|
|
/***
*sincos.c - sine and cosine * * Copyright (c) 1991-2001, Microsoft Corporation. All rights reserved. * *Purpose: * *Revision History: * 8-15-91 GDP written * 9-29-91 GDP added missing ABS() for cosine * 12-26-91 GDP IEEE exceptions support * 03-11-91 GDP use 66 significant bits for representing pi * support FP_TLOSS, use _frnd for rounding * 06-23-92 GDP sin(denormal) now raises underflow exception * 02-06-95 JWM Mac merge * 10-07-97 RDL Added IA64. * *******************************************************************************/
#include <math.h>
#include <trans.h>
#if defined(_M_IA64)
#pragma function(sin, cos)
#endif
static double _sincos(double x, double y, double sin);
/* constants */ static double const EPS = 1.05367121277235079465e-8; /* 2^(-53/2) */ static double const PI = 3.14159265358979323846; static double const PI2 = 1.57079632679489661923; /* pi/2 */ static double const PI_INV = 0.31830988618379067154; /* 1/pi */ static double const YMAX = 2.2e8; /* approx. pi * 2 ^(t/2), where t=53 */
//
// The sum of C1 and C2 is a representation of PI with 66 bits in the
// significand (same as x87). (PI = 4 * 0.c90fdaa2 2168c234 c h)
//
static _dbl _C1 = {SET_DBL (0x400921fb, 0x54400000)}; static _dbl _C2 = {SET_DBL (0x3de0b461, 0x1a600000)}; #define C1 (_C1.dbl)
#define C2 (_C2.dbl)
/* constants for the polynomial approximation of sin, cos */ static double const r1 = -0.16666666666666665052e+0; static double const r2 = 0.83333333333331650314e-2; static double const r3 = -0.19841269841201840457e-3; static double const r4 = 0.27557319210152756119e-5; static double const r5 = -0.25052106798274584544e-7; static double const r6 = 0.16058936490371589114e-9; static double const r7 = -0.76429178068910467734e-12; static double const r8 = 0.27204790957888846175e-14;
#define R(g) ((((((((r8 * (g) + r7) * (g) + r6) * (g) + r5) * (g) + r4) \
* (g) + r3) * (g) + r2) * (g) + r1) * (g))
/***
*double sin(double x) - sine * *Purpose: * Compute the sine of a number. * The algorithm (reduction / polynomial approximation) is * taken from Cody & Waite. * *Entry: * *Exit: * *Exceptions: * I, P, U * if x is denormal: raise Underflow *******************************************************************************/ double sin (double x) { uintptr_t savedcw; double result; double sign,y;
/* save user fp control word */ savedcw = _maskfp();
if (IS_D_SPECIAL(x)){ switch(_sptype(x)) { case T_PINF: case T_NINF: return _except1(FP_I,OP_SIN,x,QNAN_SIN1,savedcw); case T_QNAN: return _handle_qnan1(OP_SIN, x, savedcw); default: //T_SNAN
return _except1(FP_I,OP_SIN,x,_s2qnan(x),savedcw); } }
if (x == 0.0) { // no P exception
RETURN(savedcw,x); }
if (x < 0) { sign = -1; y = -x; } else { sign = 1; y = x; } if (y >= YMAX) {
// The argument is too large to produce a meaningful result,
// so this is treated as an invalid operation.
// We also set the (extra) FP_TLOSS flag for matherr
// support
return _except1(FP_TLOSS | FP_I,OP_SIN,x,QNAN_SIN2,savedcw); }
result = _sincos(x,y,sign);
if (IS_D_DENORM(result)) { return _except1(FP_U | FP_P,OP_SIN,x,_add_exp(result, IEEE_ADJUST),savedcw); }
RETURN_INEXACT1(OP_SIN,x,result,savedcw); }
/***
*double cos(double x) - cosine * *Purpose: * Compute the cosine of a number. * The algorithm (reduction / polynomial approximation) is * taken from Cody & Waite. * *Entry: * *Exit: * *Exceptions: * P, I * if x is denormal: return 1 *******************************************************************************/
double cos (double x) { uintptr_t savedcw; double result,y;
/* save user fp control word */ savedcw = _maskfp();
if (IS_D_SPECIAL(x)){ switch(_sptype(x)) { case T_PINF: case T_NINF: return _except1(FP_I,OP_COS,x,QNAN_COS1,savedcw); case T_QNAN: return _handle_qnan1(OP_COS,x, savedcw); default: //T_SNAN
return _except1(FP_I,OP_COS,x,_s2qnan(x),savedcw); } }
/* this will handle small arguments */ if (ABS(x) < EPS) { if (x == 0.0) { RETURN(savedcw,1.0); } result = 1.0; }
else { y = ABS(x) + PI2; if (y >= YMAX) {
// The argument is too large to produce a meaningful result,
// so this is treated as an invalid operation.
// We also set the (extra) FP_TLOSS flag for matherr
// support
return _except1(FP_TLOSS | FP_I,OP_COS,x,QNAN_COS2,savedcw); }
result = _sincos(x,y,1.0); }
RETURN_INEXACT1(OP_COS,x,result,savedcw); }
/***
*double _sincos(double x, double y,double sign) - cos sin helper * *Purpose: * Help computing sin or cos of a valid, within correct range * number. * The algorithm (reduction / polynomial approximation) is * taken from Cody & Waite. * *Entry: * *Exit: * *Exceptions: * *******************************************************************************/
static double _sincos(double x, double y, double sign) { unsigned long n; double xn,f,g,r,result;
xn = _frnd(y * PI_INV); n = (int) xn;
if (n & 0x1) { /* n is odd */ sign = -sign; } if (ABS(x) != y) { /* cosine wanted */ xn -= .5; }
/* assume there is a guard digit for addition */ f = (ABS(x) - xn * C1) - xn * C2; if (ABS(f) < EPS) result = f; else { g = f*f; r = R(g); result = f + f*r; } result *= sign;
return result; }
|