoAccmFastPath = FALSE; #endif
NDIS_PNP_CAPABILITIES PnpCaps = { 0, // Flags
{ NdisDeviceStateUnspecified, NdisDeviceStateUnspecified, NdisDeviceStateUnspecified } };
//-----------------------------------------------------------------------------
// Local prototypes (alphabetically)
//-----------------------------------------------------------------------------
VOID AsyncFromHdlcFraming( IN UCHAR* pInBuf, IN ULONG ulInBufLen, OUT UCHAR* pOutBuf, OUT ULONG* pulOutBufLen, IN ULONG ulAccmMask );
USHORT CalculatePppFcs( IN UCHAR* pBuf, IN ULONG ulBufLen );
VOID FreeAdapter( IN ADAPTERCB* pAdapter );
NDIS_STATUS RegistrySettings( IN OUT ADAPTERCB* pAdapter, IN NDIS_HANDLE WrapperConfigurationContext );
BOOLEAN HdlcFromAsyncFraming( IN UCHAR* pInBuf, IN ULONG ulInBufLen, OUT UCHAR* pOutBuf, OUT ULONG* pulOutBufLen );
NDIS_STATUS QueryInformation( IN ADAPTERCB* pAdapter, IN VCCB* pLink, IN NDIS_OID Oid, IN PVOID InformationBuffer, IN ULONG InformationBufferLength, OUT PULONG BytesWritten, OUT PULONG BytesNeeded );
NDIS_STATUS SetInformation( IN ADAPTERCB* pAdapter, IN VCCB* pLink, IN NDIS_OID Oid, IN PVOID InformationBuffer, IN ULONG InformationBufferLength, OUT PULONG BytesRead, OUT PULONG BytesNeeded );
//-----------------------------------------------------------------------------
// Mini-port handlers
//-----------------------------------------------------------------------------
NDIS_STATUS PtiInit( OUT PNDIS_STATUS OpenErrorStatus, OUT PUINT SelectedMediumIndex, IN PNDIS_MEDIUM MediumArray, IN UINT MediumArraySize, IN NDIS_HANDLE MiniportAdapterHandle, IN NDIS_HANDLE WrapperConfigurationContext )
// Standard 'MiniportInitialize' routine called by NDIS to initialize a
// new WAN adapter. See DDK doc. The driver will receive no requests
// until this initialization has completed.
//
{ NDIS_STATUS status; ADAPTERCB* pAdapter;
TRACE( TL_N, TM_Init, ( "PtiInit" ) );
#ifdef TESTMODE
DbgBreakPoint(); #endif
status = *OpenErrorStatus = NDIS_STATUS_SUCCESS;
// Find the medium index in the array of media, looking for the only one
// we support, 'NdisMediumCoWan'.
//
{ UINT i;
for (i = 0; i < MediumArraySize; ++i) { if (MediumArray[ i ] == NdisMediumCoWan) { break; } }
if (i >= MediumArraySize) { TRACE( TL_A, TM_Init, ( "medium?" ) ); return NDIS_STATUS_FAILURE; }
*SelectedMediumIndex = i; }
// Allocate and zero a control block for the new adapter.
//
pAdapter = ALLOC_NONPAGED( sizeof(*pAdapter), MTAG_ADAPTERCB ); TRACE( TL_N, TM_Init, ( "PtiInit: pAdapter=$%p", pAdapter ) ); if (!pAdapter) { return NDIS_STATUS_RESOURCES; } NdisZeroMemory( pAdapter, sizeof(*pAdapter) );
// The adapter control block address is recorded in 'g_pDebugAdapter' as a
// debugging aid only. This global is not to be read by any code.
//
g_pDebugAdapter = pAdapter;
// Set a marker for easier memory dump browsing and future assertions.
//
pAdapter->ulTag = MTAG_ADAPTERCB;
// Save the NDIS handle associated with this adapter for use in future
// NdixXxx calls.
//
pAdapter->MiniportAdapterHandle = MiniportAdapterHandle;
// Copy defaults NDISWAN information. Some of these are updated below.
//
NdisMoveMemory( &pAdapter->info, &g_infoDefaults, sizeof(pAdapter->info) );
do { // Read/write this adapter's registry settings.
//
status = RegistrySettings( pAdapter, WrapperConfigurationContext );
if (status != NDIS_STATUS_SUCCESS) { // Set 'usMaxVcs' to 0 as an indication to FreeAdapter that the
// lookaside lists and pools were not initialized.
//
pAdapter->usMaxVcs = 0; break; }
// Initialize lookaside lists, buffer pools, and packet pool. On NT,
// lookaside depths are optimized by the system based on usage
// regardless of the depth set, but choose something reasonable
// anyway.
//
{ NdisInitializeNPagedLookasideList( &pAdapter->llistWorkItems, NULL, NULL, 0, sizeof(NDIS_WORK_ITEM), MTAG_WORKITEM, 4 );
NdisInitializeNPagedLookasideList( &pAdapter->llistVcs, NULL, NULL, 0, sizeof(VCCB), MTAG_VCCB, 4 );
InitBufferPool( &pAdapter->poolFrameBuffers, PTI_FrameBufferSize, 0, 10, 0, TRUE, MTAG_FBUFPOOL );
InitPacketPool( &pAdapter->poolPackets, 0, 0, 10, 0, MTAG_PACKETPOOL ); }
// Inform NDIS of the attributes of our adapter. Set the
// 'MiniportAdapterContext' returned to us by NDIS when it calls our
// handlers to the address of our adapter control block. Turn off
// hardware oriented timeouts.
//
NdisMSetAttributesEx( MiniportAdapterHandle, (NDIS_HANDLE)pAdapter, (UINT)-1, NDIS_ATTRIBUTE_IGNORE_PACKET_TIMEOUT | NDIS_ATTRIBUTE_IGNORE_REQUEST_TIMEOUT, NdisInterfaceInternal );
// Register the address family of our call manager with NDIS for the
// newly bound adapter. We use the mini-port form of
// RegisterAddressFamily instead of the protocol form, though that
// would also work. With the protocol form, our internal call manager
// would have to go thru NDIS to talk to the mini-port instead of just
// calling directly. Since the DirectParallel call manager is not
// useful with anything but the DirectParallel mini-port, this would be a waste.
// The mini-port form also causes the call manager VC context to
// automatically map to the mini-port VC context, which is exactly
// what we want.
//
// NDIS notifies all call manager clients of the new family we
// register. The TAPI proxy is the only client expected to be
// interested. NDISWAN will receive the notification, but ignore it
// and wait for the TAPI proxy to notify it of the proxied version.
//
{ NDIS_CALL_MANAGER_CHARACTERISTICS ncmc; CO_ADDRESS_FAMILY family;
NdisZeroMemory( &family, sizeof(family) ); family.MajorVersion = NDIS_MajorVersion; family.MinorVersion = NDIS_MinorVersion; family.AddressFamily = CO_ADDRESS_FAMILY_TAPI_PROXY;
NdisZeroMemory( &ncmc, sizeof(ncmc) ); ncmc.MajorVersion = NDIS_MajorVersion; ncmc.MinorVersion = NDIS_MinorVersion; ncmc.CmCreateVcHandler = PtiCmCreateVc; ncmc.CmDeleteVcHandler = PtiCmDeleteVc; ncmc.CmOpenAfHandler = PtiCmOpenAf; ncmc.CmCloseAfHandler = PtiCmCloseAf; ncmc.CmRegisterSapHandler = PtiCmRegisterSap; ncmc.CmDeregisterSapHandler = PtiCmDeregisterSap; ncmc.CmMakeCallHandler = PtiCmMakeCall; ncmc.CmCloseCallHandler = PtiCmCloseCall; ncmc.CmIncomingCallCompleteHandler = PtiCmIncomingCallComplete; // no CmAddPartyHandler
// no CmDropPartyHandler
ncmc.CmActivateVcCompleteHandler = PtiCmActivateVcComplete; ncmc.CmDeactivateVcCompleteHandler = PtiCmDeactivateVcComplete; ncmc.CmModifyCallQoSHandler = PtiCmModifyCallQoS; ncmc.CmRequestHandler = PtiCmRequest;
TRACE( TL_I, TM_Mp, ( "PtiInit: NdisMCmRegAf" ) ); status = NdisMCmRegisterAddressFamily( MiniportAdapterHandle, &family, &ncmc, sizeof(ncmc) ); TRACE( TL_I, TM_Mp, ( "PtiInit: NdisMCmRegAf=$%x", status ) ); } } while (FALSE);
if (status == NDIS_STATUS_SUCCESS) { // Add a reference that will eventually be removed by an NDIS call to
// the LmpHalt handler.
//
ReferenceAdapter( pAdapter ); } else { // Failed, so undo whatever portion succeeded.
//
if (pAdapter) { FreeAdapter( pAdapter ); } }
TRACE( TL_V, TM_Init, ( "PtiInit: Exit: status=$%x", status ) ); return status; }
VOID PtiHalt( IN NDIS_HANDLE MiniportAdapterContext )
// Standard 'MiniportHalt' routine called by NDIS to deallocate all
// resources attached to the adapter. NDIS does not make any other calls
// for this mini-port adapter during or after this call. NDIS will not
// call this routine when packets indicated as received have not been
// returned, or when any VC is created and known to NDIS. Runs at PASSIVE
// IRQL.
//
{ ADAPTERCB* pAdapter;
TRACE( TL_N, TM_Mp, ( "PtiHalt" ) );
pAdapter = (ADAPTERCB* )MiniportAdapterContext; if (pAdapter->ulTag != MTAG_ADAPTERCB) { ASSERT( !"Atag?" ); return; }
DereferenceAdapter( pAdapter );
TRACE( TL_V, TM_Mp, ( "PtiHalt: Exit" ) ); }
NDIS_STATUS PtiReset( OUT PBOOLEAN AddressingReset, IN NDIS_HANDLE MiniportAdapterContext )
// Standard 'MiniportReset' routine called by NDIS to reset the driver's
// software state.
//
{ TRACE( TL_N, TM_Mp, ( "PtiReset" ) ); return NDIS_STATUS_NOT_RESETTABLE; }
VOID PtiReturnPacket( IN NDIS_HANDLE MiniportAdapterContext, IN PNDIS_PACKET Packet )
// Standard 'MiniportReturnPacket' routine called by NDIS when a packet
// used to indicate a receive has been released by the driver above.
//
{ VCCB* pVc; CHAR* pBuffer; ADAPTERCB* pAdapter; NDIS_BUFFER* pTrimmedBuffer; PACKETHEAD* pHead; PACKETPOOL* pPool;
TRACE( TL_V, TM_Recv, ( "PtiReturnPacket" ) );
// Unpack the context information we stashed earlier.
//
pHead = *((PACKETHEAD** )(&Packet->MiniportReserved[ 0 ])); pBuffer = *((CHAR** )(&Packet->MiniportReserved[ sizeof(VOID*) ]));
// Find the adapter from the PACKETHEAD address.
//
pPool = PacketPoolFromPacketHead( pHead ); pAdapter = CONTAINING_RECORD( pPool, ADAPTERCB, poolPackets ); ASSERT( pAdapter->ulTag == MTAG_ADAPTERCB );
// Free the descriptor created by NdisCopyBuffer.
//
NdisUnchainBufferAtFront( Packet, &pTrimmedBuffer ); if (pTrimmedBuffer) { NdisFreeBuffer( pTrimmedBuffer ); }
// Free the buffer and packet back to the pools.
//
FreeBufferToPool( &pAdapter->poolFrameBuffers, pBuffer, TRUE ); FreePacketToPool( &pAdapter->poolPackets, pHead, TRUE );
TRACE( TL_V, TM_Recv, ( "PtiReturnPacket: Exit" ) ); }
NDIS_STATUS PtiCoActivateVc( IN NDIS_HANDLE MiniportVcContext, IN OUT PCO_CALL_PARAMETERS CallParameters )
// Standard 'MiniportCoActivateVc' routine called by NDIS in response to a
// protocol's request to activate a virtual circuit.
//
{ ASSERT( !"PtiCoActVc?" ); return NDIS_STATUS_SUCCESS; }
NDIS_STATUS PtiCoDeactivateVc( IN NDIS_HANDLE MiniportVcContext )
// Standard 'MiniportCoDeactivateVc' routine called by NDIS in response to
// a protocol's request to de-activate a virtual circuit.
//
{ ASSERT( !"PtiCoDeactVc?" ); return NDIS_STATUS_SUCCESS; }
VOID PtiCoSendPackets( IN NDIS_HANDLE MiniportVcContext, IN PPNDIS_PACKET PacketArray, IN UINT NumberOfPackets )
// Standard 'MiniportCoSendPackets' routine called by NDIS in response to
// a protocol's request to send packets on a virtual circuit.
//
{ UINT i; NDIS_STATUS status; NDIS_PACKET** ppPacket; VCCB* pVc; ADAPTERCB* pAdapter; ULONG ulLength; NDIS_PACKET* pPacket; PNDIS_BUFFER pBuffer; PVOID pFrameVirtualAddress; KIRQL oldIrql;
TRACE( TL_V, TM_Send, ( "PtiCoSendPackets: pVc=$%p, nPackets=$%x", MiniportVcContext, NumberOfPackets ) );
pVc = (VCCB* )MiniportVcContext; ASSERT( pVc->ulTag == MTAG_VCCB ); pAdapter = pVc->pAdapter;
ReferenceVc( pVc );
for (i = 0, ppPacket = PacketArray; i < NumberOfPackets; ++i, ++ppPacket) { NDIS_PACKET* pPacket = *ppPacket;
if (ReferenceCall( pVc )) { // Send the packet and call NdisMCoSendComplete to notify caller
//
NDIS_SET_PACKET_STATUS( pPacket, NDIS_STATUS_PENDING );
// Request the first buffer descriptor
//
NdisQueryPacket( pPacket, NULL, NULL, &pBuffer, NULL );
// While pBuffer <> NULL
do { UCHAR* pAsyncBuf; ULONG ulAsyncLen;
// request buffer address and length
//
NdisQueryBuffer( pBuffer, &pFrameVirtualAddress, &ulLength );
if (IsWin9xPeer( pVc )) { pAsyncBuf = (UCHAR* ) GetBufferFromPool( &pAdapter->poolFrameBuffers );
if (!pAsyncBuf) { status = NDIS_STATUS_FAILURE; TRACE( TL_A, TM_Send, ( "PtiSP: !pAsyncBuf" ) ); break; }
AsyncFromHdlcFraming( pFrameVirtualAddress, ulLength, pAsyncBuf, &ulAsyncLen, pVc->linkinfo.SendACCM );
pFrameVirtualAddress = pAsyncBuf; ulLength = ulAsyncLen; } else { pAsyncBuf = NULL; }
// send the buffer
//
KeRaiseIrql(DISPATCH_LEVEL, &oldIrql); status = (NDIS_STATUS) PtiWrite( pVc->PtiExtension, pFrameVirtualAddress, ulLength, PID_STANDARD ); KeLowerIrql(oldIrql);
TRACE( TL_N, TM_Send, ( "PtiCoSendPackets=%x: $%x bytes", status, ulLength ) );
#ifdef TESTMODE
if ( g_ulTraceMask & TM_Data ) { if (pFrameVirtualAddress != NULL) { Dump( pFrameVirtualAddress, ulLength, 0, TRUE ); } } #endif
if (pAsyncBuf) { FreeBufferToPool( &pAdapter->poolFrameBuffers, pAsyncBuf, TRUE ); }
if (!NT_SUCCESS(status)){ break; }
// get next pBuffer
//
NdisGetNextBuffer( pBuffer, &pBuffer );
// With current NDISWAN behavior only one NDIS_BUFFER will
// ever be received. If multiples are received, we need to
// coalesce the chained buffers into an input buffer for the
// call to AsyncFromHdlcFraming above. For that matter, this
// would send partial PPP frames, which, it seems to me, would
// be discarded as fragments on the other end. Tony, am I
// wrong? To avoid a useless copy, we will skip that for now,
// but acknowledge here that the current code is not strictly
// correct. (SLC)
//
ASSERT( !pBuffer ); } while ( pBuffer != NULL );
NDIS_SET_PACKET_STATUS( pPacket, status ); TRACE( TL_V, TM_Send, ( "PtiCoSendPackets: NdisMCoSendComp: status=$%x", status ) ); NdisMCoSendComplete( status, pVc->NdisVcHandle, pPacket ); TRACE( TL_V, TM_Send, ( "PtiCoSendPackets: NdisMCoSendComp done" ) ); pVc->ulTotalPackets++; DereferenceCall( pVc ); } else { TRACE( TL_A, TM_Send, ( "Send to inactive call ignored" ) ); NDIS_SET_PACKET_STATUS( pPacket, NDIS_STATUS_FAILURE ); NdisMCoSendComplete( status, pVc->NdisVcHandle, pPacket ); } }
DereferenceVc( pVc ); TRACE( TL_V, TM_Send, ( "PtiCoSendPackets: Exit" ) ); }
NDIS_STATUS PtiCoRequest( IN NDIS_HANDLE MiniportAdapterContext, IN NDIS_HANDLE MiniportVcContext, IN OUT PNDIS_REQUEST NdisRequest )
// Standard 'MiniportCoRequestHandler' routine called by NDIS in response
// to a protocol's request information from the mini-port. Unlike the
// Query/SetInformation handlers that this routine obsoletes, requests are
// not serialized.
//
{ ADAPTERCB* pAdapter; VCCB* pVc; NDIS_STATUS status;
TRACE( TL_N, TM_Mp, ( "PtiCoReq" ) );
pAdapter = (ADAPTERCB* )MiniportAdapterContext; if (pAdapter->ulTag != MTAG_ADAPTERCB) { ASSERT( !"Atag?" ); return NDIS_STATUS_INVALID_DATA; }
pVc = (VCCB* )MiniportVcContext; if (pVc && pVc->ulTag != MTAG_VCCB) { ASSERT( !"Vtag?" ); return NDIS_STATUS_INVALID_DATA; }
switch (NdisRequest->RequestType) { case NdisRequestQueryInformation: { status = QueryInformation( pAdapter, pVc, NdisRequest->DATA.QUERY_INFORMATION.Oid, NdisRequest->DATA.QUERY_INFORMATION.InformationBuffer, NdisRequest->DATA.QUERY_INFORMATION.InformationBufferLength, &NdisRequest->DATA.QUERY_INFORMATION.BytesWritten, &NdisRequest->DATA.QUERY_INFORMATION.BytesNeeded ); break; }
case NdisRequestSetInformation: { status = SetInformation( pAdapter, pVc, NdisRequest->DATA.SET_INFORMATION.Oid, NdisRequest->DATA.SET_INFORMATION.InformationBuffer, NdisRequest->DATA.SET_INFORMATION.InformationBufferLength, &NdisRequest->DATA.SET_INFORMATION.BytesRead, &NdisRequest->DATA.SET_INFORMATION.BytesNeeded ); break; }
default: { status = NDIS_STATUS_NOT_SUPPORTED; TRACE( TL_A, TM_Mp, ( "PtiCoReq: type=%d unsupported", NdisRequest->RequestType ) ); break; } }
TRACE( TL_V, TM_Mp, ( "PtiCoReq: Exit: $%x", status ) ); return status; }
//-----------------------------------------------------------------------------
// Callback routines ... called by the PtiLink layer below
//-----------------------------------------------------------------------------
PVOID PtiCbGetReadBuffer( IN PVOID Context, OUT PULONG BufferSize, OUT PVOID* RequestContext )
// PtiLink is requesting a read buffer, get one and return it
// This is a the start of a receive event ...
{ VCCB* pVc; ADAPTERCB* pAdapter; PCHAR pBuffer;
TRACE( TL_V, TM_Spec, ( "PtiCbGetReadBuffer: pVc=$%p", Context ) );
pVc = (VCCB* )Context; if (pVc->ulTag != MTAG_VCCB) { ASSERT( !"Vtag?" ); return NULL; }
pAdapter = pVc->pAdapter;
// the pVc is our context for use of this buffer
//
*RequestContext = pVc;
// Give caller the length of this buffer
//
*BufferSize = PTI_FrameBufferSize;
// ask for a buffer, caller must check for NULL
//
pBuffer = GetBufferFromPool( &pAdapter->poolFrameBuffers );
TRACE( TL_V, TM_Spec, ( "PtiCbGetReadBuffer: Exit: Issuing pBuffer=$%p", pBuffer ) );
// return the buffer to the caller
// this is a raw system va
//
return pBuffer; }
VOID PtiRx( IN PVOID Context, IN PVOID pBuffer, IN NTSTATUS Status, IN ULONG ulLength, IN PVOID RequestContext )
// Ptilink has completed a read, i.e., receive complete
// buffer now belongs to this layer
//
// Context -- is the pVC
//
// pBuffer -- is the pointer to buffer previously allocated
// to the PtiLink driver via the PtiCbGetReadBuffer function
//
// Status -- one of: NT_SUCCESS = good packet received
// DATA_OVERRUN = header failure
// BUFFER_TOO_SMALL= pBuffer is too small to receive packet
//
// ulLength - packet length
//
// RequestContext -- don't care
//
// General Note: PtiLink below us sends and receives link manangement
// packets using the Our and His structures ... link management packets to
// not flow through here. Link events are announced to us via our
// registered callback (PtiCbLinkEventHandler) below. We have nothing to
// do with Tx/Rx of link pkts.
//
{ VCCB* pVc; ADAPTERCB* pAdapter; NDIS_STATUS status; NDIS_STATUS writestatus; NDIS_PACKET* pPacket; NDIS_BUFFER* pNdisBuffer; PACKETHEAD* pHead; ULONGLONG ullTimeReceived; KIRQL oldIrql; UCHAR* pHdlcBuf; ULONG ulHdlcLen; UCHAR* pTmp;
TRACE( TL_N, TM_Recv, ( "PtiRx=%x: bytes=$%x", Status, ulLength ) ); TRACE( TL_V, TM_Recv, ( "PtiRx=%x, pVc=$%p, pBuf=$%p, bytes=$%x", Status, Context, pBuffer, ulLength ) );
pVc = (VCCB* )Context; if (pVc->ulTag != MTAG_VCCB) { ASSERT( !"Vtag?" ); return; } ReferenceVc( pVc );
pAdapter = pVc->pAdapter;
// NOT A REAL DATA PACKET
// return any buffers used for non-data or losing reads
//
if ( !NT_SUCCESS( Status ) ){ TRACE( TL_A, TM_Pool, ( "PtiRx: Status != SUCCESS, freeing buffer", Status ) );
if ( pBuffer != NULL ) { FreeBufferToPool( &pAdapter->poolFrameBuffers, pBuffer, TRUE ); }
DereferenceVc( pVc ); return; }
#ifdef TESTMODE
if ( g_ulTraceMask & TM_Data ) { if (pBuffer != NULL) { Dump( pBuffer, ulLength, 0, TRUE ); } } #endif
// INCOMING CALL ... NO VC EXISTS YET for this incoming data packet
//
if (ReferenceSap( pAdapter )) { if (!(ReadFlags( &pAdapter->pListenVc->ulFlags ) & VCBF_CallInProgress)) { // Setting in Listen VC here.
//
SetFlags( &pAdapter->pListenVc->ulFlags, VCBF_CallInProgress );
// This is the start of an incoming call which may also start via
// LINK_OPEN event to PtiCbLinkEventHandler
//
// Ignore this packet and proceed to dispatch an incoming call
//
TRACE( TL_V, TM_Recv, ( "PtiRx: Incoming call", Status ) );
// Free the buffer associated with this read ... we throw away the
// data thus losing one packet off the front of an attempt to
// connect, unless the LPKT_OPEN function beats us (a LPKT_OPEN
// notification occurs before first data packet is received ... it
// could happen either way.)
//
if (pBuffer != NULL ) { FreeBufferToPool( &pAdapter->poolFrameBuffers, pBuffer, TRUE ); }
// set up a VC for the incoming call
//
SetupVcAsynchronously( pAdapter ); DereferenceVc( pVc ); DereferenceSap( pAdapter ); return; }
DereferenceSap( pAdapter ); }
// NOW HAVE A REAL DATA PACKET
if (ReferenceCall( pVc )) { do { if (IsWin9xPeer( pVc )) { if (pVc->ulTotalPackets < 4) { // If packet matches "CLIENT", we emit one saying
// "CLIENTSERVER"
//
// If packet matches "CLIENTSERVER", throw it away
//
// This hack emulates the Win9x UNIMODEM behavior which is
// required to allow Win9x systems to connect to us.
//
// Also, it appears that sending the "CLIENT" packet up
// the stack causes RasTapi to disconnect us immediately.
// It wants to see PPP?
//
if ( StrCmp( pBuffer, g_szClientServer, CLIENTSERVERLEN ) == 0 ) { // throw away packets containing "CLIENTSERVER"
//
FreeBufferToPool( &pAdapter->poolFrameBuffers, pBuffer, TRUE ); TRACE( TL_V, TM_Recv, ( "PtiRx: CLIENTSERVER ignored", Status ) ); pVc->ulTotalPackets++; break; } else if ( StrCmp( pBuffer, g_szClient, CLIENTLEN ) == 0 ) { // when we see "CLIENT", throw away and respond
// "CLIENTSERVER".
//
TRACE( TL_V, TM_Recv, ( "PtiRx: See CLIENT", Status ) );
KeRaiseIrql(DISPATCH_LEVEL, &oldIrql); writestatus = (NDIS_STATUS) PtiWrite( pVc->PtiExtension, g_szClientServer, CLIENTSERVERLEN, PID_STANDARD ); KeLowerIrql(oldIrql);
FreeBufferToPool( &pAdapter->poolFrameBuffers, pBuffer, TRUE ); TRACE( TL_V, TM_Recv, ( "PtiRx: CLIENTSERVER sent", Status ) ); pVc->ulTotalPackets++; break; } }
// Un-byte-stuff the received buffer into a second buffer,
// then swap it with the received buffer.
//
pHdlcBuf = (UCHAR* ) GetBufferFromPool( &pAdapter->poolFrameBuffers ); if (!pHdlcBuf) { FreeBufferToPool( &pAdapter->poolFrameBuffers, pBuffer, TRUE ); TRACE( TL_A, TM_Recv, ( "PtiRx: !Alloc HDLC" ) ); break; }
HdlcFromAsyncFraming( pBuffer, ulLength, pHdlcBuf, &ulHdlcLen );
pTmp = pBuffer; pBuffer = pHdlcBuf; ulLength = ulHdlcLen; FreeBufferToPool( &pAdapter->poolFrameBuffers, pTmp, TRUE ); }
// Note the time if client's call parameters indicated interest in
// time received.
//
if (ReadFlags( &pVc->ulFlags ) & VCBF_IndicateTimeReceived) { NdisGetCurrentSystemTime( (LARGE_INTEGER* )&ullTimeReceived ); } else { ullTimeReceived = 0; }
TRACE( TL_V, TM_Recv, ( "PtiRx: Rx Packet: nBytes=$%x", ulLength ) );
// Get a packet from the packet pool
//
pPacket = GetPacketFromPool( &pAdapter->poolPackets, &pHead ); if (!pPacket) { // Packet descriptor pool is maxed.
//
ASSERT( !"GetPfP?" ); break; }
// Hook the NDIS_BUFFER to the packet. The "copy" here refers to
// descriptor information only. The packet data is not copied.
//
NdisCopyBuffer( &status, &pNdisBuffer, PoolHandleForNdisCopyBufferFromBuffer( pBuffer ), NdisBufferFromBuffer( pBuffer ), 0, ulLength );
if (status != STATUS_SUCCESS) { // Can't get a MDL which likely means the system is toast.
//
FreePacketToPool( &pAdapter->poolPackets, pHead, TRUE ); TRACE( TL_A, TM_Recv, ( "NdisCopyBuffer=%08x?", status ) ); break; }
NdisChainBufferAtFront( pPacket, pNdisBuffer );
// Stash the time the packet was received in the packet.
//
NDIS_SET_PACKET_TIME_RECEIVED( pPacket, ullTimeReceived );
// Pre-set the packet to success, since a random value of
// NDIS_STATUS_RESOURCES would prevent our ReturnPackets handler
// from getting called.
//
NDIS_SET_PACKET_STATUS( pPacket, NDIS_STATUS_SUCCESS );
// Stash our context information with the packet for clean-up use
// in PtiReturnPacket, then indicate the packet to NDISWAN.
//
*((PACKETHEAD** )(&pPacket->MiniportReserved[ 0 ])) = pHead; *((CHAR** )(&pPacket->MiniportReserved[ sizeof(VOID*) ])) = pBuffer;
TRACE( TL_V, TM_Recv, ( "PtiRx: NdisMCoIndRecPkt: hVc=$%p, pPacket=$%p, len=$%x", pVc->NdisVcHandle, pPacket, ulLength ) );
NdisMCoIndicateReceivePacket( pVc->NdisVcHandle, &pPacket, 1 );
TRACE( TL_V, TM_Recv, ( "PtiRx: NdisMCoIndRecPkt done" ) );
// Tell NDIS our "receive process" is complete. Since we deal
// with one packet at a time and NDISWAN does also, this doesn't
// accomplish anything, but the consensus is it's bad form to omit
// it.
//
TRACE( TL_V, TM_Recv, ( "PtiRx: NdisMCoRecComp" ) ); NdisMCoReceiveComplete( pAdapter->MiniportAdapterHandle ); TRACE( TL_V, TM_Recv, ( "PtiRx: NdisMCoRecComp done" ) ); pVc->ulTotalPackets++; } while (FALSE);
DereferenceCall( pVc ); } else { TRACE( TL_A, TM_Recv, ( "Receive on inactive call ignored" ) ); }
DereferenceVc( pVc ); return; }
VOID PtiCbLinkEventHandler( IN PVOID Context, IN ULONG PtiLinkEventId, IN ULONG PtiLinkEventData )
// Ptilink is reporting a link management event (Link up or down)
//
{ VCCB* pVc; ADAPTERCB* pAdapter;
pVc = (VCCB* )Context; if (pVc->ulTag != MTAG_VCCB) { ASSERT( !"Vtag?" ); return; }
pAdapter = pVc->pAdapter;
switch (PtiLinkEventId) { case PTILINK_LINK_UP: { TRACE( TL_A, TM_Cm, ( "LinkEvent: LINK UP, pVc=$%p", pVc ) );
// peer is initiating a call (also happens in PtiRx)
//
break; }
case PTILINK_LINK_DOWN: { TRACE( TL_A, TM_Cm, ( "LinkEvent: LINK DOWN, pVc=$%p", pVc ) );
// peer is closing a call
//
if (pVc == pAdapter->pListenVc) { TRACE( TL_A, TM_Cm, ( "LinkEvent: LINK DOWN on ListenVc ignored" ) ); break; }
NdisAcquireSpinLock( &pVc->lockV ); { pVc->status = NDIS_STATUS_TAPI_DISCONNECTMODE_NORMAL; CallTransitionComplete( pVc ); } NdisReleaseSpinLock( &pVc->lockV );
TRACE( TL_A, TM_Cm, ( "LinkEvent: LINK DOWN causing disconnect" ) );
CompleteVc( pVc ); break; }
default: { TRACE( TL_A, TM_Cm, ( "LinkEvent: Bad LinkEvent = %d", PtiLinkEventId ) ); break; } } }
//-----------------------------------------------------------------------------
// Mini-port utility routines (alphabetically)
// Some are used externally
//-----------------------------------------------------------------------------
VOID AsyncFromHdlcFraming( IN UCHAR* pInBuf, IN ULONG ulInBufLen, OUT UCHAR* pOutBuf, OUT ULONG* pulOutBufLen, IN ULONG ulAccmMask )
// Make a copy of PPP HDLC framed data buffer 'pInBuf' of length
// 'ulInBufLen' bytes in caller's 'pOutBuf' buffer, converting to
// byte-stuffed asynchronous PPP framed format in the process.
// 'POutBufLen' is the length in bytes of the returned output buffer. Due
// to the byte stuffing, caller must allow for up to twice the length of
// 'pInfBuf'. 'UlAccmMask' is the bitmask of characters to be byte
// stuffed.
//
// With current implementation, user must allow 2 extra bytes at the end
// of the input buffer for stashing the FCS during byte-stuffing.
//
// This routine is adapted from the ASYNCMAC AssemblePppFrame routine, as
// is the following description, which in turn was lifted from RFC 1331
// (May 1992). The PPP frame NDISWAN passes us for sends is the data from
// the Address field through the Information field inclusive, without any
// byte stuffing, of course.
//
// Asynchronously framed PPP packet:
//
// +----------+----------+----------+----------+------------...
// | Flag | Address | Control | Protocol | Information
// | 01111110 | 11111111 | 00000011 | 16 bits | *
// +----------+----------+----------+----------+------------...
// ...---+----------+----------+-----------------
// | FCS | Flag | Inter-frame Fill
// | 16 bits | 01111110 | or next Address
// ...---+----------+----------+-----------------
//
// Frame Check Sequence (FCS) Field
//
// The Frame Check Sequence field is normally 16 bits (two octets). The
// use of other FCS lengths may be defined at a later time, or by prior
// agreement.
//
// The FCS field is calculated over all bits of the Address, Control,
// Protocol and Information fields not including any start and stop bits
// (asynchronous) and any bits (synchronous) or octets (asynchronous)
// inserted for transparency. This does not include the Flag Sequences
// or the FCS field itself. The FCS is transmitted with the coefficient
// of the highest term first.
//
// Note: When octets are received which are flagged in the Async-
// Control-Character-Map, they are discarded before calculating the
// FCS. See the description in Appendix A.
//
// On asynchronous links, a character stuffing procedure is used.
// The Control Escape octet is defined as binary 01111101
// (hexadecimal 0x7d) where the bit positions are numbered 87654321
// (not 76543210, BEWARE).
//
// After FCS computation, the transmitter examines the entire frame
// between the two Flag Sequences. Each Flag Sequence, Control
// Escape octet and octet with value less than hexadecimal 0x20 which
// is flagged in the Remote Async-Control-Character-Map is replaced
// by a two octet sequence consisting of the Control Escape octet and
// the original octet with bit 6 complemented (i.e., exclusive-or'd
// with hexadecimal 0x20).
//
// Prior to FCS computation, the receiver examines the entire frame
// between the two Flag Sequences. Each octet with value less than
// hexadecimal 0x20 is checked. If it is flagged in the Local
// Async-Control-Character-Map, it is simply removed (it may have
// been inserted by intervening data communications equipment). For
// each Control Escape octet, that octet is also removed, but bit 6
// of the following octet is complemented. A Control Escape octet
// immediately preceding the closing Flag Sequence indicates an
// invalid frame.
//
// Note: The inclusion of all octets less than hexadecimal 0x20
// allows all ASCII control characters [10] excluding DEL (Delete)
// to be transparently communicated through almost all known data
// communications equipment.
//
//
// The transmitter may also send octets with value in the range 0x40
// through 0xff (except 0x5e) in Control Escape format. Since these
// octet values are not negotiable, this does not solve the problem
// of receivers which cannot handle all non-control characters.
// Also, since the technique does not affect the 8th bit, this does
// not solve problems for communications links that can send only 7-
// bit characters.
//
// A few examples may make this more clear. Packet data is
// transmitted on the link as follows:
//
// 0x7e is encoded as 0x7d, 0x5e.
// 0x7d is encoded as 0x7d, 0x5d.
//
// 0x01 is encoded as 0x7d, 0x21.
//
// Some modems with software flow control may intercept outgoing DC1
// and DC3 ignoring the 8th (parity) bit. This data would be
// transmitted on the link as follows:
//
// 0x11 is encoded as 0x7d, 0x31.
// 0x13 is encoded as 0x7d, 0x33.
// 0x91 is encoded as 0x7d, 0xb1.
// 0x93 is encoded as 0x7d, 0xb3.
//
{ USHORT usFcs; UCHAR* pIn; UCHAR* pOut; ULONG ulInBytesLeft;
pIn = pInBuf; ulInBytesLeft = ulInBufLen; pOut = pOutBuf;
// Calculate the frame check sequence on the data.
//
TRACE( TL_I, TM_Data, ( "AfromH (send) dump:" ) ); DUMPB( TL_I, TM_Data, pInBuf, ulInBufLen ); usFcs = CalculatePppFcs( pInBuf, ulInBufLen ); usFcs ^= 0xFFFF;
// Add the calculated FCS. Added to the input buffer for convenience as
// it must be byte-stuffed along with the other data, though this uglies
// the interface a bit.
//
pIn[ ulInBytesLeft ] = (UCHAR )usFcs; ++ulInBytesLeft; pIn[ ulInBytesLeft ] = (UCHAR )(usFcs >> 8); ++ulInBytesLeft;
// Add the initial flag byte.
//
*pOut = PPPFLAGBYTE; ++pOut;
// Because an empty control character mask is common, an optimized loop is
// provided in that case.
//
if (ulAccmMask #ifdef TESTMODE
|| g_fNoAccmFastPath #endif
) { // Have bitmask...slower path.
//
while (ulInBytesLeft--) { UCHAR uch;
uch = *pIn; ++pIn;
if (((uch < 0x20) && ((1 << uch) & ulAccmMask)) || (uch == PPPESCBYTE) || (uch == PPPFLAGBYTE)) { // Byte stuff the character.
//
*pOut = PPPESCBYTE; ++pOut; *pOut = uch ^ 0x20; ++pOut; } else { // Copy the character as is.
//
*pOut = uch; ++pOut; } } } else { // No bitmask...fast path.
//
while (ulInBytesLeft--) { UCHAR uch;
uch = *pIn; ++pIn;
if ((uch == PPPESCBYTE) || (uch == PPPFLAGBYTE)) { // Byte stuff the character.
//
*pOut = PPPESCBYTE; ++pOut; *pOut = uch ^ 0x20; ++pOut; } else { // Copy the character as is.
//
*pOut = uch; ++pOut; } } }
// Add the trailing flag byte.
//
*pOut = PPPFLAGBYTE; ++pOut;
// Calculate length of output.
//
*pulOutBufLen = (ULONG )(pOut - pOutBuf); }
USHORT CalculatePppFcs( IN UCHAR* pBuf, IN ULONG ulBufLen )
// Return the PPP Frame Check Sequence on 'ulBufLen' bytes starting at
// 'pBuf'.
//
// (Taken from ASYNCMAC)
//
{ static USHORT ausFcsTable[ 256 ] = { 0x0000, 0x1189, 0x2312, 0x329b, 0x4624, 0x57ad, 0x6536, 0x74bf, 0x8c48, 0x9dc1, 0xaf5a, 0xbed3, 0xca6c, 0xdbe5, 0xe97e, 0xf8f7, 0x1081, 0x0108, 0x3393, 0x221a, 0x56a5, 0x472c, 0x75b7, 0x643e, 0x9cc9, 0x8d40, 0xbfdb, 0xae52, 0xdaed, 0xcb64, 0xf9ff, 0xe876, 0x2102, 0x308b, 0x0210, 0x1399, 0x6726, 0x76af, 0x4434, 0x55bd, 0xad4a, 0xbcc3, 0x8e58, 0x9fd1, 0xeb6e, 0xfae7, 0xc87c, 0xd9f5, 0x3183, 0x200a, 0x1291, 0x0318, 0x77a7, 0x662e, 0x54b5, 0x453c, 0xbdcb, 0xac42, 0x9ed9, 0x8f50, 0xfbef, 0xea66, 0xd8fd, 0xc974, 0x4204, 0x538d, 0x6116, 0x709f, 0x0420, 0x15a9, 0x2732, 0x36bb, 0xce4c, 0xdfc5, 0xed5e, 0xfcd7, 0x8868, 0x99e1, 0xab7a, 0xbaf3, 0x5285, 0x430c, 0x7197, 0x601e, 0x14a1, 0x0528, 0x37b3, 0x263a, 0xdecd, 0xcf44, 0xfddf, 0xec56, 0x98e9, 0x8960, 0xbbfb, 0xaa72, 0x6306, 0x728f, 0x4014, 0x519d, 0x2522, 0x34ab, 0x0630, 0x17b9, 0xef4e, 0xfec7, 0xcc5c, 0xddd5, 0xa96a, 0xb8e3, 0x8a78, 0x9bf1, 0x7387, 0x620e, 0x5095, 0x411c, 0x35a3, 0x242a, 0x16b1, 0x0738, 0xffcf, 0xee46, 0xdcdd, 0xcd54, 0xb9eb, 0xa862, 0x9af9, 0x8b70, 0x8408, 0x9581, 0xa71a, 0xb693, 0xc22c, 0xd3a5, 0xe13e, 0xf0b7, 0x0840, 0x19c9, 0x2b52, 0x3adb, 0x4e64, 0x5fed, 0x6d76, 0x7cff, 0x9489, 0x8500, 0xb79b, 0xa612, 0xd2ad, 0xc324, 0xf1bf, 0xe036, 0x18c1, 0x0948, 0x3bd3, 0x2a5a, 0x5ee5, 0x4f6c, 0x7df7, 0x6c7e, 0xa50a, 0xb483, 0x8618, 0x9791, 0xe32e, 0xf2a7, 0xc03c, 0xd1b5, 0x2942, 0x38cb, 0x0a50, 0x1bd9, 0x6f66, 0x7eef, 0x4c74, 0x5dfd, 0xb58b, 0xa402, 0x9699, 0x8710, 0xf3af, 0xe226, 0xd0bd, 0xc134, 0x39c3, 0x284a, 0x1ad1, 0x0b58, 0x7fe7, 0x6e6e, 0x5cf5, 0x4d7c, 0xc60c, 0xd785, 0xe51e, 0xf497, 0x8028, 0x91a1, 0xa33a, 0xb2b3, 0x4a44, 0x5bcd, 0x6956, 0x78df, 0x0c60, 0x1de9, 0x2f72, 0x3efb, 0xd68d, 0xc704, 0xf59f, 0xe416, 0x90a9, 0x8120, 0xb3bb, 0xa232, 0x5ac5, 0x4b4c, 0x79d7, 0x685e, 0x1ce1, 0x0d68, 0x3ff3, 0x2e7a, 0xe70e, 0xf687, 0xc41c, 0xd595, 0xa12a, 0xb0a3, 0x8238, 0x93b1, 0x6b46, 0x7acf, 0x4854, 0x59dd, 0x2d62, 0x3ceb, 0x0e70, 0x1ff9, 0xf78f, 0xe606, 0xd49d, 0xc514, 0xb1ab, 0xa022, 0x92b9, 0x8330, 0x7bc7, 0x6a4e, 0x58d5, 0x495c, 0x3de3, 0x2c6a, 0x1ef1, 0x0f78 };
register USHORT usFcs;
usFcs = 0xFFFF; while (ulBufLen--) { usFcs = (usFcs >> 8) ^ ausFcsTable[ (usFcs ^ (USHORT )*pBuf) & 0xFF ]; ++pBuf; }
return usFcs; }
VOID DereferenceAdapter( IN ADAPTERCB* pAdapter )
// Removes a reference from the adapter control block 'pAdapter', and when
// frees the adapter resources when the last reference is removed.
//
{ LONG lRef;
lRef = NdisInterlockedDecrement( &pAdapter->lRef );
TRACE( TL_N, TM_Ref, ( "DerefA to %d", lRef ) ); ASSERT( lRef >= 0 );
if (lRef == 0) { FreeAdapter( pAdapter ); } }
VOID DereferenceVc( IN VCCB* pVc )
// Removes a reference to the VC control block 'pVc', and when frees the
// block when the last reference is removed.
//
{ LONG lRef;
lRef = NdisInterlockedDecrement( &pVc->lRef );
TRACE( TL_N, TM_Ref, ( "DerefVc to %d", lRef ) ); ASSERT( lRef >= 0 );
if (lRef == 0) { ADAPTERCB* pAdapter;
// now for an interesting bit ...
//
// if we have a listenVc allocated, then revert to using that
//
pAdapter = pVc->pAdapter; if (pAdapter->ulTag != MTAG_ADAPTERCB) { ASSERT( !"Atag?" ); return; }
if (pAdapter->pListenVc && pAdapter->pListenVc->hPtiLink) { TRACE( TL_V, TM_Mp, ( "DerefVc: Reverting to pVc=$%p", pAdapter->pListenVc ) );
ClearFlags( &pAdapter->pListenVc->ulFlags, VCBF_CallInProgress );
// reregister using the listen Vc
//
TRACE( TL_V, TM_Mp, ( "DerefVc: RegCb pLV=$%p", pAdapter->pListenVc ) ); PtiRegisterCallbacks(pAdapter->pListenVc->Extension, // the PTILINKx extension
PtiCbGetReadBuffer, // our get buffer routine
PtiRx, // our receive complete routine
PtiCbLinkEventHandler, // our link event handler
pAdapter->pListenVc); // our new context
}
// Can make these assumptions because NDIS will not call the delete-VC
// handler while the VC is active. All the nasty VC clean up occurs
// before the VC is deactivated and the call closed.
//
pVc->ulTag = MTAG_FREED; FREE_VCCB( pAdapter, pVc ); DereferenceAdapter( pAdapter ); TRACE( TL_I, TM_Mp, ( "pVc=$%p freed", pVc ) ); } }
VOID FreeAdapter( IN ADAPTERCB* pAdapter )
// Frees all resources allocated for adapter 'pAdapter', including
// 'pAdapter' itself.
//
{ BOOLEAN fSuccess;
// Setting 'usMaxVcs' to 0 is PtiInitialize's way of telling us that the
// lookaside lists and pools were not initialized.
//
if (pAdapter->usMaxVcs) { NdisDeleteNPagedLookasideList( &pAdapter->llistWorkItems ); NdisDeleteNPagedLookasideList( &pAdapter->llistVcs ); }
TRACE( TL_V, TM_Mp, ( "FreeAdapter" ) );
pAdapter->ulTag = MTAG_FREED; FREE_NONPAGED( pAdapter ); }
NDIS_STATUS RegistrySettings( IN OUT ADAPTERCB* pAdapter, IN NDIS_HANDLE WrapperConfigurationContext )
// Read this mini-port's registry settings into 'pAdapter' fields. Also
// writes registry values read by RASTAPI, overriding SETUPs.
// 'WrapperConfigurationContext' is the handle to passed to
// MiniportInitialize.
//
{ NDIS_STATUS status; NDIS_HANDLE hCfg; NDIS_CONFIGURATION_PARAMETER* pncp;
NdisOpenConfiguration( &status, &hCfg, WrapperConfigurationContext ); if (status != NDIS_STATUS_SUCCESS) { return status; }
do { // The delay in milliseconds to wait for PARPORT to initialize all the
// parallel ports. With PnP there is no deterministic time at which
// to do this.
//
{ NDIS_STRING nstr = NDIS_STRING_CONST( "ParportDelayMs" );
NdisReadConfiguration( &status, &pncp, hCfg, &nstr, NdisParameterInteger );
if (status == NDIS_STATUS_SUCCESS) { pAdapter->ulParportDelayMs = pncp->ParameterData.IntegerData; } else { // Default is 3 seconds.
//
pAdapter->ulParportDelayMs = 3000; status = NDIS_STATUS_SUCCESS; } }
// The secondary delay in milliseconds to wait for PARPORT to
// initialize all the parallel ports, if there are no ports after the
// initial delay above.
//
{ NDIS_STRING nstr = NDIS_STRING_CONST( "ExtraParportDelayMs" );
NdisReadConfiguration( &status, &pncp, hCfg, &nstr, NdisParameterInteger );
if (status == NDIS_STATUS_SUCCESS) { pAdapter->ulExtraParportDelayMs = pncp->ParameterData.IntegerData; } else { // Default is 30 seconds.
//
pAdapter->ulExtraParportDelayMs = 30000; status = NDIS_STATUS_SUCCESS; } }
// The number of VCs we must be able to provide.
//
{ #if 0
NDIS_STRING nstr = NDIS_STRING_CONST( "MaxVcs" );
NdisReadConfiguration( &status, &pncp, hCfg, &nstr, NdisParameterInteger );
if (status == NDIS_STATUS_SUCCESS) { pAdapter->usMaxVcs = (USHORT )pncp->ParameterData.IntegerData;
// Make sure it's a valid value.
//
if (pAdapter->usMaxVcs < 1) { status = NDIS_STATUS_INVALID_DATA; break; } } else { pAdapter->usMaxVcs = 1; status = NDIS_STATUS_SUCCESS; } #else
// Registry value is currently ignored, and hard-coded maximum
// used.
//
pAdapter->usMaxVcs = NPORTS; #endif
} } while (FALSE);
NdisCloseConfiguration( hCfg );
TRACE( TL_N, TM_Init, ( "Reg: vcs=%d ppd=%d", (UINT )pAdapter->usMaxVcs, (UINT )pAdapter->ulParportDelayMs ) );
return status; }
BOOLEAN HdlcFromAsyncFraming( IN UCHAR* pInBuf, IN ULONG ulInBufLen, OUT UCHAR* pOutBuf, OUT ULONG* pulOutBufLen )
// Make a copy of asynchronously framed PPP data buffer 'pInBuf' of length
// 'ulInBufLen' bytes in caller's 'pOutBuf' buffer, converting to PPP HDLC
// framed format in the process. 'POutBufLen' is the length in bytes of
// the returned output buffer. Caller must allow for up to the length of
// 'pInBuf' in 'pOutBuf'.
//
// Returns true if the packet is valid, false if corrupt.
//
// Adapted from ASYNCMAC's AsyncPPPCompletionRoutine.
//
{ UCHAR* pIn; UCHAR* pInEnd; UCHAR* pOut; USHORT usFcs;
if (ulInBufLen < 5) { // Expecting at least 2 flag bytes, 1 data byte, and the FCS.
//
TRACE( TL_A, TM_Mp, ( "HfA: frame too short=%d", ulInBufLen ) ); return FALSE; }
if (pInBuf[ 0 ] != PPPFLAGBYTE) { TRACE( TL_A, TM_Mp, ( "HfA: No head flag" ) ); return FALSE; }
if (pInBuf[ ulInBufLen - 1 ] != PPPFLAGBYTE) { TRACE( TL_A, TM_Mp, ( "HfA: No tail flag" ) ); return FALSE; }
pIn = pInBuf + 1; pInEnd = pInBuf + ulInBufLen - 1; pOut = pOutBuf;
while (pIn < pInEnd) { if (*pIn == PPPESCBYTE) { ++pIn; *pOut = *pIn ^ 0x20; } else { *pOut = *pIn; }
++pOut; ++pIn; }
*pulOutBufLen = (ULONG )(pOut - pOutBuf - 2);
{ USHORT usCalcFcs;
usFcs = (USHORT )(pOut[ -2 ]) + (USHORT )(pOut[ -1 ] << 8); usFcs ^= 0xFFFF;
TRACE( TL_I, TM_Data, ( "HfromA (recv) dump:" ) ); DUMPB( TL_I, TM_Data, pOutBuf, *pulOutBufLen ); usCalcFcs = CalculatePppFcs( pOutBuf, *pulOutBufLen ); if (usFcs != usCalcFcs) { TRACE( TL_A, TM_Mp, ( "HfA: FCS mismatch, R=$%04x C=$%04x, L=%d", (INT )usFcs, (INT )usCalcFcs, *pulOutBufLen ) ); return FALSE; } #if 0
#ifdef TESTMODE
else { TRACE( TL_A, TM_Mp, ( "HfA: Good FCS, R=$%04x C=$%04x, L=%d", (INT )usFcs, (INT )usCalcFcs, *pulOutBufLen ) ); } #endif
#endif
}
return TRUE; }
BOOLEAN IsWin9xPeer( IN VCCB* pVc )
// Returns true if the link level has determined that the VC's peer is a
// Win9x box, false otherwise.
//
{ ULONG Platform; PPTI_EXTENSION pPtiExtension;
#ifdef TESTMODE
if (g_fAssumeWin9x) { return TRUE; } #endif
pPtiExtension = (PPTI_EXTENSION )pVc->PtiExtension;
// try to check the validity of the PtiExtension pointer
//
if ( pPtiExtension == NULL ) { TRACE( TL_A, TM_Recv, ( "PtiRx: pPtiExtension is NULL!" ) ); return FALSE; }
Platform = (ULONG) pPtiExtension->His.VerPlat;
TRACE( TL_V, TM_Recv, ( "IsWin9xPeer: far platform=$%x", Platform ) );
if (Platform == PLAT_WIN9X) { // Win9x -- we reformat the asynch framing used by Win9x DCC
// and also play the CLIENT->CLIENTSERVER game
//
return TRUE; }
// WinNT (or DOS maybe)
//
return FALSE; }
NDIS_STATUS QueryInformation( IN ADAPTERCB* pAdapter, IN VCCB* pVc, IN NDIS_OID Oid, IN PVOID InformationBuffer, IN ULONG InformationBufferLength, OUT PULONG BytesWritten, OUT PULONG BytesNeeded )
// Handle QueryInformation requests. Arguments are as for the standard
// NDIS 'MiniportQueryInformation' handler except this routine does not
// count on being serialized with respect to other requests.
//
{ NDIS_STATUS status; ULONG ulInfo; VOID* pInfo; ULONG ulInfoLen;
status = NDIS_STATUS_SUCCESS;
// The cases in this switch statement find or create a buffer containing
// the requested information and point 'pInfo' at it, noting it's length
// in 'ulInfoLen'. Since many of the OIDs return a ULONG, a 'ulInfo'
// buffer is set up as the default.
//
ulInfo = 0; pInfo = &ulInfo; ulInfoLen = sizeof(ulInfo);
switch (Oid) { case OID_GEN_MAXIMUM_LOOKAHEAD: { // Report the maximum number of bytes we can always provide as
// lookahead data on receive indications. We always indicate full
// packets so this is the same as the receive block size. And
// since we always allocate enough for a full packet, the receive
// block size is the same as the frame size.
//
TRACE( TL_N, TM_Mp, ( "QInfo(OID_GEN_MAXIMUM_LOOKAHEAD)" ) ); ulInfo = PTI_MaxFrameSize; break; }
case OID_GEN_MAC_OPTIONS: { // Report a bitmask defining optional properties of the driver.
//
// NDIS_MAC_OPTION_COPY_LOOKAHEAD_DATA promises that our receive
// buffer is not on a device-specific card.
//
// NDIS_MAC_OPTION_TRANSFERS_NOT_PEND promises we won't return
// NDIS_STATUS_PENDING from our TransferData handler which is true
// since we don't have one.
//
TRACE( TL_N, TM_Mp, ( "QInfo(OID_GEN_MAC_OPTIONS)" ) ); ulInfo = NDIS_MAC_OPTION_COPY_LOOKAHEAD_DATA | NDIS_MAC_OPTION_TRANSFERS_NOT_PEND; break; }
case OID_WAN_MEDIUM_SUBTYPE: { // Report the media subtype we support. NDISWAN may use this in
// the future (doesn't now) to provide framing differences for
// different media.
//
TRACE( TL_N, TM_Mp, ( "QInfo(OID_WAN_MEDIUM_SUBTYPE)" ) ); ulInfo = NdisWanMediumParallel; break; }
case OID_WAN_CO_GET_INFO: { // Report the capabilities of the adapter.
//
TRACE( TL_N, TM_Mp, ( "QInfo(OID_WAN_CO_GET_INFO)" ) ); pInfo = &pAdapter->info; ulInfoLen = sizeof(NDIS_WAN_CO_INFO); break; }
case OID_WAN_CO_GET_LINK_INFO: { // Report the current state of the link.
//
TRACE( TL_N, TM_Mp, ( "QInfo(OID_WAN_CO_GET_LINK_INFO)" ) );
if (!pVc) return NDIS_STATUS_INVALID_DATA; pInfo = &pVc->linkinfo; ulInfoLen = sizeof(NDIS_WAN_CO_GET_LINK_INFO); break; }
case OID_WAN_CO_GET_COMP_INFO: { // Report the type of compression we provide, which is none.
//
TRACE( TL_N, TM_Mp, ( "QInfo(OID_WAN_CO_GET_COMP_INFO)" ) ); status = NDIS_STATUS_NOT_SUPPORTED; ulInfoLen = 0; break; }
case OID_WAN_CO_GET_STATS_INFO: { // Because DirectParallel doesn't do compression, NDISWAN will use
// it's own statistics and not query ours.
//
ASSERT( !"OID_WAN_CO_GET_STATS_INFO?" ); status = NDIS_STATUS_NOT_SUPPORTED; ulInfoLen = 0; break; }
case OID_GEN_SUPPORTED_LIST: { static ULONG aulSupportedOids[] = { OID_GEN_SUPPORTED_LIST, OID_GEN_MAXIMUM_LOOKAHEAD, OID_GEN_MAC_OPTIONS, OID_WAN_MEDIUM_SUBTYPE, OID_WAN_CO_GET_INFO, OID_WAN_CO_GET_LINK_INFO, OID_WAN_CO_SET_LINK_INFO, OID_CO_TAPI_CM_CAPS, OID_CO_TAPI_LINE_CAPS, OID_CO_TAPI_ADDRESS_CAPS, OID_CO_TAPI_GET_CALL_DIAGNOSTICS };
TRACE( TL_N, TM_Mp, ( "QInfo(OID_GEN_SUPPORTED_LIST)" ) ); pInfo = aulSupportedOids; ulInfoLen = sizeof(aulSupportedOids); break; }
case OID_PNP_CAPABILITIES: { pInfo = &PnpCaps; ulInfoLen = sizeof(PnpCaps); break; }
case OID_PNP_SET_POWER: break; case OID_PNP_QUERY_POWER: break; case OID_PNP_ENABLE_WAKE_UP: break;
#if 0
// These OIDs are mandatory according to current doc, but since
// NDISWAN never requests them they are omitted.
//
case OID_GEN_HARDWARE_STATUS: case OID_GEN_MEDIA_SUPPORTED: case OID_GEN_MEDIA_IN_USE: case OID_GEN_MEDIA_IN_USE: case OID_GEN_MAXIMUM_FRAME_SIZE: case OID_GEN_LINK_SPEED: case OID_GEN_TRANSMIT_BUFFER_SPACE: case OID_GEN_RECEIVE_BUFFER_SPACE: case OID_GEN_TRANSMIT_BLOCK_SIZE: case OID_GEN_RECEIVE_BLOCK_SIZE: case OID_GEN_VENDOR_ID: case OID_GEN_VENDOR_DESCRIPTION: case OID_GEN_VENDOR_DRIVER_VERSION: case OID_GEN_CURRENT_PACKET_FILTER: case OID_GEN_CURRENT_LOOKAHEAD: case OID_GEN_DRIVER_VERSION: case OID_GEN_MAXIMUM_TOTAL_SIZE: case OID_GEN_MAC_OPTIONS: case OID_GEN_MEDIA_CONNECT_STATUS: case OID_GEN_MAXIMUM_SEND_PACKETS: case OID_WAN_PERMANENT_ADDRESS: case OID_WAN_CURRENT_ADDRESS: case OID_WAN_QUALITY_OF_SERVICE: case OID_WAN_LINE_COUNT: #endif
default: { TRACE( TL_A, TM_Mp, ( "QueryInfo: Oid=$%08x?", Oid ) ); status = NDIS_STATUS_NOT_SUPPORTED; // JAY per SLC
ulInfoLen = 0; break; } }
if (ulInfoLen > InformationBufferLength) { // Caller's buffer is too small. Tell him what he needs.
//
*BytesNeeded = ulInfoLen; status = NDIS_STATUS_INVALID_LENGTH; } else { // Copy the found result to caller's buffer.
//
if (ulInfoLen > 0) { NdisMoveMemory( InformationBuffer, pInfo, ulInfoLen ); DUMPDW( TL_N, TM_Mp, pInfo, ulInfoLen ); }
*BytesNeeded = *BytesWritten = ulInfoLen; }
return status; }
VOID ReferenceAdapter( IN ADAPTERCB* pAdapter )
// Adds areference to the adapter block, 'pAdapter'.
//
{ LONG lRef;
lRef = NdisInterlockedIncrement( &pAdapter->lRef );
TRACE( TL_N, TM_Ref, ( "RefA to %d", lRef ) ); }
VOID ReferenceVc( IN VCCB* pVc )
// Adds a reference to the VC control block 'pVc'.
//
{ LONG lRef;
lRef = NdisInterlockedIncrement( &pVc->lRef );
TRACE( TL_N, TM_Ref, ( "RefVc to %d", lRef ) ); }
VOID SendClientString( IN PVOID pPtiExtension )
// Send "CLIENT" so Win9x, which views us as a NULL modem, is happy.
//
{ KIRQL oldIrql;
KeRaiseIrql(DISPATCH_LEVEL, &oldIrql); PtiWrite( pPtiExtension, g_szClient, CLIENTLEN, PID_STANDARD ); KeLowerIrql(oldIrql); }
NDIS_STATUS SetInformation( IN ADAPTERCB* pAdapter, IN VCCB* pVc, IN NDIS_OID Oid, IN PVOID InformationBuffer, IN ULONG InformationBufferLength, OUT PULONG BytesRead, OUT PULONG BytesNeeded )
// Handle SetInformation requests. Arguments are as for the standard NDIS
// 'MiniportQueryInformation' handler except this routine does not count
// on being serialized with respect to other requests.
//
{ NDIS_STATUS status;
status = NDIS_STATUS_SUCCESS;
switch (Oid) { case OID_WAN_CO_SET_LINK_INFO: { // Read new link state settings.
//
TRACE( TL_N, TM_Mp, ( "SInfo(OID_WAN_CO_SET_LINK_INFO)" ) ); if (InformationBufferLength < sizeof(NDIS_WAN_CO_SET_LINK_INFO)) { status = NDIS_STATUS_INVALID_LENGTH; *BytesRead = 0; } else { if (!pVc) { return NDIS_STATUS_INVALID_DATA; }
ASSERT( sizeof(pVc->linkinfo) == sizeof(NDIS_WAN_CO_SET_LINK_INFO) );
NdisMoveMemory( &pVc->linkinfo, InformationBuffer, sizeof(pVc->linkinfo) ); DUMPB( TL_N, TM_Mp, &pVc->linkinfo, sizeof(pVc->linkinfo) );
*BytesRead = sizeof(NDIS_WAN_CO_SET_LINK_INFO); }
*BytesNeeded = sizeof(NDIS_WAN_CO_SET_LINK_INFO); } break;
case OID_WAN_CO_SET_COMP_INFO: { // DirectParallel doesn't provide compression.
//
TRACE( TL_N, TM_Mp, ( "SInfo(OID_WAN_CO_SET_COMP_INFO)" ) ); status = NDIS_STATUS_NOT_SUPPORTED; *BytesRead = *BytesNeeded = 0; break; }
#if 0
// These OIDs are mandatory according to current doc, but since
// NDISWAN never requests them they are omitted.
//
case OID_GEN_CURRENT_PACKET_FILTER: case OID_GEN_CURRENT_LOOKAHEAD: case OID_GEN_PROTOCOL_OPTIONS: case OID_WAN_PROTOCOL_TYPE: case OID_WAN_HEADER_FORMAT: #endif
default: { TRACE( TL_A, TM_Mp, ( "SetInfo: Oid=$%08x?", Oid ) ); status = NDIS_STATUS_NOT_SUPPORTED; // JAY per SLC
*BytesRead = *BytesNeeded = 0; break; } }
return status; }
|