Source code of Windows XP (NT5)
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

241 lines
5.8 KiB

/***
*sincos.c - sine and cosine
*
* Copyright (c) 1991-2001, Microsoft Corporation. All rights reserved.
*
*Purpose:
*
*Revision History:
* 8-15-91 GDP written
* 9-29-91 GDP added missing ABS() for cosine
* 12-26-91 GDP IEEE exceptions support
* 03-11-91 GDP use 66 significant bits for representing pi
* support FP_TLOSS, use _frnd for rounding
* 06-23-92 GDP sin(denormal) now raises underflow exception
* 02-06-95 JWM Mac merge
* 10-07-97 RDL Added IA64.
*
*******************************************************************************/
#include <math.h>
#include <trans.h>
#if defined(_M_IA64)
#pragma function(sin, cos)
#endif
static double _sincos(double x, double y, double sin);
/* constants */
static double const EPS = 1.05367121277235079465e-8; /* 2^(-53/2) */
static double const PI = 3.14159265358979323846;
static double const PI2 = 1.57079632679489661923; /* pi/2 */
static double const PI_INV = 0.31830988618379067154; /* 1/pi */
static double const YMAX = 2.2e8; /* approx. pi * 2 ^(t/2), where t=53 */
//
// The sum of C1 and C2 is a representation of PI with 66 bits in the
// significand (same as x87). (PI = 4 * 0.c90fdaa2 2168c234 c h)
//
static _dbl _C1 = {SET_DBL (0x400921fb, 0x54400000)};
static _dbl _C2 = {SET_DBL (0x3de0b461, 0x1a600000)};
#define C1 (_C1.dbl)
#define C2 (_C2.dbl)
/* constants for the polynomial approximation of sin, cos */
static double const r1 = -0.16666666666666665052e+0;
static double const r2 = 0.83333333333331650314e-2;
static double const r3 = -0.19841269841201840457e-3;
static double const r4 = 0.27557319210152756119e-5;
static double const r5 = -0.25052106798274584544e-7;
static double const r6 = 0.16058936490371589114e-9;
static double const r7 = -0.76429178068910467734e-12;
static double const r8 = 0.27204790957888846175e-14;
#define R(g) ((((((((r8 * (g) + r7) * (g) + r6) * (g) + r5) * (g) + r4) \
* (g) + r3) * (g) + r2) * (g) + r1) * (g))
/***
*double sin(double x) - sine
*
*Purpose:
* Compute the sine of a number.
* The algorithm (reduction / polynomial approximation) is
* taken from Cody & Waite.
*
*Entry:
*
*Exit:
*
*Exceptions:
* I, P, U
* if x is denormal: raise Underflow
*******************************************************************************/
double sin (double x)
{
uintptr_t savedcw;
double result;
double sign,y;
/* save user fp control word */
savedcw = _maskfp();
if (IS_D_SPECIAL(x)){
switch(_sptype(x)) {
case T_PINF:
case T_NINF:
return _except1(FP_I,OP_SIN,x,QNAN_SIN1,savedcw);
case T_QNAN:
return _handle_qnan1(OP_SIN, x, savedcw);
default: //T_SNAN
return _except1(FP_I,OP_SIN,x,_s2qnan(x),savedcw);
}
}
if (x == 0.0) {
// no P exception
RETURN(savedcw,x);
}
if (x < 0) {
sign = -1;
y = -x;
}
else {
sign = 1;
y = x;
}
if (y >= YMAX) {
// The argument is too large to produce a meaningful result,
// so this is treated as an invalid operation.
// We also set the (extra) FP_TLOSS flag for matherr
// support
return _except1(FP_TLOSS | FP_I,OP_SIN,x,QNAN_SIN2,savedcw);
}
result = _sincos(x,y,sign);
if (IS_D_DENORM(result)) {
return _except1(FP_U | FP_P,OP_SIN,x,_add_exp(result, IEEE_ADJUST),savedcw);
}
RETURN_INEXACT1(OP_SIN,x,result,savedcw);
}
/***
*double cos(double x) - cosine
*
*Purpose:
* Compute the cosine of a number.
* The algorithm (reduction / polynomial approximation) is
* taken from Cody & Waite.
*
*Entry:
*
*Exit:
*
*Exceptions:
* P, I
* if x is denormal: return 1
*******************************************************************************/
double cos (double x)
{
uintptr_t savedcw;
double result,y;
/* save user fp control word */
savedcw = _maskfp();
if (IS_D_SPECIAL(x)){
switch(_sptype(x)) {
case T_PINF:
case T_NINF:
return _except1(FP_I,OP_COS,x,QNAN_COS1,savedcw);
case T_QNAN:
return _handle_qnan1(OP_COS,x, savedcw);
default: //T_SNAN
return _except1(FP_I,OP_COS,x,_s2qnan(x),savedcw);
}
}
/* this will handle small arguments */
if (ABS(x) < EPS) {
if (x == 0.0) {
RETURN(savedcw,1.0);
}
result = 1.0;
}
else {
y = ABS(x) + PI2;
if (y >= YMAX) {
// The argument is too large to produce a meaningful result,
// so this is treated as an invalid operation.
// We also set the (extra) FP_TLOSS flag for matherr
// support
return _except1(FP_TLOSS | FP_I,OP_COS,x,QNAN_COS2,savedcw);
}
result = _sincos(x,y,1.0);
}
RETURN_INEXACT1(OP_COS,x,result,savedcw);
}
/***
*double _sincos(double x, double y,double sign) - cos sin helper
*
*Purpose:
* Help computing sin or cos of a valid, within correct range
* number.
* The algorithm (reduction / polynomial approximation) is
* taken from Cody & Waite.
*
*Entry:
*
*Exit:
*
*Exceptions:
*
*******************************************************************************/
static double _sincos(double x, double y, double sign)
{
unsigned long n;
double xn,f,g,r,result;
xn = _frnd(y * PI_INV);
n = (int) xn;
if (n & 0x1) {
/* n is odd */
sign = -sign;
}
if (ABS(x) != y) {
/* cosine wanted */
xn -= .5;
}
/* assume there is a guard digit for addition */
f = (ABS(x) - xn * C1) - xn * C2;
if (ABS(f) < EPS)
result = f;
else {
g = f*f;
r = R(g);
result = f + f*r;
}
result *= sign;
return result;
}