Source code of Windows XP (NT5)
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

2083 lines
63 KiB

// Copyright (c) 1997, Microsoft Corporation, all rights reserved
// Copyright (c) 1997, Parallel Technologies, Inc., all rights reserved
//
// mp.c
// RAS DirectParallel WAN mini-port/call-manager driver
// Mini-port routines
//
// 01/07/97 Steve Cobb
// 09/15/97 Jay Lowe, Parallel Technologies, Inc.
#include "ptiwan.h"
#include "ptilink.h"
// The adapter control block address is recorded in this global as a debugging
// aid. This global must not be read by any code.
//
ADAPTERCB* g_pDebugAdapter;
// Default settings for the NDIS_WAN_CO_INFO capabilities of an adapter.
//
static NDIS_WAN_CO_INFO g_infoDefaults =
{
PTI_MaxFrameSize, // MaxFrameSize
1, // MaxSendWindow (placeholder)
PPP_FRAMING // FramingBits
| PPP_COMPRESS_ADDRESS_CONTROL
| PPP_COMPRESS_PROTOCOL_FIELD,
0, // DesiredACCM
};
// String constants for Win9x UNIMODEM emulation
//
CHAR g_szClient[] = "CLIENT";
#define CLIENTLEN 6
CHAR g_szClientServer[] = "CLIENTSERVER";
#define CLIENTSERVERLEN 12
// Async framing definitions.
//
#define PPPFLAGBYTE 0x7E
#define PPPESCBYTE 0x7D
#if DBG
BOOLEAN g_fAssumeWin9x = FALSE;
BOOLEAN g_fNoAccmFastPath = FALSE;
#endif
NDIS_PNP_CAPABILITIES PnpCaps =
{
0, // Flags
{
NdisDeviceStateUnspecified,
NdisDeviceStateUnspecified,
NdisDeviceStateUnspecified
}
};
//-----------------------------------------------------------------------------
// Local prototypes (alphabetically)
//-----------------------------------------------------------------------------
VOID
AsyncFromHdlcFraming(
IN UCHAR* pInBuf,
IN ULONG ulInBufLen,
OUT UCHAR* pOutBuf,
OUT ULONG* pulOutBufLen,
IN ULONG ulAccmMask );
USHORT
CalculatePppFcs(
IN UCHAR* pBuf,
IN ULONG ulBufLen );
VOID
FreeAdapter(
IN ADAPTERCB* pAdapter );
NDIS_STATUS
RegistrySettings(
IN OUT ADAPTERCB* pAdapter,
IN NDIS_HANDLE WrapperConfigurationContext );
BOOLEAN
HdlcFromAsyncFraming(
IN UCHAR* pInBuf,
IN ULONG ulInBufLen,
OUT UCHAR* pOutBuf,
OUT ULONG* pulOutBufLen );
NDIS_STATUS
QueryInformation(
IN ADAPTERCB* pAdapter,
IN VCCB* pLink,
IN NDIS_OID Oid,
IN PVOID InformationBuffer,
IN ULONG InformationBufferLength,
OUT PULONG BytesWritten,
OUT PULONG BytesNeeded );
NDIS_STATUS
SetInformation(
IN ADAPTERCB* pAdapter,
IN VCCB* pLink,
IN NDIS_OID Oid,
IN PVOID InformationBuffer,
IN ULONG InformationBufferLength,
OUT PULONG BytesRead,
OUT PULONG BytesNeeded );
//-----------------------------------------------------------------------------
// Mini-port handlers
//-----------------------------------------------------------------------------
NDIS_STATUS
PtiInit(
OUT PNDIS_STATUS OpenErrorStatus,
OUT PUINT SelectedMediumIndex,
IN PNDIS_MEDIUM MediumArray,
IN UINT MediumArraySize,
IN NDIS_HANDLE MiniportAdapterHandle,
IN NDIS_HANDLE WrapperConfigurationContext )
// Standard 'MiniportInitialize' routine called by NDIS to initialize a
// new WAN adapter. See DDK doc. The driver will receive no requests
// until this initialization has completed.
//
{
NDIS_STATUS status;
ADAPTERCB* pAdapter;
TRACE( TL_N, TM_Init, ( "PtiInit" ) );
#ifdef TESTMODE
DbgBreakPoint();
#endif
status = *OpenErrorStatus = NDIS_STATUS_SUCCESS;
// Find the medium index in the array of media, looking for the only one
// we support, 'NdisMediumCoWan'.
//
{
UINT i;
for (i = 0; i < MediumArraySize; ++i)
{
if (MediumArray[ i ] == NdisMediumCoWan)
{
break;
}
}
if (i >= MediumArraySize)
{
TRACE( TL_A, TM_Init, ( "medium?" ) );
return NDIS_STATUS_FAILURE;
}
*SelectedMediumIndex = i;
}
// Allocate and zero a control block for the new adapter.
//
pAdapter = ALLOC_NONPAGED( sizeof(*pAdapter), MTAG_ADAPTERCB );
TRACE( TL_N, TM_Init, ( "PtiInit: pAdapter=$%p", pAdapter ) );
if (!pAdapter)
{
return NDIS_STATUS_RESOURCES;
}
NdisZeroMemory( pAdapter, sizeof(*pAdapter) );
// The adapter control block address is recorded in 'g_pDebugAdapter' as a
// debugging aid only. This global is not to be read by any code.
//
g_pDebugAdapter = pAdapter;
// Set a marker for easier memory dump browsing and future assertions.
//
pAdapter->ulTag = MTAG_ADAPTERCB;
// Save the NDIS handle associated with this adapter for use in future
// NdixXxx calls.
//
pAdapter->MiniportAdapterHandle = MiniportAdapterHandle;
// Copy defaults NDISWAN information. Some of these are updated below.
//
NdisMoveMemory( &pAdapter->info, &g_infoDefaults, sizeof(pAdapter->info) );
do
{
// Read/write this adapter's registry settings.
//
status = RegistrySettings(
pAdapter,
WrapperConfigurationContext );
if (status != NDIS_STATUS_SUCCESS)
{
// Set 'usMaxVcs' to 0 as an indication to FreeAdapter that the
// lookaside lists and pools were not initialized.
//
pAdapter->usMaxVcs = 0;
break;
}
// Initialize lookaside lists, buffer pools, and packet pool. On NT,
// lookaside depths are optimized by the system based on usage
// regardless of the depth set, but choose something reasonable
// anyway.
//
{
NdisInitializeNPagedLookasideList(
&pAdapter->llistWorkItems,
NULL, NULL, 0,
sizeof(NDIS_WORK_ITEM),
MTAG_WORKITEM,
4 );
NdisInitializeNPagedLookasideList(
&pAdapter->llistVcs,
NULL, NULL, 0,
sizeof(VCCB),
MTAG_VCCB,
4 );
InitBufferPool(
&pAdapter->poolFrameBuffers,
PTI_FrameBufferSize,
0, 10, 0,
TRUE, MTAG_FBUFPOOL );
InitPacketPool(
&pAdapter->poolPackets,
0, 0, 10, 0,
MTAG_PACKETPOOL );
}
// Inform NDIS of the attributes of our adapter. Set the
// 'MiniportAdapterContext' returned to us by NDIS when it calls our
// handlers to the address of our adapter control block. Turn off
// hardware oriented timeouts.
//
NdisMSetAttributesEx(
MiniportAdapterHandle,
(NDIS_HANDLE)pAdapter,
(UINT)-1,
NDIS_ATTRIBUTE_IGNORE_PACKET_TIMEOUT
| NDIS_ATTRIBUTE_IGNORE_REQUEST_TIMEOUT,
NdisInterfaceInternal );
// Register the address family of our call manager with NDIS for the
// newly bound adapter. We use the mini-port form of
// RegisterAddressFamily instead of the protocol form, though that
// would also work. With the protocol form, our internal call manager
// would have to go thru NDIS to talk to the mini-port instead of just
// calling directly. Since the DirectParallel call manager is not
// useful with anything but the DirectParallel mini-port, this would be a waste.
// The mini-port form also causes the call manager VC context to
// automatically map to the mini-port VC context, which is exactly
// what we want.
//
// NDIS notifies all call manager clients of the new family we
// register. The TAPI proxy is the only client expected to be
// interested. NDISWAN will receive the notification, but ignore it
// and wait for the TAPI proxy to notify it of the proxied version.
//
{
NDIS_CALL_MANAGER_CHARACTERISTICS ncmc;
CO_ADDRESS_FAMILY family;
NdisZeroMemory( &family, sizeof(family) );
family.MajorVersion = NDIS_MajorVersion;
family.MinorVersion = NDIS_MinorVersion;
family.AddressFamily = CO_ADDRESS_FAMILY_TAPI_PROXY;
NdisZeroMemory( &ncmc, sizeof(ncmc) );
ncmc.MajorVersion = NDIS_MajorVersion;
ncmc.MinorVersion = NDIS_MinorVersion;
ncmc.CmCreateVcHandler = PtiCmCreateVc;
ncmc.CmDeleteVcHandler = PtiCmDeleteVc;
ncmc.CmOpenAfHandler = PtiCmOpenAf;
ncmc.CmCloseAfHandler = PtiCmCloseAf;
ncmc.CmRegisterSapHandler = PtiCmRegisterSap;
ncmc.CmDeregisterSapHandler = PtiCmDeregisterSap;
ncmc.CmMakeCallHandler = PtiCmMakeCall;
ncmc.CmCloseCallHandler = PtiCmCloseCall;
ncmc.CmIncomingCallCompleteHandler = PtiCmIncomingCallComplete;
// no CmAddPartyHandler
// no CmDropPartyHandler
ncmc.CmActivateVcCompleteHandler = PtiCmActivateVcComplete;
ncmc.CmDeactivateVcCompleteHandler = PtiCmDeactivateVcComplete;
ncmc.CmModifyCallQoSHandler = PtiCmModifyCallQoS;
ncmc.CmRequestHandler = PtiCmRequest;
TRACE( TL_I, TM_Mp, ( "PtiInit: NdisMCmRegAf" ) );
status = NdisMCmRegisterAddressFamily(
MiniportAdapterHandle, &family, &ncmc, sizeof(ncmc) );
TRACE( TL_I, TM_Mp, ( "PtiInit: NdisMCmRegAf=$%x", status ) );
}
}
while (FALSE);
if (status == NDIS_STATUS_SUCCESS)
{
// Add a reference that will eventually be removed by an NDIS call to
// the LmpHalt handler.
//
ReferenceAdapter( pAdapter );
}
else
{
// Failed, so undo whatever portion succeeded.
//
if (pAdapter)
{
FreeAdapter( pAdapter );
}
}
TRACE( TL_V, TM_Init, ( "PtiInit: Exit: status=$%x", status ) );
return status;
}
VOID
PtiHalt(
IN NDIS_HANDLE MiniportAdapterContext )
// Standard 'MiniportHalt' routine called by NDIS to deallocate all
// resources attached to the adapter. NDIS does not make any other calls
// for this mini-port adapter during or after this call. NDIS will not
// call this routine when packets indicated as received have not been
// returned, or when any VC is created and known to NDIS. Runs at PASSIVE
// IRQL.
//
{
ADAPTERCB* pAdapter;
TRACE( TL_N, TM_Mp, ( "PtiHalt" ) );
pAdapter = (ADAPTERCB* )MiniportAdapterContext;
if (pAdapter->ulTag != MTAG_ADAPTERCB)
{
ASSERT( !"Atag?" );
return;
}
DereferenceAdapter( pAdapter );
TRACE( TL_V, TM_Mp, ( "PtiHalt: Exit" ) );
}
NDIS_STATUS
PtiReset(
OUT PBOOLEAN AddressingReset,
IN NDIS_HANDLE MiniportAdapterContext )
// Standard 'MiniportReset' routine called by NDIS to reset the driver's
// software state.
//
{
TRACE( TL_N, TM_Mp, ( "PtiReset" ) );
return NDIS_STATUS_NOT_RESETTABLE;
}
VOID
PtiReturnPacket(
IN NDIS_HANDLE MiniportAdapterContext,
IN PNDIS_PACKET Packet )
// Standard 'MiniportReturnPacket' routine called by NDIS when a packet
// used to indicate a receive has been released by the driver above.
//
{
VCCB* pVc;
CHAR* pBuffer;
ADAPTERCB* pAdapter;
NDIS_BUFFER* pTrimmedBuffer;
PACKETHEAD* pHead;
PACKETPOOL* pPool;
TRACE( TL_V, TM_Recv, ( "PtiReturnPacket" ) );
// Unpack the context information we stashed earlier.
//
pHead = *((PACKETHEAD** )(&Packet->MiniportReserved[ 0 ]));
pBuffer = *((CHAR** )(&Packet->MiniportReserved[ sizeof(VOID*) ]));
// Find the adapter from the PACKETHEAD address.
//
pPool = PacketPoolFromPacketHead( pHead );
pAdapter = CONTAINING_RECORD( pPool, ADAPTERCB, poolPackets );
ASSERT( pAdapter->ulTag == MTAG_ADAPTERCB );
// Free the descriptor created by NdisCopyBuffer.
//
NdisUnchainBufferAtFront( Packet, &pTrimmedBuffer );
if (pTrimmedBuffer)
{
NdisFreeBuffer( pTrimmedBuffer );
}
// Free the buffer and packet back to the pools.
//
FreeBufferToPool( &pAdapter->poolFrameBuffers, pBuffer, TRUE );
FreePacketToPool( &pAdapter->poolPackets, pHead, TRUE );
TRACE( TL_V, TM_Recv, ( "PtiReturnPacket: Exit" ) );
}
NDIS_STATUS
PtiCoActivateVc(
IN NDIS_HANDLE MiniportVcContext,
IN OUT PCO_CALL_PARAMETERS CallParameters )
// Standard 'MiniportCoActivateVc' routine called by NDIS in response to a
// protocol's request to activate a virtual circuit.
//
{
ASSERT( !"PtiCoActVc?" );
return NDIS_STATUS_SUCCESS;
}
NDIS_STATUS
PtiCoDeactivateVc(
IN NDIS_HANDLE MiniportVcContext )
// Standard 'MiniportCoDeactivateVc' routine called by NDIS in response to
// a protocol's request to de-activate a virtual circuit.
//
{
ASSERT( !"PtiCoDeactVc?" );
return NDIS_STATUS_SUCCESS;
}
VOID
PtiCoSendPackets(
IN NDIS_HANDLE MiniportVcContext,
IN PPNDIS_PACKET PacketArray,
IN UINT NumberOfPackets )
// Standard 'MiniportCoSendPackets' routine called by NDIS in response to
// a protocol's request to send packets on a virtual circuit.
//
{
UINT i;
NDIS_STATUS status;
NDIS_PACKET** ppPacket;
VCCB* pVc;
ADAPTERCB* pAdapter;
ULONG ulLength;
NDIS_PACKET* pPacket;
PNDIS_BUFFER pBuffer;
PVOID pFrameVirtualAddress;
KIRQL oldIrql;
TRACE( TL_V, TM_Send,
( "PtiCoSendPackets: pVc=$%p, nPackets=$%x",
MiniportVcContext, NumberOfPackets ) );
pVc = (VCCB* )MiniportVcContext;
ASSERT( pVc->ulTag == MTAG_VCCB );
pAdapter = pVc->pAdapter;
ReferenceVc( pVc );
for (i = 0, ppPacket = PacketArray;
i < NumberOfPackets;
++i, ++ppPacket)
{
NDIS_PACKET* pPacket = *ppPacket;
if (ReferenceCall( pVc ))
{
// Send the packet and call NdisMCoSendComplete to notify caller
//
NDIS_SET_PACKET_STATUS( pPacket, NDIS_STATUS_PENDING );
// Request the first buffer descriptor
//
NdisQueryPacket( pPacket, NULL, NULL, &pBuffer, NULL );
// While pBuffer <> NULL
do
{
UCHAR* pAsyncBuf;
ULONG ulAsyncLen;
// request buffer address and length
//
NdisQueryBuffer( pBuffer,
&pFrameVirtualAddress,
&ulLength );
if (IsWin9xPeer( pVc ))
{
pAsyncBuf = (UCHAR* )
GetBufferFromPool( &pAdapter->poolFrameBuffers );
if (!pAsyncBuf)
{
status = NDIS_STATUS_FAILURE;
TRACE( TL_A, TM_Send, ( "PtiSP: !pAsyncBuf" ) );
break;
}
AsyncFromHdlcFraming(
pFrameVirtualAddress, ulLength,
pAsyncBuf, &ulAsyncLen,
pVc->linkinfo.SendACCM );
pFrameVirtualAddress = pAsyncBuf;
ulLength = ulAsyncLen;
}
else
{
pAsyncBuf = NULL;
}
// send the buffer
//
KeRaiseIrql(DISPATCH_LEVEL, &oldIrql);
status = (NDIS_STATUS) PtiWrite( pVc->PtiExtension,
pFrameVirtualAddress,
ulLength,
PID_STANDARD );
KeLowerIrql(oldIrql);
TRACE( TL_N, TM_Send,
( "PtiCoSendPackets=%x: $%x bytes", status, ulLength ) );
#ifdef TESTMODE
if ( g_ulTraceMask & TM_Data )
{
if (pFrameVirtualAddress != NULL) {
Dump( pFrameVirtualAddress, ulLength, 0, TRUE );
}
}
#endif
if (pAsyncBuf)
{
FreeBufferToPool(
&pAdapter->poolFrameBuffers, pAsyncBuf, TRUE );
}
if (!NT_SUCCESS(status)){
break;
}
// get next pBuffer
//
NdisGetNextBuffer( pBuffer, &pBuffer );
// With current NDISWAN behavior only one NDIS_BUFFER will
// ever be received. If multiples are received, we need to
// coalesce the chained buffers into an input buffer for the
// call to AsyncFromHdlcFraming above. For that matter, this
// would send partial PPP frames, which, it seems to me, would
// be discarded as fragments on the other end. Tony, am I
// wrong? To avoid a useless copy, we will skip that for now,
// but acknowledge here that the current code is not strictly
// correct. (SLC)
//
ASSERT( !pBuffer );
}
while ( pBuffer != NULL );
NDIS_SET_PACKET_STATUS( pPacket, status );
TRACE( TL_V, TM_Send,
( "PtiCoSendPackets: NdisMCoSendComp: status=$%x", status ) );
NdisMCoSendComplete( status, pVc->NdisVcHandle, pPacket );
TRACE( TL_V, TM_Send,
( "PtiCoSendPackets: NdisMCoSendComp done" ) );
pVc->ulTotalPackets++;
DereferenceCall( pVc );
}
else
{
TRACE( TL_A, TM_Send, ( "Send to inactive call ignored" ) );
NDIS_SET_PACKET_STATUS( pPacket, NDIS_STATUS_FAILURE );
NdisMCoSendComplete( status, pVc->NdisVcHandle, pPacket );
}
}
DereferenceVc( pVc );
TRACE( TL_V, TM_Send, ( "PtiCoSendPackets: Exit" ) );
}
NDIS_STATUS
PtiCoRequest(
IN NDIS_HANDLE MiniportAdapterContext,
IN NDIS_HANDLE MiniportVcContext,
IN OUT PNDIS_REQUEST NdisRequest )
// Standard 'MiniportCoRequestHandler' routine called by NDIS in response
// to a protocol's request information from the mini-port. Unlike the
// Query/SetInformation handlers that this routine obsoletes, requests are
// not serialized.
//
{
ADAPTERCB* pAdapter;
VCCB* pVc;
NDIS_STATUS status;
TRACE( TL_N, TM_Mp, ( "PtiCoReq" ) );
pAdapter = (ADAPTERCB* )MiniportAdapterContext;
if (pAdapter->ulTag != MTAG_ADAPTERCB)
{
ASSERT( !"Atag?" );
return NDIS_STATUS_INVALID_DATA;
}
pVc = (VCCB* )MiniportVcContext;
if (pVc && pVc->ulTag != MTAG_VCCB)
{
ASSERT( !"Vtag?" );
return NDIS_STATUS_INVALID_DATA;
}
switch (NdisRequest->RequestType)
{
case NdisRequestQueryInformation:
{
status = QueryInformation(
pAdapter,
pVc,
NdisRequest->DATA.QUERY_INFORMATION.Oid,
NdisRequest->DATA.QUERY_INFORMATION.InformationBuffer,
NdisRequest->DATA.QUERY_INFORMATION.InformationBufferLength,
&NdisRequest->DATA.QUERY_INFORMATION.BytesWritten,
&NdisRequest->DATA.QUERY_INFORMATION.BytesNeeded );
break;
}
case NdisRequestSetInformation:
{
status = SetInformation(
pAdapter,
pVc,
NdisRequest->DATA.SET_INFORMATION.Oid,
NdisRequest->DATA.SET_INFORMATION.InformationBuffer,
NdisRequest->DATA.SET_INFORMATION.InformationBufferLength,
&NdisRequest->DATA.SET_INFORMATION.BytesRead,
&NdisRequest->DATA.SET_INFORMATION.BytesNeeded );
break;
}
default:
{
status = NDIS_STATUS_NOT_SUPPORTED;
TRACE( TL_A, TM_Mp, ( "PtiCoReq: type=%d unsupported", NdisRequest->RequestType ) );
break;
}
}
TRACE( TL_V, TM_Mp, ( "PtiCoReq: Exit: $%x", status ) );
return status;
}
//-----------------------------------------------------------------------------
// Callback routines ... called by the PtiLink layer below
//-----------------------------------------------------------------------------
PVOID
PtiCbGetReadBuffer(
IN PVOID Context,
OUT PULONG BufferSize,
OUT PVOID* RequestContext )
// PtiLink is requesting a read buffer, get one and return it
// This is a the start of a receive event ...
{
VCCB* pVc;
ADAPTERCB* pAdapter;
PCHAR pBuffer;
TRACE( TL_V, TM_Spec, ( "PtiCbGetReadBuffer: pVc=$%p", Context ) );
pVc = (VCCB* )Context;
if (pVc->ulTag != MTAG_VCCB)
{
ASSERT( !"Vtag?" );
return NULL;
}
pAdapter = pVc->pAdapter;
// the pVc is our context for use of this buffer
//
*RequestContext = pVc;
// Give caller the length of this buffer
//
*BufferSize = PTI_FrameBufferSize;
// ask for a buffer, caller must check for NULL
//
pBuffer = GetBufferFromPool( &pAdapter->poolFrameBuffers );
TRACE( TL_V, TM_Spec,
( "PtiCbGetReadBuffer: Exit: Issuing pBuffer=$%p", pBuffer ) );
// return the buffer to the caller
// this is a raw system va
//
return pBuffer;
}
VOID
PtiRx(
IN PVOID Context,
IN PVOID pBuffer,
IN NTSTATUS Status,
IN ULONG ulLength,
IN PVOID RequestContext )
// Ptilink has completed a read, i.e., receive complete
// buffer now belongs to this layer
//
// Context -- is the pVC
//
// pBuffer -- is the pointer to buffer previously allocated
// to the PtiLink driver via the PtiCbGetReadBuffer function
//
// Status -- one of: NT_SUCCESS = good packet received
// DATA_OVERRUN = header failure
// BUFFER_TOO_SMALL= pBuffer is too small to receive packet
//
// ulLength - packet length
//
// RequestContext -- don't care
//
// General Note: PtiLink below us sends and receives link manangement
// packets using the Our and His structures ... link management packets to
// not flow through here. Link events are announced to us via our
// registered callback (PtiCbLinkEventHandler) below. We have nothing to
// do with Tx/Rx of link pkts.
//
{
VCCB* pVc;
ADAPTERCB* pAdapter;
NDIS_STATUS status;
NDIS_STATUS writestatus;
NDIS_PACKET* pPacket;
NDIS_BUFFER* pNdisBuffer;
PACKETHEAD* pHead;
ULONGLONG ullTimeReceived;
KIRQL oldIrql;
UCHAR* pHdlcBuf;
ULONG ulHdlcLen;
UCHAR* pTmp;
TRACE( TL_N, TM_Recv, ( "PtiRx=%x: bytes=$%x", Status, ulLength ) );
TRACE( TL_V, TM_Recv, ( "PtiRx=%x, pVc=$%p, pBuf=$%p, bytes=$%x",
Status, Context, pBuffer, ulLength ) );
pVc = (VCCB* )Context;
if (pVc->ulTag != MTAG_VCCB)
{
ASSERT( !"Vtag?" );
return;
}
ReferenceVc( pVc );
pAdapter = pVc->pAdapter;
// NOT A REAL DATA PACKET
// return any buffers used for non-data or losing reads
//
if ( !NT_SUCCESS( Status ) ){
TRACE( TL_A, TM_Pool, ( "PtiRx: Status != SUCCESS, freeing buffer", Status ) );
if ( pBuffer != NULL ) {
FreeBufferToPool( &pAdapter->poolFrameBuffers, pBuffer, TRUE );
}
DereferenceVc( pVc );
return;
}
#ifdef TESTMODE
if ( g_ulTraceMask & TM_Data )
{
if (pBuffer != NULL) {
Dump( pBuffer, ulLength, 0, TRUE );
}
}
#endif
// INCOMING CALL ... NO VC EXISTS YET for this incoming data packet
//
if (ReferenceSap( pAdapter ))
{
if (!(ReadFlags( &pAdapter->pListenVc->ulFlags ) & VCBF_CallInProgress))
{
// Setting in Listen VC here.
//
SetFlags( &pAdapter->pListenVc->ulFlags, VCBF_CallInProgress );
// This is the start of an incoming call which may also start via
// LINK_OPEN event to PtiCbLinkEventHandler
//
// Ignore this packet and proceed to dispatch an incoming call
//
TRACE( TL_V, TM_Recv, ( "PtiRx: Incoming call", Status ) );
// Free the buffer associated with this read ... we throw away the
// data thus losing one packet off the front of an attempt to
// connect, unless the LPKT_OPEN function beats us (a LPKT_OPEN
// notification occurs before first data packet is received ... it
// could happen either way.)
//
if (pBuffer != NULL ) {
FreeBufferToPool( &pAdapter->poolFrameBuffers, pBuffer, TRUE );
}
// set up a VC for the incoming call
//
SetupVcAsynchronously( pAdapter );
DereferenceVc( pVc );
DereferenceSap( pAdapter );
return;
}
DereferenceSap( pAdapter );
}
// NOW HAVE A REAL DATA PACKET
if (ReferenceCall( pVc ))
{
do
{
if (IsWin9xPeer( pVc ))
{
if (pVc->ulTotalPackets < 4)
{
// If packet matches "CLIENT", we emit one saying
// "CLIENTSERVER"
//
// If packet matches "CLIENTSERVER", throw it away
//
// This hack emulates the Win9x UNIMODEM behavior which is
// required to allow Win9x systems to connect to us.
//
// Also, it appears that sending the "CLIENT" packet up
// the stack causes RasTapi to disconnect us immediately.
// It wants to see PPP?
//
if ( StrCmp(
pBuffer, g_szClientServer, CLIENTSERVERLEN ) == 0 )
{
// throw away packets containing "CLIENTSERVER"
//
FreeBufferToPool(
&pAdapter->poolFrameBuffers, pBuffer, TRUE );
TRACE( TL_V, TM_Recv,
( "PtiRx: CLIENTSERVER ignored", Status ) );
pVc->ulTotalPackets++;
break;
}
else if ( StrCmp(
pBuffer, g_szClient, CLIENTLEN ) == 0 )
{
// when we see "CLIENT", throw away and respond
// "CLIENTSERVER".
//
TRACE( TL_V, TM_Recv, ( "PtiRx: See CLIENT", Status ) );
KeRaiseIrql(DISPATCH_LEVEL, &oldIrql);
writestatus = (NDIS_STATUS) PtiWrite(
pVc->PtiExtension,
g_szClientServer,
CLIENTSERVERLEN,
PID_STANDARD );
KeLowerIrql(oldIrql);
FreeBufferToPool(
&pAdapter->poolFrameBuffers, pBuffer, TRUE );
TRACE( TL_V, TM_Recv,
( "PtiRx: CLIENTSERVER sent", Status ) );
pVc->ulTotalPackets++;
break;
}
}
// Un-byte-stuff the received buffer into a second buffer,
// then swap it with the received buffer.
//
pHdlcBuf = (UCHAR* )
GetBufferFromPool( &pAdapter->poolFrameBuffers );
if (!pHdlcBuf)
{
FreeBufferToPool(
&pAdapter->poolFrameBuffers, pBuffer, TRUE );
TRACE( TL_A, TM_Recv, ( "PtiRx: !Alloc HDLC" ) );
break;
}
HdlcFromAsyncFraming(
pBuffer, ulLength, pHdlcBuf, &ulHdlcLen );
pTmp = pBuffer;
pBuffer = pHdlcBuf;
ulLength = ulHdlcLen;
FreeBufferToPool( &pAdapter->poolFrameBuffers, pTmp, TRUE );
}
// Note the time if client's call parameters indicated interest in
// time received.
//
if (ReadFlags( &pVc->ulFlags ) & VCBF_IndicateTimeReceived)
{
NdisGetCurrentSystemTime( (LARGE_INTEGER* )&ullTimeReceived );
}
else
{
ullTimeReceived = 0;
}
TRACE( TL_V, TM_Recv,
( "PtiRx: Rx Packet: nBytes=$%x", ulLength ) );
// Get a packet from the packet pool
//
pPacket = GetPacketFromPool( &pAdapter->poolPackets, &pHead );
if (!pPacket)
{
// Packet descriptor pool is maxed.
//
ASSERT( !"GetPfP?" );
break;
}
// Hook the NDIS_BUFFER to the packet. The "copy" here refers to
// descriptor information only. The packet data is not copied.
//
NdisCopyBuffer(
&status,
&pNdisBuffer,
PoolHandleForNdisCopyBufferFromBuffer( pBuffer ),
NdisBufferFromBuffer( pBuffer ),
0,
ulLength );
if (status != STATUS_SUCCESS)
{
// Can't get a MDL which likely means the system is toast.
//
FreePacketToPool( &pAdapter->poolPackets, pHead, TRUE );
TRACE( TL_A, TM_Recv, ( "NdisCopyBuffer=%08x?", status ) );
break;
}
NdisChainBufferAtFront( pPacket, pNdisBuffer );
// Stash the time the packet was received in the packet.
//
NDIS_SET_PACKET_TIME_RECEIVED( pPacket, ullTimeReceived );
// Pre-set the packet to success, since a random value of
// NDIS_STATUS_RESOURCES would prevent our ReturnPackets handler
// from getting called.
//
NDIS_SET_PACKET_STATUS( pPacket, NDIS_STATUS_SUCCESS );
// Stash our context information with the packet for clean-up use
// in PtiReturnPacket, then indicate the packet to NDISWAN.
//
*((PACKETHEAD** )(&pPacket->MiniportReserved[ 0 ])) = pHead;
*((CHAR** )(&pPacket->MiniportReserved[ sizeof(VOID*) ])) = pBuffer;
TRACE( TL_V, TM_Recv,
( "PtiRx: NdisMCoIndRecPkt: hVc=$%p, pPacket=$%p, len=$%x",
pVc->NdisVcHandle, pPacket, ulLength ) );
NdisMCoIndicateReceivePacket( pVc->NdisVcHandle, &pPacket, 1 );
TRACE( TL_V, TM_Recv, ( "PtiRx: NdisMCoIndRecPkt done" ) );
// Tell NDIS our "receive process" is complete. Since we deal
// with one packet at a time and NDISWAN does also, this doesn't
// accomplish anything, but the consensus is it's bad form to omit
// it.
//
TRACE( TL_V, TM_Recv, ( "PtiRx: NdisMCoRecComp" ) );
NdisMCoReceiveComplete( pAdapter->MiniportAdapterHandle );
TRACE( TL_V, TM_Recv, ( "PtiRx: NdisMCoRecComp done" ) );
pVc->ulTotalPackets++;
}
while (FALSE);
DereferenceCall( pVc );
}
else
{
TRACE( TL_A, TM_Recv, ( "Receive on inactive call ignored" ) );
}
DereferenceVc( pVc );
return;
}
VOID
PtiCbLinkEventHandler(
IN PVOID Context,
IN ULONG PtiLinkEventId,
IN ULONG PtiLinkEventData )
// Ptilink is reporting a link management event (Link up or down)
//
{
VCCB* pVc;
ADAPTERCB* pAdapter;
pVc = (VCCB* )Context;
if (pVc->ulTag != MTAG_VCCB)
{
ASSERT( !"Vtag?" );
return;
}
pAdapter = pVc->pAdapter;
switch (PtiLinkEventId)
{
case PTILINK_LINK_UP:
{
TRACE( TL_A, TM_Cm, ( "LinkEvent: LINK UP, pVc=$%p", pVc ) );
// peer is initiating a call (also happens in PtiRx)
//
break;
}
case PTILINK_LINK_DOWN:
{
TRACE( TL_A, TM_Cm, ( "LinkEvent: LINK DOWN, pVc=$%p", pVc ) );
// peer is closing a call
//
if (pVc == pAdapter->pListenVc)
{
TRACE( TL_A, TM_Cm,
( "LinkEvent: LINK DOWN on ListenVc ignored" ) );
break;
}
NdisAcquireSpinLock( &pVc->lockV );
{
pVc->status = NDIS_STATUS_TAPI_DISCONNECTMODE_NORMAL;
CallTransitionComplete( pVc );
}
NdisReleaseSpinLock( &pVc->lockV );
TRACE( TL_A, TM_Cm, ( "LinkEvent: LINK DOWN causing disconnect" ) );
CompleteVc( pVc );
break;
}
default:
{
TRACE( TL_A, TM_Cm,
( "LinkEvent: Bad LinkEvent = %d", PtiLinkEventId ) );
break;
}
}
}
//-----------------------------------------------------------------------------
// Mini-port utility routines (alphabetically)
// Some are used externally
//-----------------------------------------------------------------------------
VOID
AsyncFromHdlcFraming(
IN UCHAR* pInBuf,
IN ULONG ulInBufLen,
OUT UCHAR* pOutBuf,
OUT ULONG* pulOutBufLen,
IN ULONG ulAccmMask )
// Make a copy of PPP HDLC framed data buffer 'pInBuf' of length
// 'ulInBufLen' bytes in caller's 'pOutBuf' buffer, converting to
// byte-stuffed asynchronous PPP framed format in the process.
// 'POutBufLen' is the length in bytes of the returned output buffer. Due
// to the byte stuffing, caller must allow for up to twice the length of
// 'pInfBuf'. 'UlAccmMask' is the bitmask of characters to be byte
// stuffed.
//
// With current implementation, user must allow 2 extra bytes at the end
// of the input buffer for stashing the FCS during byte-stuffing.
//
// This routine is adapted from the ASYNCMAC AssemblePppFrame routine, as
// is the following description, which in turn was lifted from RFC 1331
// (May 1992). The PPP frame NDISWAN passes us for sends is the data from
// the Address field through the Information field inclusive, without any
// byte stuffing, of course.
//
// Asynchronously framed PPP packet:
//
// +----------+----------+----------+----------+------------...
// | Flag | Address | Control | Protocol | Information
// | 01111110 | 11111111 | 00000011 | 16 bits | *
// +----------+----------+----------+----------+------------...
// ...---+----------+----------+-----------------
// | FCS | Flag | Inter-frame Fill
// | 16 bits | 01111110 | or next Address
// ...---+----------+----------+-----------------
//
// Frame Check Sequence (FCS) Field
//
// The Frame Check Sequence field is normally 16 bits (two octets). The
// use of other FCS lengths may be defined at a later time, or by prior
// agreement.
//
// The FCS field is calculated over all bits of the Address, Control,
// Protocol and Information fields not including any start and stop bits
// (asynchronous) and any bits (synchronous) or octets (asynchronous)
// inserted for transparency. This does not include the Flag Sequences
// or the FCS field itself. The FCS is transmitted with the coefficient
// of the highest term first.
//
// Note: When octets are received which are flagged in the Async-
// Control-Character-Map, they are discarded before calculating the
// FCS. See the description in Appendix A.
//
// On asynchronous links, a character stuffing procedure is used.
// The Control Escape octet is defined as binary 01111101
// (hexadecimal 0x7d) where the bit positions are numbered 87654321
// (not 76543210, BEWARE).
//
// After FCS computation, the transmitter examines the entire frame
// between the two Flag Sequences. Each Flag Sequence, Control
// Escape octet and octet with value less than hexadecimal 0x20 which
// is flagged in the Remote Async-Control-Character-Map is replaced
// by a two octet sequence consisting of the Control Escape octet and
// the original octet with bit 6 complemented (i.e., exclusive-or'd
// with hexadecimal 0x20).
//
// Prior to FCS computation, the receiver examines the entire frame
// between the two Flag Sequences. Each octet with value less than
// hexadecimal 0x20 is checked. If it is flagged in the Local
// Async-Control-Character-Map, it is simply removed (it may have
// been inserted by intervening data communications equipment). For
// each Control Escape octet, that octet is also removed, but bit 6
// of the following octet is complemented. A Control Escape octet
// immediately preceding the closing Flag Sequence indicates an
// invalid frame.
//
// Note: The inclusion of all octets less than hexadecimal 0x20
// allows all ASCII control characters [10] excluding DEL (Delete)
// to be transparently communicated through almost all known data
// communications equipment.
//
//
// The transmitter may also send octets with value in the range 0x40
// through 0xff (except 0x5e) in Control Escape format. Since these
// octet values are not negotiable, this does not solve the problem
// of receivers which cannot handle all non-control characters.
// Also, since the technique does not affect the 8th bit, this does
// not solve problems for communications links that can send only 7-
// bit characters.
//
// A few examples may make this more clear. Packet data is
// transmitted on the link as follows:
//
// 0x7e is encoded as 0x7d, 0x5e.
// 0x7d is encoded as 0x7d, 0x5d.
//
// 0x01 is encoded as 0x7d, 0x21.
//
// Some modems with software flow control may intercept outgoing DC1
// and DC3 ignoring the 8th (parity) bit. This data would be
// transmitted on the link as follows:
//
// 0x11 is encoded as 0x7d, 0x31.
// 0x13 is encoded as 0x7d, 0x33.
// 0x91 is encoded as 0x7d, 0xb1.
// 0x93 is encoded as 0x7d, 0xb3.
//
{
USHORT usFcs;
UCHAR* pIn;
UCHAR* pOut;
ULONG ulInBytesLeft;
pIn = pInBuf;
ulInBytesLeft = ulInBufLen;
pOut = pOutBuf;
// Calculate the frame check sequence on the data.
//
TRACE( TL_I, TM_Data, ( "AfromH (send) dump:" ) );
DUMPB( TL_I, TM_Data, pInBuf, ulInBufLen );
usFcs = CalculatePppFcs( pInBuf, ulInBufLen );
usFcs ^= 0xFFFF;
// Add the calculated FCS. Added to the input buffer for convenience as
// it must be byte-stuffed along with the other data, though this uglies
// the interface a bit.
//
pIn[ ulInBytesLeft ] = (UCHAR )usFcs;
++ulInBytesLeft;
pIn[ ulInBytesLeft ] = (UCHAR )(usFcs >> 8);
++ulInBytesLeft;
// Add the initial flag byte.
//
*pOut = PPPFLAGBYTE;
++pOut;
// Because an empty control character mask is common, an optimized loop is
// provided in that case.
//
if (ulAccmMask
#ifdef TESTMODE
|| g_fNoAccmFastPath
#endif
)
{
// Have bitmask...slower path.
//
while (ulInBytesLeft--)
{
UCHAR uch;
uch = *pIn;
++pIn;
if (((uch < 0x20) && ((1 << uch) & ulAccmMask))
|| (uch == PPPESCBYTE) || (uch == PPPFLAGBYTE))
{
// Byte stuff the character.
//
*pOut = PPPESCBYTE;
++pOut;
*pOut = uch ^ 0x20;
++pOut;
}
else
{
// Copy the character as is.
//
*pOut = uch;
++pOut;
}
}
}
else
{
// No bitmask...fast path.
//
while (ulInBytesLeft--)
{
UCHAR uch;
uch = *pIn;
++pIn;
if ((uch == PPPESCBYTE) || (uch == PPPFLAGBYTE))
{
// Byte stuff the character.
//
*pOut = PPPESCBYTE;
++pOut;
*pOut = uch ^ 0x20;
++pOut;
}
else
{
// Copy the character as is.
//
*pOut = uch;
++pOut;
}
}
}
// Add the trailing flag byte.
//
*pOut = PPPFLAGBYTE;
++pOut;
// Calculate length of output.
//
*pulOutBufLen = (ULONG )(pOut - pOutBuf);
}
USHORT
CalculatePppFcs(
IN UCHAR* pBuf,
IN ULONG ulBufLen )
// Return the PPP Frame Check Sequence on 'ulBufLen' bytes starting at
// 'pBuf'.
//
// (Taken from ASYNCMAC)
//
{
static USHORT ausFcsTable[ 256 ] =
{
0x0000, 0x1189, 0x2312, 0x329b, 0x4624, 0x57ad, 0x6536, 0x74bf,
0x8c48, 0x9dc1, 0xaf5a, 0xbed3, 0xca6c, 0xdbe5, 0xe97e, 0xf8f7,
0x1081, 0x0108, 0x3393, 0x221a, 0x56a5, 0x472c, 0x75b7, 0x643e,
0x9cc9, 0x8d40, 0xbfdb, 0xae52, 0xdaed, 0xcb64, 0xf9ff, 0xe876,
0x2102, 0x308b, 0x0210, 0x1399, 0x6726, 0x76af, 0x4434, 0x55bd,
0xad4a, 0xbcc3, 0x8e58, 0x9fd1, 0xeb6e, 0xfae7, 0xc87c, 0xd9f5,
0x3183, 0x200a, 0x1291, 0x0318, 0x77a7, 0x662e, 0x54b5, 0x453c,
0xbdcb, 0xac42, 0x9ed9, 0x8f50, 0xfbef, 0xea66, 0xd8fd, 0xc974,
0x4204, 0x538d, 0x6116, 0x709f, 0x0420, 0x15a9, 0x2732, 0x36bb,
0xce4c, 0xdfc5, 0xed5e, 0xfcd7, 0x8868, 0x99e1, 0xab7a, 0xbaf3,
0x5285, 0x430c, 0x7197, 0x601e, 0x14a1, 0x0528, 0x37b3, 0x263a,
0xdecd, 0xcf44, 0xfddf, 0xec56, 0x98e9, 0x8960, 0xbbfb, 0xaa72,
0x6306, 0x728f, 0x4014, 0x519d, 0x2522, 0x34ab, 0x0630, 0x17b9,
0xef4e, 0xfec7, 0xcc5c, 0xddd5, 0xa96a, 0xb8e3, 0x8a78, 0x9bf1,
0x7387, 0x620e, 0x5095, 0x411c, 0x35a3, 0x242a, 0x16b1, 0x0738,
0xffcf, 0xee46, 0xdcdd, 0xcd54, 0xb9eb, 0xa862, 0x9af9, 0x8b70,
0x8408, 0x9581, 0xa71a, 0xb693, 0xc22c, 0xd3a5, 0xe13e, 0xf0b7,
0x0840, 0x19c9, 0x2b52, 0x3adb, 0x4e64, 0x5fed, 0x6d76, 0x7cff,
0x9489, 0x8500, 0xb79b, 0xa612, 0xd2ad, 0xc324, 0xf1bf, 0xe036,
0x18c1, 0x0948, 0x3bd3, 0x2a5a, 0x5ee5, 0x4f6c, 0x7df7, 0x6c7e,
0xa50a, 0xb483, 0x8618, 0x9791, 0xe32e, 0xf2a7, 0xc03c, 0xd1b5,
0x2942, 0x38cb, 0x0a50, 0x1bd9, 0x6f66, 0x7eef, 0x4c74, 0x5dfd,
0xb58b, 0xa402, 0x9699, 0x8710, 0xf3af, 0xe226, 0xd0bd, 0xc134,
0x39c3, 0x284a, 0x1ad1, 0x0b58, 0x7fe7, 0x6e6e, 0x5cf5, 0x4d7c,
0xc60c, 0xd785, 0xe51e, 0xf497, 0x8028, 0x91a1, 0xa33a, 0xb2b3,
0x4a44, 0x5bcd, 0x6956, 0x78df, 0x0c60, 0x1de9, 0x2f72, 0x3efb,
0xd68d, 0xc704, 0xf59f, 0xe416, 0x90a9, 0x8120, 0xb3bb, 0xa232,
0x5ac5, 0x4b4c, 0x79d7, 0x685e, 0x1ce1, 0x0d68, 0x3ff3, 0x2e7a,
0xe70e, 0xf687, 0xc41c, 0xd595, 0xa12a, 0xb0a3, 0x8238, 0x93b1,
0x6b46, 0x7acf, 0x4854, 0x59dd, 0x2d62, 0x3ceb, 0x0e70, 0x1ff9,
0xf78f, 0xe606, 0xd49d, 0xc514, 0xb1ab, 0xa022, 0x92b9, 0x8330,
0x7bc7, 0x6a4e, 0x58d5, 0x495c, 0x3de3, 0x2c6a, 0x1ef1, 0x0f78
};
register USHORT usFcs;
usFcs = 0xFFFF;
while (ulBufLen--)
{
usFcs = (usFcs >> 8) ^ ausFcsTable[ (usFcs ^ (USHORT )*pBuf) & 0xFF ];
++pBuf;
}
return usFcs;
}
VOID
DereferenceAdapter(
IN ADAPTERCB* pAdapter )
// Removes a reference from the adapter control block 'pAdapter', and when
// frees the adapter resources when the last reference is removed.
//
{
LONG lRef;
lRef = NdisInterlockedDecrement( &pAdapter->lRef );
TRACE( TL_N, TM_Ref, ( "DerefA to %d", lRef ) );
ASSERT( lRef >= 0 );
if (lRef == 0)
{
FreeAdapter( pAdapter );
}
}
VOID
DereferenceVc(
IN VCCB* pVc )
// Removes a reference to the VC control block 'pVc', and when frees the
// block when the last reference is removed.
//
{
LONG lRef;
lRef = NdisInterlockedDecrement( &pVc->lRef );
TRACE( TL_N, TM_Ref, ( "DerefVc to %d", lRef ) );
ASSERT( lRef >= 0 );
if (lRef == 0)
{
ADAPTERCB* pAdapter;
// now for an interesting bit ...
//
// if we have a listenVc allocated, then revert to using that
//
pAdapter = pVc->pAdapter;
if (pAdapter->ulTag != MTAG_ADAPTERCB)
{
ASSERT( !"Atag?" );
return;
}
if (pAdapter->pListenVc && pAdapter->pListenVc->hPtiLink)
{
TRACE( TL_V, TM_Mp,
( "DerefVc: Reverting to pVc=$%p", pAdapter->pListenVc ) );
ClearFlags( &pAdapter->pListenVc->ulFlags, VCBF_CallInProgress );
// reregister using the listen Vc
//
TRACE( TL_V, TM_Mp, ( "DerefVc: RegCb pLV=$%p",
pAdapter->pListenVc ) );
PtiRegisterCallbacks(pAdapter->pListenVc->Extension, // the PTILINKx extension
PtiCbGetReadBuffer, // our get buffer routine
PtiRx, // our receive complete routine
PtiCbLinkEventHandler, // our link event handler
pAdapter->pListenVc); // our new context
}
// Can make these assumptions because NDIS will not call the delete-VC
// handler while the VC is active. All the nasty VC clean up occurs
// before the VC is deactivated and the call closed.
//
pVc->ulTag = MTAG_FREED;
FREE_VCCB( pAdapter, pVc );
DereferenceAdapter( pAdapter );
TRACE( TL_I, TM_Mp, ( "pVc=$%p freed", pVc ) );
}
}
VOID
FreeAdapter(
IN ADAPTERCB* pAdapter )
// Frees all resources allocated for adapter 'pAdapter', including
// 'pAdapter' itself.
//
{
BOOLEAN fSuccess;
// Setting 'usMaxVcs' to 0 is PtiInitialize's way of telling us that the
// lookaside lists and pools were not initialized.
//
if (pAdapter->usMaxVcs)
{
NdisDeleteNPagedLookasideList( &pAdapter->llistWorkItems );
NdisDeleteNPagedLookasideList( &pAdapter->llistVcs );
}
TRACE( TL_V, TM_Mp, ( "FreeAdapter" ) );
pAdapter->ulTag = MTAG_FREED;
FREE_NONPAGED( pAdapter );
}
NDIS_STATUS
RegistrySettings(
IN OUT ADAPTERCB* pAdapter,
IN NDIS_HANDLE WrapperConfigurationContext )
// Read this mini-port's registry settings into 'pAdapter' fields. Also
// writes registry values read by RASTAPI, overriding SETUPs.
// 'WrapperConfigurationContext' is the handle to passed to
// MiniportInitialize.
//
{
NDIS_STATUS status;
NDIS_HANDLE hCfg;
NDIS_CONFIGURATION_PARAMETER* pncp;
NdisOpenConfiguration( &status, &hCfg, WrapperConfigurationContext );
if (status != NDIS_STATUS_SUCCESS)
{
return status;
}
do
{
// The delay in milliseconds to wait for PARPORT to initialize all the
// parallel ports. With PnP there is no deterministic time at which
// to do this.
//
{
NDIS_STRING nstr = NDIS_STRING_CONST( "ParportDelayMs" );
NdisReadConfiguration(
&status, &pncp, hCfg, &nstr, NdisParameterInteger );
if (status == NDIS_STATUS_SUCCESS)
{
pAdapter->ulParportDelayMs = pncp->ParameterData.IntegerData;
}
else
{
// Default is 3 seconds.
//
pAdapter->ulParportDelayMs = 3000;
status = NDIS_STATUS_SUCCESS;
}
}
// The secondary delay in milliseconds to wait for PARPORT to
// initialize all the parallel ports, if there are no ports after the
// initial delay above.
//
{
NDIS_STRING nstr = NDIS_STRING_CONST( "ExtraParportDelayMs" );
NdisReadConfiguration(
&status, &pncp, hCfg, &nstr, NdisParameterInteger );
if (status == NDIS_STATUS_SUCCESS)
{
pAdapter->ulExtraParportDelayMs =
pncp->ParameterData.IntegerData;
}
else
{
// Default is 30 seconds.
//
pAdapter->ulExtraParportDelayMs = 30000;
status = NDIS_STATUS_SUCCESS;
}
}
// The number of VCs we must be able to provide.
//
{
#if 0
NDIS_STRING nstr = NDIS_STRING_CONST( "MaxVcs" );
NdisReadConfiguration(
&status, &pncp, hCfg, &nstr, NdisParameterInteger );
if (status == NDIS_STATUS_SUCCESS)
{
pAdapter->usMaxVcs = (USHORT )pncp->ParameterData.IntegerData;
// Make sure it's a valid value.
//
if (pAdapter->usMaxVcs < 1)
{
status = NDIS_STATUS_INVALID_DATA;
break;
}
}
else
{
pAdapter->usMaxVcs = 1;
status = NDIS_STATUS_SUCCESS;
}
#else
// Registry value is currently ignored, and hard-coded maximum
// used.
//
pAdapter->usMaxVcs = NPORTS;
#endif
}
}
while (FALSE);
NdisCloseConfiguration( hCfg );
TRACE( TL_N, TM_Init,
( "Reg: vcs=%d ppd=%d",
(UINT )pAdapter->usMaxVcs,
(UINT )pAdapter->ulParportDelayMs ) );
return status;
}
BOOLEAN
HdlcFromAsyncFraming(
IN UCHAR* pInBuf,
IN ULONG ulInBufLen,
OUT UCHAR* pOutBuf,
OUT ULONG* pulOutBufLen )
// Make a copy of asynchronously framed PPP data buffer 'pInBuf' of length
// 'ulInBufLen' bytes in caller's 'pOutBuf' buffer, converting to PPP HDLC
// framed format in the process. 'POutBufLen' is the length in bytes of
// the returned output buffer. Caller must allow for up to the length of
// 'pInBuf' in 'pOutBuf'.
//
// Returns true if the packet is valid, false if corrupt.
//
// Adapted from ASYNCMAC's AsyncPPPCompletionRoutine.
//
{
UCHAR* pIn;
UCHAR* pInEnd;
UCHAR* pOut;
USHORT usFcs;
if (ulInBufLen < 5)
{
// Expecting at least 2 flag bytes, 1 data byte, and the FCS.
//
TRACE( TL_A, TM_Mp, ( "HfA: frame too short=%d", ulInBufLen ) );
return FALSE;
}
if (pInBuf[ 0 ] != PPPFLAGBYTE)
{
TRACE( TL_A, TM_Mp, ( "HfA: No head flag" ) );
return FALSE;
}
if (pInBuf[ ulInBufLen - 1 ] != PPPFLAGBYTE)
{
TRACE( TL_A, TM_Mp, ( "HfA: No tail flag" ) );
return FALSE;
}
pIn = pInBuf + 1;
pInEnd = pInBuf + ulInBufLen - 1;
pOut = pOutBuf;
while (pIn < pInEnd)
{
if (*pIn == PPPESCBYTE)
{
++pIn;
*pOut = *pIn ^ 0x20;
}
else
{
*pOut = *pIn;
}
++pOut;
++pIn;
}
*pulOutBufLen = (ULONG )(pOut - pOutBuf - 2);
{
USHORT usCalcFcs;
usFcs = (USHORT )(pOut[ -2 ]) + (USHORT )(pOut[ -1 ] << 8);
usFcs ^= 0xFFFF;
TRACE( TL_I, TM_Data, ( "HfromA (recv) dump:" ) );
DUMPB( TL_I, TM_Data, pOutBuf, *pulOutBufLen );
usCalcFcs = CalculatePppFcs( pOutBuf, *pulOutBufLen );
if (usFcs != usCalcFcs)
{
TRACE( TL_A, TM_Mp, (
"HfA: FCS mismatch, R=$%04x C=$%04x, L=%d",
(INT )usFcs, (INT )usCalcFcs, *pulOutBufLen ) );
return FALSE;
}
#if 0
#ifdef TESTMODE
else
{
TRACE( TL_A, TM_Mp, (
"HfA: Good FCS, R=$%04x C=$%04x, L=%d",
(INT )usFcs, (INT )usCalcFcs, *pulOutBufLen ) );
}
#endif
#endif
}
return TRUE;
}
BOOLEAN
IsWin9xPeer(
IN VCCB* pVc )
// Returns true if the link level has determined that the VC's peer is a
// Win9x box, false otherwise.
//
{
ULONG Platform;
PPTI_EXTENSION pPtiExtension;
#ifdef TESTMODE
if (g_fAssumeWin9x)
{
return TRUE;
}
#endif
pPtiExtension = (PPTI_EXTENSION )pVc->PtiExtension;
// try to check the validity of the PtiExtension pointer
//
if ( pPtiExtension == NULL )
{
TRACE( TL_A, TM_Recv, ( "PtiRx: pPtiExtension is NULL!" ) );
return FALSE;
}
Platform = (ULONG) pPtiExtension->His.VerPlat;
TRACE( TL_V, TM_Recv, ( "IsWin9xPeer: far platform=$%x", Platform ) );
if (Platform == PLAT_WIN9X)
{
// Win9x -- we reformat the asynch framing used by Win9x DCC
// and also play the CLIENT->CLIENTSERVER game
//
return TRUE;
}
// WinNT (or DOS maybe)
//
return FALSE;
}
NDIS_STATUS
QueryInformation(
IN ADAPTERCB* pAdapter,
IN VCCB* pVc,
IN NDIS_OID Oid,
IN PVOID InformationBuffer,
IN ULONG InformationBufferLength,
OUT PULONG BytesWritten,
OUT PULONG BytesNeeded )
// Handle QueryInformation requests. Arguments are as for the standard
// NDIS 'MiniportQueryInformation' handler except this routine does not
// count on being serialized with respect to other requests.
//
{
NDIS_STATUS status;
ULONG ulInfo;
VOID* pInfo;
ULONG ulInfoLen;
status = NDIS_STATUS_SUCCESS;
// The cases in this switch statement find or create a buffer containing
// the requested information and point 'pInfo' at it, noting it's length
// in 'ulInfoLen'. Since many of the OIDs return a ULONG, a 'ulInfo'
// buffer is set up as the default.
//
ulInfo = 0;
pInfo = &ulInfo;
ulInfoLen = sizeof(ulInfo);
switch (Oid)
{
case OID_GEN_MAXIMUM_LOOKAHEAD:
{
// Report the maximum number of bytes we can always provide as
// lookahead data on receive indications. We always indicate full
// packets so this is the same as the receive block size. And
// since we always allocate enough for a full packet, the receive
// block size is the same as the frame size.
//
TRACE( TL_N, TM_Mp, ( "QInfo(OID_GEN_MAXIMUM_LOOKAHEAD)" ) );
ulInfo = PTI_MaxFrameSize;
break;
}
case OID_GEN_MAC_OPTIONS:
{
// Report a bitmask defining optional properties of the driver.
//
// NDIS_MAC_OPTION_COPY_LOOKAHEAD_DATA promises that our receive
// buffer is not on a device-specific card.
//
// NDIS_MAC_OPTION_TRANSFERS_NOT_PEND promises we won't return
// NDIS_STATUS_PENDING from our TransferData handler which is true
// since we don't have one.
//
TRACE( TL_N, TM_Mp, ( "QInfo(OID_GEN_MAC_OPTIONS)" ) );
ulInfo = NDIS_MAC_OPTION_COPY_LOOKAHEAD_DATA
| NDIS_MAC_OPTION_TRANSFERS_NOT_PEND;
break;
}
case OID_WAN_MEDIUM_SUBTYPE:
{
// Report the media subtype we support. NDISWAN may use this in
// the future (doesn't now) to provide framing differences for
// different media.
//
TRACE( TL_N, TM_Mp, ( "QInfo(OID_WAN_MEDIUM_SUBTYPE)" ) );
ulInfo = NdisWanMediumParallel;
break;
}
case OID_WAN_CO_GET_INFO:
{
// Report the capabilities of the adapter.
//
TRACE( TL_N, TM_Mp, ( "QInfo(OID_WAN_CO_GET_INFO)" ) );
pInfo = &pAdapter->info;
ulInfoLen = sizeof(NDIS_WAN_CO_INFO);
break;
}
case OID_WAN_CO_GET_LINK_INFO:
{
// Report the current state of the link.
//
TRACE( TL_N, TM_Mp, ( "QInfo(OID_WAN_CO_GET_LINK_INFO)" ) );
if (!pVc)
return NDIS_STATUS_INVALID_DATA;
pInfo = &pVc->linkinfo;
ulInfoLen = sizeof(NDIS_WAN_CO_GET_LINK_INFO);
break;
}
case OID_WAN_CO_GET_COMP_INFO:
{
// Report the type of compression we provide, which is none.
//
TRACE( TL_N, TM_Mp, ( "QInfo(OID_WAN_CO_GET_COMP_INFO)" ) );
status = NDIS_STATUS_NOT_SUPPORTED;
ulInfoLen = 0;
break;
}
case OID_WAN_CO_GET_STATS_INFO:
{
// Because DirectParallel doesn't do compression, NDISWAN will use
// it's own statistics and not query ours.
//
ASSERT( !"OID_WAN_CO_GET_STATS_INFO?" );
status = NDIS_STATUS_NOT_SUPPORTED;
ulInfoLen = 0;
break;
}
case OID_GEN_SUPPORTED_LIST:
{
static ULONG aulSupportedOids[] = {
OID_GEN_SUPPORTED_LIST,
OID_GEN_MAXIMUM_LOOKAHEAD,
OID_GEN_MAC_OPTIONS,
OID_WAN_MEDIUM_SUBTYPE,
OID_WAN_CO_GET_INFO,
OID_WAN_CO_GET_LINK_INFO,
OID_WAN_CO_SET_LINK_INFO,
OID_CO_TAPI_CM_CAPS,
OID_CO_TAPI_LINE_CAPS,
OID_CO_TAPI_ADDRESS_CAPS,
OID_CO_TAPI_GET_CALL_DIAGNOSTICS
};
TRACE( TL_N, TM_Mp, ( "QInfo(OID_GEN_SUPPORTED_LIST)" ) );
pInfo = aulSupportedOids;
ulInfoLen = sizeof(aulSupportedOids);
break;
}
case OID_PNP_CAPABILITIES:
{
pInfo = &PnpCaps;
ulInfoLen = sizeof(PnpCaps);
break;
}
case OID_PNP_SET_POWER:
break;
case OID_PNP_QUERY_POWER:
break;
case OID_PNP_ENABLE_WAKE_UP:
break;
#if 0
// These OIDs are mandatory according to current doc, but since
// NDISWAN never requests them they are omitted.
//
case OID_GEN_HARDWARE_STATUS:
case OID_GEN_MEDIA_SUPPORTED:
case OID_GEN_MEDIA_IN_USE:
case OID_GEN_MEDIA_IN_USE:
case OID_GEN_MAXIMUM_FRAME_SIZE:
case OID_GEN_LINK_SPEED:
case OID_GEN_TRANSMIT_BUFFER_SPACE:
case OID_GEN_RECEIVE_BUFFER_SPACE:
case OID_GEN_TRANSMIT_BLOCK_SIZE:
case OID_GEN_RECEIVE_BLOCK_SIZE:
case OID_GEN_VENDOR_ID:
case OID_GEN_VENDOR_DESCRIPTION:
case OID_GEN_VENDOR_DRIVER_VERSION:
case OID_GEN_CURRENT_PACKET_FILTER:
case OID_GEN_CURRENT_LOOKAHEAD:
case OID_GEN_DRIVER_VERSION:
case OID_GEN_MAXIMUM_TOTAL_SIZE:
case OID_GEN_MAC_OPTIONS:
case OID_GEN_MEDIA_CONNECT_STATUS:
case OID_GEN_MAXIMUM_SEND_PACKETS:
case OID_WAN_PERMANENT_ADDRESS:
case OID_WAN_CURRENT_ADDRESS:
case OID_WAN_QUALITY_OF_SERVICE:
case OID_WAN_LINE_COUNT:
#endif
default:
{
TRACE( TL_A, TM_Mp, ( "QueryInfo: Oid=$%08x?", Oid ) );
status = NDIS_STATUS_NOT_SUPPORTED; // JAY per SLC
ulInfoLen = 0;
break;
}
}
if (ulInfoLen > InformationBufferLength)
{
// Caller's buffer is too small. Tell him what he needs.
//
*BytesNeeded = ulInfoLen;
status = NDIS_STATUS_INVALID_LENGTH;
}
else
{
// Copy the found result to caller's buffer.
//
if (ulInfoLen > 0)
{
NdisMoveMemory( InformationBuffer, pInfo, ulInfoLen );
DUMPDW( TL_N, TM_Mp, pInfo, ulInfoLen );
}
*BytesNeeded = *BytesWritten = ulInfoLen;
}
return status;
}
VOID
ReferenceAdapter(
IN ADAPTERCB* pAdapter )
// Adds areference to the adapter block, 'pAdapter'.
//
{
LONG lRef;
lRef = NdisInterlockedIncrement( &pAdapter->lRef );
TRACE( TL_N, TM_Ref, ( "RefA to %d", lRef ) );
}
VOID
ReferenceVc(
IN VCCB* pVc )
// Adds a reference to the VC control block 'pVc'.
//
{
LONG lRef;
lRef = NdisInterlockedIncrement( &pVc->lRef );
TRACE( TL_N, TM_Ref, ( "RefVc to %d", lRef ) );
}
VOID
SendClientString(
IN PVOID pPtiExtension )
// Send "CLIENT" so Win9x, which views us as a NULL modem, is happy.
//
{
KIRQL oldIrql;
KeRaiseIrql(DISPATCH_LEVEL, &oldIrql);
PtiWrite( pPtiExtension, g_szClient, CLIENTLEN, PID_STANDARD );
KeLowerIrql(oldIrql);
}
NDIS_STATUS
SetInformation(
IN ADAPTERCB* pAdapter,
IN VCCB* pVc,
IN NDIS_OID Oid,
IN PVOID InformationBuffer,
IN ULONG InformationBufferLength,
OUT PULONG BytesRead,
OUT PULONG BytesNeeded )
// Handle SetInformation requests. Arguments are as for the standard NDIS
// 'MiniportQueryInformation' handler except this routine does not count
// on being serialized with respect to other requests.
//
{
NDIS_STATUS status;
status = NDIS_STATUS_SUCCESS;
switch (Oid)
{
case OID_WAN_CO_SET_LINK_INFO:
{
// Read new link state settings.
//
TRACE( TL_N, TM_Mp, ( "SInfo(OID_WAN_CO_SET_LINK_INFO)" ) );
if (InformationBufferLength < sizeof(NDIS_WAN_CO_SET_LINK_INFO))
{
status = NDIS_STATUS_INVALID_LENGTH;
*BytesRead = 0;
}
else
{
if (!pVc)
{
return NDIS_STATUS_INVALID_DATA;
}
ASSERT( sizeof(pVc->linkinfo)
== sizeof(NDIS_WAN_CO_SET_LINK_INFO) );
NdisMoveMemory( &pVc->linkinfo, InformationBuffer,
sizeof(pVc->linkinfo) );
DUMPB( TL_N, TM_Mp, &pVc->linkinfo, sizeof(pVc->linkinfo) );
*BytesRead = sizeof(NDIS_WAN_CO_SET_LINK_INFO);
}
*BytesNeeded = sizeof(NDIS_WAN_CO_SET_LINK_INFO);
}
break;
case OID_WAN_CO_SET_COMP_INFO:
{
// DirectParallel doesn't provide compression.
//
TRACE( TL_N, TM_Mp, ( "SInfo(OID_WAN_CO_SET_COMP_INFO)" ) );
status = NDIS_STATUS_NOT_SUPPORTED;
*BytesRead = *BytesNeeded = 0;
break;
}
#if 0
// These OIDs are mandatory according to current doc, but since
// NDISWAN never requests them they are omitted.
//
case OID_GEN_CURRENT_PACKET_FILTER:
case OID_GEN_CURRENT_LOOKAHEAD:
case OID_GEN_PROTOCOL_OPTIONS:
case OID_WAN_PROTOCOL_TYPE:
case OID_WAN_HEADER_FORMAT:
#endif
default:
{
TRACE( TL_A, TM_Mp, ( "SetInfo: Oid=$%08x?", Oid ) );
status = NDIS_STATUS_NOT_SUPPORTED; // JAY per SLC
*BytesRead = *BytesNeeded = 0;
break;
}
}
return status;
}