|
|
/******************************Module*Header*******************************\
* Module Name: fastfill.c * * Draws fast solid-coloured, unclipped, non-complex rectangles. * * Copyright (c) 1993-1995 Microsoft Corporation \**************************************************************************/
#include "precomp.h"
#define RIGHT 0
#define LEFT 1
typedef struct _TRAPEZOIDDATA TRAPEZOIDDATA; // Handy forward declaration
typedef VOID (FNTRAPEZOID)(TRAPEZOIDDATA*, LONG, LONG); // Prototype for trapezoid
// drawing routines
typedef struct _EDGEDATA { LONG x; // Current x position
LONG dx; // # pixels to advance x on each scan
LONG lError; // Current DDA error
LONG lErrorUp; // DDA error increment on each scan
LONG lErrorDown; // DDA error adjustment
POINTFIX* pptfx; // Points to start of current edge
LONG dptfx; // Delta (in bytes) from pptfx to next point
LONG cy; // Number of scans to go for this edge
} EDGEDATA; /* ed, ped */
typedef struct _TRAPEZOIDDATA { FNTRAPEZOID* pfnTrap; // Pointer to appropriate trapezoid drawing routine
PDEV* ppdev; // Pointer to PDEV
EDGEDATA aed[2]; // DDA information for both edges
RBRUSH* prb; // Pointer to brush realization
POINTL ptlBrush; // Brush alignment
} TRAPEZOIDDATA; /* td, ptd */
/******************************Public*Routine******************************\
* VOID vIoSolidTrapezoid * \**************************************************************************/
VOID vIoSolidTrapezoid( TRAPEZOIDDATA* ptd, LONG yTrapezoid, LONG cyTrapezoid) { PDEV* ppdev = ptd->ppdev; BYTE* pjIoBase = ppdev->pjIoBase;
// If the left and right edges are vertical, simply output as
// a rectangle:
if (((ptd->aed[LEFT].lErrorUp | ptd->aed[RIGHT].lErrorUp) == 0) && ((ptd->aed[LEFT].dx | ptd->aed[RIGHT].dx) == 0) && (cyTrapezoid > 1)) { LONG lWidth;
/////////////////////////////////////////////////////////////////
// Vertical-edge special case
ContinueVertical:
lWidth = ptd->aed[RIGHT].x - ptd->aed[LEFT].x; if (lWidth > 0) { IO_WAIT_BUFFER_NOT_BUSY(ppdev, pjIoBase); IO_BITMAP_WIDTH(ppdev, pjIoBase, lWidth); IO_BITMAP_HEIGHT(ppdev, pjIoBase, cyTrapezoid); IO_DEST_XY(ppdev, pjIoBase, ptd->aed[LEFT].x, yTrapezoid); IO_BLT_CMD_0(ppdev, pjIoBase, START_BLT);
IO_WAIT_BUFFER_NOT_BUSY(ppdev, pjIoBase); IO_BITMAP_HEIGHT(ppdev, pjIoBase, 1); } else if (lWidth < 0) { LONG lTmp; POINTFIX* pptfxTmp;
SWAP(ptd->aed[LEFT].x, ptd->aed[RIGHT].x, lTmp); SWAP(ptd->aed[LEFT].cy, ptd->aed[RIGHT].cy, lTmp); SWAP(ptd->aed[LEFT].dptfx, ptd->aed[RIGHT].dptfx, lTmp); SWAP(ptd->aed[LEFT].pptfx, ptd->aed[RIGHT].pptfx, pptfxTmp); goto ContinueVertical; } } else { LONG lLeftError = ptd->aed[LEFT].lError; LONG dxLeft = ptd->aed[LEFT].dx; LONG xLeft = ptd->aed[LEFT].x; LONG lRightError = ptd->aed[RIGHT].lError; LONG dxRight = ptd->aed[RIGHT].dx; LONG xRight = ptd->aed[RIGHT].x;
while (TRUE) { LONG lWidth;
/////////////////////////////////////////////////////////////////
// Run the DDAs
lWidth = xRight - xLeft; if (lWidth > 0) { IO_WAIT_BUFFER_NOT_BUSY(ppdev, pjIoBase); IO_BITMAP_WIDTH(ppdev, pjIoBase, lWidth); IO_DEST_XY(ppdev, pjIoBase, xLeft, yTrapezoid); IO_BLT_CMD_0(ppdev, pjIoBase, START_BLT);
ContinueAfterZero:
yTrapezoid++;
// Advance the right wall:
xRight += dxRight; lRightError += ptd->aed[RIGHT].lErrorUp;
if (lRightError >= 0) { lRightError -= ptd->aed[RIGHT].lErrorDown; xRight++; }
// Advance the left wall:
xLeft += dxLeft; lLeftError += ptd->aed[LEFT].lErrorUp;
if (lLeftError >= 0) { lLeftError -= ptd->aed[LEFT].lErrorDown; xLeft++; }
cyTrapezoid--; if (cyTrapezoid == 0) break; } else if (lWidth == 0) { goto ContinueAfterZero; } else { // We certainly don't want to optimize for this case because we
// should rarely get self-intersecting polygons (if we're slow,
// the app gets what it deserves):
LONG lTmp; POINTFIX* pptfxTmp;
SWAP(xLeft, xRight, lTmp); SWAP(dxLeft, dxRight, lTmp); SWAP(lLeftError, lRightError, lTmp); SWAP(ptd->aed[LEFT].lErrorUp, ptd->aed[RIGHT].lErrorUp, lTmp); SWAP(ptd->aed[LEFT].lErrorDown, ptd->aed[RIGHT].lErrorDown, lTmp); SWAP(ptd->aed[LEFT].cy, ptd->aed[RIGHT].cy, lTmp); SWAP(ptd->aed[LEFT].dptfx, ptd->aed[RIGHT].dptfx, lTmp); SWAP(ptd->aed[LEFT].pptfx, ptd->aed[RIGHT].pptfx, pptfxTmp); } }
ptd->aed[LEFT].lError = lLeftError; ptd->aed[LEFT].dx = dxLeft; ptd->aed[LEFT].x = xLeft; ptd->aed[RIGHT].lError = lRightError; ptd->aed[RIGHT].dx = dxRight; ptd->aed[RIGHT].x = xRight; } }
/******************************Public*Routine******************************\
* VOID vIo2ColorTrapezoid * \**************************************************************************/
VOID vIo2ColorTrapezoid( TRAPEZOIDDATA* ptd, LONG yTrapezoid, LONG cyTrapezoid) { PDEV* ppdev = ptd->ppdev; BYTE* pjIoBase = ppdev->pjIoBase; LONG xAlign; LONG yAlign;
xAlign = ptd->ptlBrush.x; yAlign = ptd->ptlBrush.y;
// If the left and right edges are vertical, simply output as
// a rectangle:
if (((ptd->aed[LEFT].lErrorUp | ptd->aed[RIGHT].lErrorUp) == 0) && ((ptd->aed[LEFT].dx | ptd->aed[RIGHT].dx) == 0) && (cyTrapezoid > 1)) { LONG lWidth;
/////////////////////////////////////////////////////////////////
// Vertical-edge special case
ContinueVertical:
lWidth = ptd->aed[RIGHT].x - ptd->aed[LEFT].x; if (lWidth > 0) { IO_WAIT_BUFFER_NOT_BUSY(ppdev, pjIoBase); IO_BITMAP_WIDTH(ppdev, pjIoBase, lWidth); IO_BITMAP_HEIGHT(ppdev, pjIoBase, cyTrapezoid); IO_DEST_XY(ppdev, pjIoBase, ptd->aed[LEFT].x, yTrapezoid); IO_SRC_ALIGN(ppdev, pjIoBase, ((ptd->aed[LEFT].x - xAlign) & 7) | ((yTrapezoid - yAlign) << 3)); IO_BLT_CMD_0(ppdev, pjIoBase, START_BLT);
IO_WAIT_BUFFER_NOT_BUSY(ppdev, pjIoBase); IO_BITMAP_HEIGHT(ppdev, pjIoBase, 1); } else if (lWidth < 0) { LONG lTmp; POINTFIX* pptfxTmp;
SWAP(ptd->aed[LEFT].x, ptd->aed[RIGHT].x, lTmp); SWAP(ptd->aed[LEFT].cy, ptd->aed[RIGHT].cy, lTmp); SWAP(ptd->aed[LEFT].dptfx, ptd->aed[RIGHT].dptfx, lTmp); SWAP(ptd->aed[LEFT].pptfx, ptd->aed[RIGHT].pptfx, pptfxTmp); goto ContinueVertical; } } else { LONG lLeftError = ptd->aed[LEFT].lError; LONG dxLeft = ptd->aed[LEFT].dx; LONG xLeft = ptd->aed[LEFT].x; LONG lRightError = ptd->aed[RIGHT].lError; LONG dxRight = ptd->aed[RIGHT].dx; LONG xRight = ptd->aed[RIGHT].x; LONG yScaledAlign;
// Scale y alignment up by 8 so that it's easier to compute
// the QVision's alignment on each scan:
yScaledAlign = (yTrapezoid - yAlign) << 3;
while (TRUE) { LONG lWidth;
/////////////////////////////////////////////////////////////////
// Run the DDAs
lWidth = xRight - xLeft; if (lWidth > 0) { IO_WAIT_BUFFER_NOT_BUSY(ppdev, pjIoBase); IO_BITMAP_WIDTH(ppdev, pjIoBase, lWidth); IO_DEST_XY(ppdev, pjIoBase, xLeft, yTrapezoid); IO_SRC_ALIGN(ppdev, pjIoBase, (((xLeft - xAlign) & 7) | yScaledAlign)); IO_BLT_CMD_0(ppdev, pjIoBase, START_BLT);
ContinueAfterZero:
yScaledAlign += 8; yTrapezoid++;
// Advance the right wall:
xRight += dxRight; lRightError += ptd->aed[RIGHT].lErrorUp;
if (lRightError >= 0) { lRightError -= ptd->aed[RIGHT].lErrorDown; xRight++; }
// Advance the left wall:
xLeft += dxLeft; lLeftError += ptd->aed[LEFT].lErrorUp;
if (lLeftError >= 0) { lLeftError -= ptd->aed[LEFT].lErrorDown; xLeft++; }
cyTrapezoid--; if (cyTrapezoid == 0) break; } else if (lWidth == 0) { goto ContinueAfterZero; } else { // We certainly don't want to optimize for this case because we
// should rarely get self-intersecting polygons (if we're slow,
// the app gets what it deserves):
LONG lTmp; POINTFIX* pptfxTmp;
SWAP(xLeft, xRight, lTmp); SWAP(dxLeft, dxRight, lTmp); SWAP(lLeftError, lRightError, lTmp); SWAP(ptd->aed[LEFT].lErrorUp, ptd->aed[RIGHT].lErrorUp, lTmp); SWAP(ptd->aed[LEFT].lErrorDown, ptd->aed[RIGHT].lErrorDown, lTmp); SWAP(ptd->aed[LEFT].cy, ptd->aed[RIGHT].cy, lTmp); SWAP(ptd->aed[LEFT].dptfx, ptd->aed[RIGHT].dptfx, lTmp); SWAP(ptd->aed[LEFT].pptfx, ptd->aed[RIGHT].pptfx, pptfxTmp); } }
ptd->aed[LEFT].lError = lLeftError; ptd->aed[LEFT].dx = dxLeft; ptd->aed[LEFT].x = xLeft; ptd->aed[RIGHT].lError = lRightError; ptd->aed[RIGHT].dx = dxRight; ptd->aed[RIGHT].x = xRight; } }
/******************************Public*Routine******************************\
* VOID vIoPatternedTrapezoid * \**************************************************************************/
VOID vIoPatternedTrapezoid( TRAPEZOIDDATA* ptd, LONG yTrapezoid, LONG cyTrapezoid) { PDEV* ppdev = ptd->ppdev; BYTE* pjIoBase = ppdev->pjIoBase; LONG lLeftError = ptd->aed[LEFT].lError; LONG dxLeft = ptd->aed[LEFT].dx; LONG xLeft = ptd->aed[LEFT].x; LONG lRightError = ptd->aed[RIGHT].lError; LONG dxRight = ptd->aed[RIGHT].dx; LONG xRight = ptd->aed[RIGHT].x; BYTE* pjPattern; LONG iPattern; LONG xAlign;
xAlign = ptd->ptlBrush.x; iPattern = 8 * (yTrapezoid - ptd->ptlBrush.y); pjPattern = (BYTE*) ptd->prb->aulPattern;
while (TRUE) { LONG lWidth;
/////////////////////////////////////////////////////////////////
// Run the DDAs
lWidth = xRight - xLeft; if (lWidth > 0) { // Note that we're setting these buffered registers without
// first checking for idle, or even buffer not busy. But
// this is safe because at initialization, we did a wait
// for idle, and here we always loop after waiting for idle
// to set the pattern registers.
IO_BITMAP_WIDTH(ppdev, pjIoBase, lWidth); IO_DEST_XY(ppdev, pjIoBase, xLeft, yTrapezoid); IO_SRC_ALIGN(ppdev, pjIoBase, xLeft - xAlign);
IO_WAIT_FOR_IDLE(ppdev, pjIoBase); IO_PREG_PATTERN(ppdev, pjIoBase, pjPattern + (iPattern & 63)); IO_BLT_CMD_0(ppdev, pjIoBase, START_BLT);
ContinueAfterZero:
iPattern += 8; yTrapezoid++;
// Advance the right wall:
xRight += dxRight; lRightError += ptd->aed[RIGHT].lErrorUp;
if (lRightError >= 0) { lRightError -= ptd->aed[RIGHT].lErrorDown; xRight++; }
// Advance the left wall:
xLeft += dxLeft; lLeftError += ptd->aed[LEFT].lErrorUp;
if (lLeftError >= 0) { lLeftError -= ptd->aed[LEFT].lErrorDown; xLeft++; }
cyTrapezoid--; if (cyTrapezoid == 0) break; } else if (lWidth == 0) { goto ContinueAfterZero; } else { // We certainly don't want to optimize for this case because we
// should rarely get self-intersecting polygons (if we're slow,
// the app gets what it deserves):
LONG lTmp; POINTFIX* pptfxTmp;
SWAP(xLeft, xRight, lTmp); SWAP(dxLeft, dxRight, lTmp); SWAP(lLeftError, lRightError, lTmp); SWAP(ptd->aed[LEFT].lErrorUp, ptd->aed[RIGHT].lErrorUp, lTmp); SWAP(ptd->aed[LEFT].lErrorDown, ptd->aed[RIGHT].lErrorDown, lTmp); SWAP(ptd->aed[LEFT].cy, ptd->aed[RIGHT].cy, lTmp); SWAP(ptd->aed[LEFT].dptfx, ptd->aed[RIGHT].dptfx, lTmp); SWAP(ptd->aed[LEFT].pptfx, ptd->aed[RIGHT].pptfx, pptfxTmp); } }
ptd->aed[LEFT].lError = lLeftError; ptd->aed[LEFT].dx = dxLeft; ptd->aed[LEFT].x = xLeft; ptd->aed[RIGHT].lError = lRightError; ptd->aed[RIGHT].dx = dxRight; ptd->aed[RIGHT].x = xRight; }
/******************************Public*Routine******************************\
* VOID vIoTrapezoidSetup * * Initialize the hardware and some state for doing I/O trapezoids. * \**************************************************************************/
VOID vIoTrapezoidSetup( PDEV* ppdev, ULONG rop4, ULONG iSolidColor, RBRUSH* prb, POINTL* pptlBrush, TRAPEZOIDDATA* ptd) { BYTE* pjIoBase;
ptd->ppdev = ppdev; pjIoBase = ppdev->pjIoBase;
IO_WAIT_FOR_IDLE(ppdev, pjIoBase); IO_BITMAP_HEIGHT(ppdev, pjIoBase, 1); IO_BLT_CMD_1(ppdev, pjIoBase, XY_SRC_ADDR | XY_DEST_ADDR);
if (iSolidColor != -1) { ptd->pfnTrap = vIoSolidTrapezoid;
/////////////////////////////////////////////////////////////////
// Setup the hardware for solid colours
IO_PREG_COLOR_8(ppdev, pjIoBase, iSolidColor); IO_CTRL_REG_1(ppdev, pjIoBase, PACKED_PIXEL_VIEW | BITS_PER_PIX_8 | ENAB_TRITON_MODE); if (rop4 == 0xf0f0) { IO_DATAPATH_CTRL(ppdev, pjIoBase, ROPSELECT_NO_ROPS | PIXELMASK_ONLY | PLANARMASK_NONE_0XFF | SRC_IS_PATTERN_REGS); } else { IO_DATAPATH_CTRL(ppdev, pjIoBase, ROPSELECT_ALL | PIXELMASK_ONLY | PLANARMASK_NONE_0XFF | SRC_IS_PATTERN_REGS); IO_ROP_A(ppdev, pjIoBase, rop4 >> 2); } } else { ptd->prb = prb; ptd->ptlBrush = *pptlBrush;
if (!(prb->fl & RBRUSH_2COLOR)) { ptd->pfnTrap = vIoPatternedTrapezoid;
/////////////////////////////////////////////////////////////////
// Setup for coloured patterns
IO_CTRL_REG_1(ppdev, pjIoBase, PACKED_PIXEL_VIEW | BITS_PER_PIX_8 | ENAB_TRITON_MODE); if (rop4 == 0xf0f0) { IO_DATAPATH_CTRL(ppdev, pjIoBase, ROPSELECT_NO_ROPS | PIXELMASK_ONLY | PLANARMASK_NONE_0XFF | SRC_IS_PATTERN_REGS); } else { IO_DATAPATH_CTRL(ppdev, pjIoBase, ROPSELECT_ALL | PIXELMASK_ONLY | PLANARMASK_NONE_0XFF | SRC_IS_PATTERN_REGS); IO_ROP_A(ppdev, pjIoBase, rop4 >> 2); } } else { ptd->pfnTrap = vIo2ColorTrapezoid;
/////////////////////////////////////////////////////////////////
// Setup for 2-colour patterns
IO_FG_COLOR(ppdev, pjIoBase, prb->ulForeColor); IO_BG_COLOR(ppdev, pjIoBase, prb->ulBackColor); IO_PREG_PATTERN(ppdev, pjIoBase, prb->aulPattern);
IO_CTRL_REG_1(ppdev, pjIoBase, EXPAND_TO_FG | BITS_PER_PIX_8 | ENAB_TRITON_MODE); if (rop4 == 0xf0f0) { IO_DATAPATH_CTRL(ppdev, pjIoBase, ROPSELECT_NO_ROPS | PIXELMASK_ONLY | PLANARMASK_NONE_0XFF | SRC_IS_PATTERN_REGS); } else if (((rop4 >> 8) & 0xff) == (rop4 & 0xff)) { IO_ROP_A(ppdev, pjIoBase, rop4 >> 2); IO_DATAPATH_CTRL(ppdev, pjIoBase, ROPSELECT_ALL | PIXELMASK_ONLY | PLANARMASK_NONE_0XFF | SRC_IS_PATTERN_REGS); } else if ((rop4 & 0xff) == 0xcc) { IO_DATAPATH_CTRL(ppdev, pjIoBase, ROPSELECT_NO_ROPS | PIXELMASK_AND_SRC_DATA | PLANARMASK_NONE_0XFF | SRC_IS_PATTERN_REGS); } else { IO_ROP_A(ppdev, pjIoBase, rop4 >> 2); IO_DATAPATH_CTRL(ppdev, pjIoBase, ROPSELECT_ALL | PIXELMASK_AND_SRC_DATA | PLANARMASK_NONE_0XFF | SRC_IS_PATTERN_REGS); } } } }
/******************************Public*Routine******************************\
* VOID vMmSolidTrapezoid * \**************************************************************************/
VOID vMmSolidTrapezoid( TRAPEZOIDDATA* ptd, LONG yTrapezoid, LONG cyTrapezoid) { PDEV* ppdev = ptd->ppdev; BYTE* pjMmBase = ppdev->pjMmBase;
// If the left and right edges are vertical, simply output as
// a rectangle:
if (((ptd->aed[LEFT].lErrorUp | ptd->aed[RIGHT].lErrorUp) == 0) && ((ptd->aed[LEFT].dx | ptd->aed[RIGHT].dx) == 0) && (cyTrapezoid > 1)) { LONG lWidth;
/////////////////////////////////////////////////////////////////
// Vertical-edge special case
ContinueVertical:
lWidth = ptd->aed[RIGHT].x - ptd->aed[LEFT].x; if (lWidth > 0) { MM_WAIT_BUFFER_NOT_BUSY(ppdev, pjMmBase); MM_BITMAP_WIDTH(ppdev, pjMmBase, lWidth); MM_BITMAP_HEIGHT(ppdev, pjMmBase, cyTrapezoid); MM_DEST_XY(ppdev, pjMmBase, ptd->aed[LEFT].x, yTrapezoid); MM_BLT_CMD_0(ppdev, pjMmBase, START_BLT);
MM_WAIT_BUFFER_NOT_BUSY(ppdev, pjMmBase); MM_BITMAP_HEIGHT(ppdev, pjMmBase, 1); } else if (lWidth < 0) { LONG lTmp; POINTFIX* pptfxTmp;
SWAP(ptd->aed[LEFT].x, ptd->aed[RIGHT].x, lTmp); SWAP(ptd->aed[LEFT].cy, ptd->aed[RIGHT].cy, lTmp); SWAP(ptd->aed[LEFT].dptfx, ptd->aed[RIGHT].dptfx, lTmp); SWAP(ptd->aed[LEFT].pptfx, ptd->aed[RIGHT].pptfx, pptfxTmp); goto ContinueVertical; } } else { LONG lLeftError = ptd->aed[LEFT].lError; LONG dxLeft = ptd->aed[LEFT].dx; LONG xLeft = ptd->aed[LEFT].x; LONG lRightError = ptd->aed[RIGHT].lError; LONG dxRight = ptd->aed[RIGHT].dx; LONG xRight = ptd->aed[RIGHT].x;
while (TRUE) { LONG lWidth;
/////////////////////////////////////////////////////////////////
// Run the DDAs
lWidth = xRight - xLeft; if (lWidth > 0) { MM_WAIT_BUFFER_NOT_BUSY(ppdev, pjMmBase); MM_BITMAP_WIDTH(ppdev, pjMmBase, lWidth); MM_DEST_XY(ppdev, pjMmBase, xLeft, yTrapezoid); MM_BLT_CMD_0(ppdev, pjMmBase, START_BLT);
ContinueAfterZero:
yTrapezoid++;
// Advance the right wall:
xRight += dxRight; lRightError += ptd->aed[RIGHT].lErrorUp;
if (lRightError >= 0) { lRightError -= ptd->aed[RIGHT].lErrorDown; xRight++; }
// Advance the left wall:
xLeft += dxLeft; lLeftError += ptd->aed[LEFT].lErrorUp;
if (lLeftError >= 0) { lLeftError -= ptd->aed[LEFT].lErrorDown; xLeft++; }
cyTrapezoid--; if (cyTrapezoid == 0) break; } else if (lWidth == 0) { goto ContinueAfterZero; } else { // We certainly don't want to optimize for this case because we
// should rarely get self-intersecting polygons (if we're slow,
// the app gets what it deserves):
LONG lTmp; POINTFIX* pptfxTmp;
SWAP(xLeft, xRight, lTmp); SWAP(dxLeft, dxRight, lTmp); SWAP(lLeftError, lRightError, lTmp); SWAP(ptd->aed[LEFT].lErrorUp, ptd->aed[RIGHT].lErrorUp, lTmp); SWAP(ptd->aed[LEFT].lErrorDown, ptd->aed[RIGHT].lErrorDown, lTmp); SWAP(ptd->aed[LEFT].cy, ptd->aed[RIGHT].cy, lTmp); SWAP(ptd->aed[LEFT].dptfx, ptd->aed[RIGHT].dptfx, lTmp); SWAP(ptd->aed[LEFT].pptfx, ptd->aed[RIGHT].pptfx, pptfxTmp); } }
ptd->aed[LEFT].lError = lLeftError; ptd->aed[LEFT].dx = dxLeft; ptd->aed[LEFT].x = xLeft; ptd->aed[RIGHT].lError = lRightError; ptd->aed[RIGHT].dx = dxRight; ptd->aed[RIGHT].x = xRight; } }
/******************************Public*Routine******************************\
* VOID vMm2ColorTrapezoid * \**************************************************************************/
VOID vMm2ColorTrapezoid( TRAPEZOIDDATA* ptd, LONG yTrapezoid, LONG cyTrapezoid) { PDEV* ppdev = ptd->ppdev; BYTE* pjMmBase = ppdev->pjMmBase; LONG xAlign; LONG yAlign;
xAlign = ptd->ptlBrush.x; yAlign = ptd->ptlBrush.y;
// If the left and right edges are vertical, simply output as
// a rectangle:
if (((ptd->aed[LEFT].lErrorUp | ptd->aed[RIGHT].lErrorUp) == 0) && ((ptd->aed[LEFT].dx | ptd->aed[RIGHT].dx) == 0) && (cyTrapezoid > 1)) { LONG lWidth;
/////////////////////////////////////////////////////////////////
// Vertical-edge special case
ContinueVertical:
lWidth = ptd->aed[RIGHT].x - ptd->aed[LEFT].x; if (lWidth > 0) { MM_WAIT_BUFFER_NOT_BUSY(ppdev, pjMmBase); MM_BITMAP_WIDTH(ppdev, pjMmBase, lWidth); MM_BITMAP_HEIGHT(ppdev, pjMmBase, cyTrapezoid); MM_DEST_XY(ppdev, pjMmBase, ptd->aed[LEFT].x, yTrapezoid); MM_SRC_ALIGN(ppdev, pjMmBase, ((ptd->aed[LEFT].x - xAlign) & 7) | ((yTrapezoid - yAlign) << 3)); MM_BLT_CMD_0(ppdev, pjMmBase, START_BLT);
MM_WAIT_BUFFER_NOT_BUSY(ppdev, pjMmBase); MM_BITMAP_HEIGHT(ppdev, pjMmBase, 1); } else if (lWidth < 0) { LONG lTmp; POINTFIX* pptfxTmp;
SWAP(ptd->aed[LEFT].x, ptd->aed[RIGHT].x, lTmp); SWAP(ptd->aed[LEFT].cy, ptd->aed[RIGHT].cy, lTmp); SWAP(ptd->aed[LEFT].dptfx, ptd->aed[RIGHT].dptfx, lTmp); SWAP(ptd->aed[LEFT].pptfx, ptd->aed[RIGHT].pptfx, pptfxTmp); goto ContinueVertical; } } else { LONG lLeftError = ptd->aed[LEFT].lError; LONG dxLeft = ptd->aed[LEFT].dx; LONG xLeft = ptd->aed[LEFT].x; LONG lRightError = ptd->aed[RIGHT].lError; LONG dxRight = ptd->aed[RIGHT].dx; LONG xRight = ptd->aed[RIGHT].x; LONG yScaledAlign;
// Scale y alignment up by 8 so that it's easier to compute
// the QVision's alignment on each scan:
yScaledAlign = (yTrapezoid - yAlign) << 3;
while (TRUE) { LONG lWidth;
/////////////////////////////////////////////////////////////////
// Run the DDAs
lWidth = xRight - xLeft; if (lWidth > 0) { MM_WAIT_BUFFER_NOT_BUSY(ppdev, pjMmBase); MM_BITMAP_WIDTH(ppdev, pjMmBase, lWidth); MM_DEST_XY(ppdev, pjMmBase, xLeft, yTrapezoid); MM_SRC_ALIGN(ppdev, pjMmBase, (((xLeft - xAlign) & 7) | yScaledAlign)); MM_BLT_CMD_0(ppdev, pjMmBase, START_BLT);
ContinueAfterZero:
yScaledAlign += 8; yTrapezoid++;
// Advance the right wall:
xRight += dxRight; lRightError += ptd->aed[RIGHT].lErrorUp;
if (lRightError >= 0) { lRightError -= ptd->aed[RIGHT].lErrorDown; xRight++; }
// Advance the left wall:
xLeft += dxLeft; lLeftError += ptd->aed[LEFT].lErrorUp;
if (lLeftError >= 0) { lLeftError -= ptd->aed[LEFT].lErrorDown; xLeft++; }
cyTrapezoid--; if (cyTrapezoid == 0) break; } else if (lWidth == 0) { goto ContinueAfterZero; } else { // We certainly don't want to optimize for this case because we
// should rarely get self-intersecting polygons (if we're slow,
// the app gets what it deserves):
LONG lTmp; POINTFIX* pptfxTmp;
SWAP(xLeft, xRight, lTmp); SWAP(dxLeft, dxRight, lTmp); SWAP(lLeftError, lRightError, lTmp); SWAP(ptd->aed[LEFT].lErrorUp, ptd->aed[RIGHT].lErrorUp, lTmp); SWAP(ptd->aed[LEFT].lErrorDown, ptd->aed[RIGHT].lErrorDown, lTmp); SWAP(ptd->aed[LEFT].cy, ptd->aed[RIGHT].cy, lTmp); SWAP(ptd->aed[LEFT].dptfx, ptd->aed[RIGHT].dptfx, lTmp); SWAP(ptd->aed[LEFT].pptfx, ptd->aed[RIGHT].pptfx, pptfxTmp); } }
ptd->aed[LEFT].lError = lLeftError; ptd->aed[LEFT].dx = dxLeft; ptd->aed[LEFT].x = xLeft; ptd->aed[RIGHT].lError = lRightError; ptd->aed[RIGHT].dx = dxRight; ptd->aed[RIGHT].x = xRight; } }
/******************************Public*Routine******************************\
* VOID vMmPatternedTrapezoid * \**************************************************************************/
VOID vMmPatternedTrapezoid( TRAPEZOIDDATA* ptd, LONG yTrapezoid, LONG cyTrapezoid) { PDEV* ppdev = ptd->ppdev; BYTE* pjMmBase = ppdev->pjMmBase; LONG lLeftError = ptd->aed[LEFT].lError; LONG dxLeft = ptd->aed[LEFT].dx; LONG xLeft = ptd->aed[LEFT].x; LONG lRightError = ptd->aed[RIGHT].lError; LONG dxRight = ptd->aed[RIGHT].dx; LONG xRight = ptd->aed[RIGHT].x; BYTE* pjPattern; LONG iPattern; LONG xAlign;
xAlign = ptd->ptlBrush.x; iPattern = 8 * (yTrapezoid - ptd->ptlBrush.y); pjPattern = (BYTE*) ptd->prb->aulPattern;
while (TRUE) { LONG lWidth;
/////////////////////////////////////////////////////////////////
// Run the DDAs
lWidth = xRight - xLeft; if (lWidth > 0) { // Note that we're setting these buffered registers without
// first checking for idle, or even buffer not busy. But
// this is safe because at initialization, we did a wait
// for idle, and here we always loop after waiting for idle
// to set the pattern registers.
MM_BITMAP_WIDTH(ppdev, pjMmBase, lWidth); MM_DEST_XY(ppdev, pjMmBase, xLeft, yTrapezoid); MM_SRC_ALIGN(ppdev, pjMmBase, xLeft - xAlign);
MM_WAIT_FOR_IDLE(ppdev, pjMmBase); MM_PREG_PATTERN(ppdev, pjMmBase, pjPattern + (iPattern & 63)); MM_BLT_CMD_0(ppdev, pjMmBase, START_BLT);
ContinueAfterZero:
iPattern += 8; yTrapezoid++;
// Advance the right wall:
xRight += dxRight; lRightError += ptd->aed[RIGHT].lErrorUp;
if (lRightError >= 0) { lRightError -= ptd->aed[RIGHT].lErrorDown; xRight++; }
// Advance the left wall:
xLeft += dxLeft; lLeftError += ptd->aed[LEFT].lErrorUp;
if (lLeftError >= 0) { lLeftError -= ptd->aed[LEFT].lErrorDown; xLeft++; }
cyTrapezoid--; if (cyTrapezoid == 0) break; } else if (lWidth == 0) { goto ContinueAfterZero; } else { // We certainly don't want to optimize for this case because we
// should rarely get self-intersecting polygons (if we're slow,
// the app gets what it deserves):
LONG lTmp; POINTFIX* pptfxTmp;
SWAP(xLeft, xRight, lTmp); SWAP(dxLeft, dxRight, lTmp); SWAP(lLeftError, lRightError, lTmp); SWAP(ptd->aed[LEFT].lErrorUp, ptd->aed[RIGHT].lErrorUp, lTmp); SWAP(ptd->aed[LEFT].lErrorDown, ptd->aed[RIGHT].lErrorDown, lTmp); SWAP(ptd->aed[LEFT].cy, ptd->aed[RIGHT].cy, lTmp); SWAP(ptd->aed[LEFT].dptfx, ptd->aed[RIGHT].dptfx, lTmp); SWAP(ptd->aed[LEFT].pptfx, ptd->aed[RIGHT].pptfx, pptfxTmp); } }
ptd->aed[LEFT].lError = lLeftError; ptd->aed[LEFT].dx = dxLeft; ptd->aed[LEFT].x = xLeft; ptd->aed[RIGHT].lError = lRightError; ptd->aed[RIGHT].dx = dxRight; ptd->aed[RIGHT].x = xRight; }
/******************************Public*Routine******************************\
* VOID vMmTrapezoidSetup * * Initialize the hardware and some state for doing memory-mapped I/O * trapezoids. * \**************************************************************************/
VOID vMmTrapezoidSetup( PDEV* ppdev, ULONG rop4, ULONG iSolidColor, RBRUSH* prb, POINTL* pptlBrush, TRAPEZOIDDATA* ptd) { BYTE* pjMmBase;
ptd->ppdev = ppdev; pjMmBase = ppdev->pjMmBase;
MM_WAIT_FOR_IDLE(ppdev, pjMmBase); MM_BITMAP_HEIGHT(ppdev, pjMmBase, 1); MM_BLT_CMD_1(ppdev, pjMmBase, XY_SRC_ADDR | XY_DEST_ADDR);
if (iSolidColor != -1) { ptd->pfnTrap = vMmSolidTrapezoid;
/////////////////////////////////////////////////////////////////
// Setup the hardware for solid colours
MM_PREG_COLOR_8(ppdev, pjMmBase, iSolidColor); if (rop4 == 0xf0f0) { // Note block write:
MM_CTRL_REG_1(ppdev, pjMmBase, PACKED_PIXEL_VIEW | BLOCK_WRITE | BITS_PER_PIX_8 | ENAB_TRITON_MODE); MM_DATAPATH_CTRL(ppdev, pjMmBase, ROPSELECT_NO_ROPS | PIXELMASK_ONLY | PLANARMASK_NONE_0XFF | SRC_IS_PATTERN_REGS); } else { MM_CTRL_REG_1(ppdev, pjMmBase, PACKED_PIXEL_VIEW | BITS_PER_PIX_8 | ENAB_TRITON_MODE); MM_DATAPATH_CTRL(ppdev, pjMmBase, ROPSELECT_ALL | PIXELMASK_ONLY | PLANARMASK_NONE_0XFF | SRC_IS_PATTERN_REGS); MM_ROP_A(ppdev, pjMmBase, rop4 >> 2); } } else { ptd->prb = prb; ptd->ptlBrush = *pptlBrush;
if (!(prb->fl & RBRUSH_2COLOR)) { ptd->pfnTrap = vMmPatternedTrapezoid;
/////////////////////////////////////////////////////////////////
// Setup for coloured patterns
MM_CTRL_REG_1(ppdev, pjMmBase, PACKED_PIXEL_VIEW | BITS_PER_PIX_8 | ENAB_TRITON_MODE); if (rop4 == 0xf0f0) { MM_DATAPATH_CTRL(ppdev, pjMmBase, ROPSELECT_NO_ROPS | PIXELMASK_ONLY | PLANARMASK_NONE_0XFF | SRC_IS_PATTERN_REGS); } else { MM_DATAPATH_CTRL(ppdev, pjMmBase, ROPSELECT_ALL | PIXELMASK_ONLY | PLANARMASK_NONE_0XFF | SRC_IS_PATTERN_REGS); MM_ROP_A(ppdev, pjMmBase, rop4 >> 2); } } else { ptd->pfnTrap = vMm2ColorTrapezoid;
/////////////////////////////////////////////////////////////////
// Setup for 2-colour patterns
MM_FG_COLOR(ppdev, pjMmBase, prb->ulForeColor); MM_BG_COLOR(ppdev, pjMmBase, prb->ulBackColor); MM_PREG_PATTERN(ppdev, pjMmBase, prb->aulPattern);
MM_CTRL_REG_1(ppdev, pjMmBase, EXPAND_TO_FG | BITS_PER_PIX_8 | ENAB_TRITON_MODE); if (rop4 == 0xf0f0) { MM_DATAPATH_CTRL(ppdev, pjMmBase, ROPSELECT_NO_ROPS | PIXELMASK_ONLY | PLANARMASK_NONE_0XFF | SRC_IS_PATTERN_REGS); } else if (((rop4 >> 8) & 0xff) == (rop4 & 0xff)) { MM_ROP_A(ppdev, pjMmBase, rop4 >> 2); MM_DATAPATH_CTRL(ppdev, pjMmBase, ROPSELECT_ALL | PIXELMASK_ONLY | PLANARMASK_NONE_0XFF | SRC_IS_PATTERN_REGS); } else if ((rop4 & 0xff) == 0xcc) { MM_DATAPATH_CTRL(ppdev, pjMmBase, ROPSELECT_NO_ROPS | PIXELMASK_AND_SRC_DATA | PLANARMASK_NONE_0XFF | SRC_IS_PATTERN_REGS); } else { MM_ROP_A(ppdev, pjMmBase, rop4 >> 2); MM_DATAPATH_CTRL(ppdev, pjMmBase, ROPSELECT_ALL | PIXELMASK_AND_SRC_DATA | PLANARMASK_NONE_0XFF | SRC_IS_PATTERN_REGS); } } } }
/******************************Public*Routine******************************\
* BOOL bFastFill * * Draws a non-complex, unclipped polygon. 'Non-complex' is defined as * having only two edges that are monotonic increasing in 'y'. That is, * the polygon cannot have more than one disconnected segment on any given * scan. Note that the edges of the polygon can self-intersect, so hourglass * shapes are permissible. This restriction permits this routine to run two * simultaneous DDAs, and no sorting of the edges is required. * * Note that NT's fill convention is different from that of Win 3.1 or 4.0. * With the additional complication of fractional end-points, our convention * is the same as in 'X-Windows'. But a DDA is a DDA is a DDA, so once you * figure out how we compute the DDA terms for NT, you're golden. * * Returns TRUE if the polygon was drawn; FALSE if the polygon was complex. * \**************************************************************************/
BOOL bFastFill( PDEV* ppdev, LONG cEdges, // Includes close figure edge
POINTFIX* pptfxFirst, ULONG rop4, ULONG iSolidColor, RBRUSH* prb, POINTL* pptlBrush) { LONG yTrapezoid; // Top scan for next trapezoid
LONG cyTrapezoid; // Number of scans in current trapezoid
LONG yStart; // y-position of start point in current edge
LONG dM; // Edge delta in FIX units in x direction
LONG dN; // Edge delta in FIX units in y direction
LONG i; POINTFIX* pptfxLast; // Points to the last point in the polygon array
POINTFIX* pptfxTop; // Points to the top-most point in the polygon
POINTFIX* pptfxOld; // Start point in current edge
POINTFIX* pptfxScan; // Current edge pointer for finding pptfxTop
LONG cScanEdges; // Number of edges scanned to find pptfxTop
// (doesn't include the closefigure edge)
LONG iEdge; LONG lQuotient; LONG lRemainder;
TRAPEZOIDDATA td; // Edge data and stuff
EDGEDATA* ped; // Points to current edge being processed
/////////////////////////////////////////////////////////////////
// See if the polygon is 'non-complex'
pptfxScan = pptfxFirst; pptfxTop = pptfxFirst; // Assume for now that the first
// point in path is the topmost
pptfxLast = pptfxFirst + cEdges - 1;
// 'pptfxScan' will always point to the first point in the current
// edge, and 'cScanEdges' will the number of edges remaining, including
// the current one:
cScanEdges = cEdges - 1; // The number of edges, not counting close figure
if ((pptfxScan + 1)->y > pptfxScan->y) { // Collect all downs:
do { if (--cScanEdges == 0) goto SetUpForFilling; pptfxScan++; } while ((pptfxScan + 1)->y >= pptfxScan->y);
// Collect all ups:
do { if (--cScanEdges == 0) goto SetUpForFillingCheck; pptfxScan++; } while ((pptfxScan + 1)->y <= pptfxScan->y);
// Collect all downs:
pptfxTop = pptfxScan;
do { if ((pptfxScan + 1)->y > pptfxFirst->y) break;
if (--cScanEdges == 0) goto SetUpForFilling; pptfxScan++; } while ((pptfxScan + 1)->y >= pptfxScan->y);
return(FALSE); } else { // Collect all ups:
do { pptfxTop++; // We increment this now because we
// want it to point to the very last
// point if we early out in the next
// statement...
if (--cScanEdges == 0) goto SetUpForFilling; } while ((pptfxTop + 1)->y <= pptfxTop->y);
// Collect all downs:
pptfxScan = pptfxTop; do { if (--cScanEdges == 0) goto SetUpForFilling; pptfxScan++; } while ((pptfxScan + 1)->y >= pptfxScan->y);
// Collect all ups:
do { if ((pptfxScan + 1)->y < pptfxFirst->y) break;
if (--cScanEdges == 0) goto SetUpForFilling; pptfxScan++; } while ((pptfxScan + 1)->y <= pptfxScan->y);
return(FALSE); }
SetUpForFillingCheck:
// We check to see if the end of the current edge is higher
// than the top edge we've found so far:
if ((pptfxScan + 1)->y < pptfxTop->y) pptfxTop = pptfxScan + 1;
SetUpForFilling:
/////////////////////////////////////////////////////////////////
// Some Initialization
yTrapezoid = (pptfxTop->y + 15) >> 4;
// Make sure we initialize the DDAs appropriately:
td.aed[LEFT].cy = 0; td.aed[RIGHT].cy = 0;
// For now, guess as to which is the left and which is the right edge:
td.aed[LEFT].dptfx = -(LONG) sizeof(POINTFIX); td.aed[RIGHT].dptfx = sizeof(POINTFIX); td.aed[LEFT].pptfx = pptfxTop; td.aed[RIGHT].pptfx = pptfxTop;
// Do the hardware setup. These are not in-line only because it
// takes too much space to ahve both I/O and memory-mapped I/O
// versions:
if (ppdev->pjMmBase != NULL) vMmTrapezoidSetup(ppdev, rop4, iSolidColor, prb, pptlBrush, &td); else vIoTrapezoidSetup(ppdev, rop4, iSolidColor, prb, pptlBrush, &td);
NewTrapezoid:
/////////////////////////////////////////////////////////////////
// DDA initialization
for (iEdge = 1; iEdge >= 0; iEdge--) { ped = &td.aed[iEdge]; if (ped->cy == 0) { // Need a new DDA:
do { cEdges--; if (cEdges < 0) return(TRUE);
// Find the next left edge, accounting for wrapping:
pptfxOld = ped->pptfx; ped->pptfx = (POINTFIX*) ((BYTE*) ped->pptfx + ped->dptfx);
if (ped->pptfx < pptfxFirst) ped->pptfx = pptfxLast; else if (ped->pptfx > pptfxLast) ped->pptfx = pptfxFirst;
// Have to find the edge that spans yTrapezoid:
ped->cy = ((ped->pptfx->y + 15) >> 4) - yTrapezoid;
// With fractional coordinate end points, we may get edges
// that don't cross any scans, in which case we try the
// next one:
} while (ped->cy <= 0);
// 'pptfx' now points to the end point of the edge spanning
// the scan 'yTrapezoid'.
dN = ped->pptfx->y - pptfxOld->y; dM = ped->pptfx->x - pptfxOld->x;
ASSERTDD(dN > 0, "Should be going down only");
// Compute the DDA increment terms:
if (dM < 0) { dM = -dM; if (dM < dN) // Can't be '<='
{ ped->dx = -1; ped->lErrorUp = dN - dM; } else { QUOTIENT_REMAINDER(dM, dN, lQuotient, lRemainder);
ped->dx = -lQuotient; // - dM / dN
ped->lErrorUp = lRemainder; // dM % dN
if (ped->lErrorUp > 0) { ped->dx--; ped->lErrorUp = dN - ped->lErrorUp; } } } else { if (dM < dN) // Can't be '<='
{ ped->dx = 0; ped->lErrorUp = dM; } else { QUOTIENT_REMAINDER(dM, dN, lQuotient, lRemainder);
ped->dx = lQuotient; // dM / dN
ped->lErrorUp = lRemainder; // dM % dN
} }
ped->lErrorDown = dN; // DDA limit
ped->lError = -1; // Error is initially zero (add dN - 1 for
// the ceiling, but subtract off dN so that
// we can check the sign instead of comparing
// to dN)
ped->x = pptfxOld->x; yStart = pptfxOld->y;
if ((yStart & 15) != 0) { // Advance to the next integer y coordinate
for (i = 16 - (yStart & 15); i != 0; i--) { ped->x += ped->dx; ped->lError += ped->lErrorUp; if (ped->lError >= 0) { ped->lError -= ped->lErrorDown; ped->x++; } } }
if ((ped->x & 15) != 0) { ped->lError -= ped->lErrorDown * (16 - (ped->x & 15)); ped->x += 15; // We'll want the ceiling in just a bit...
}
// Chop off those fractional bits:
ped->x >>= 4; ped->lError >>= 4; } }
cyTrapezoid = min(td.aed[LEFT].cy, td.aed[RIGHT].cy); // # of scans in this trap
td.aed[LEFT].cy -= cyTrapezoid; td.aed[RIGHT].cy -= cyTrapezoid;
td.pfnTrap(&td, yTrapezoid, cyTrapezoid);
yTrapezoid += cyTrapezoid;
goto NewTrapezoid; }
|