|
|
#ifndef __glos_h_
#define __glos_h_
/*
** Copyright 1991, 1992, 1993, Silicon Graphics, Inc. ** All Rights Reserved. ** ** This is UNPUBLISHED PROPRIETARY SOURCE CODE of Silicon Graphics, Inc.; ** the contents of this file may not be disclosed to third parties, copied or ** duplicated in any form, in whole or in part, without the prior written ** permission of Silicon Graphics, Inc. ** ** RESTRICTED RIGHTS LEGEND: ** Use, duplication or disclosure by the Government is subject to restrictions ** as set forth in subdivision (c)(1)(ii) of the Rights in Technical Data ** and Computer Software clause at DFARS 252.227-7013, and/or in similar or ** successor clauses in the FAR, DOD or NASA FAR Supplement. Unpublished - ** rights reserved under the Copyright Laws of the United States. */
#include <nt.h>
#include <stdlib.h>
#include <ntrtl.h>
#include <nturtl.h>
#include <stddef.h>
#include <windows.h>
#include "glscreen.h"
#include "types.h"
// Indicator of which platform we're running on,
// uses the VER_PLATFORM defines
extern DWORD dwPlatformId;
//
// LocalRtlFillMemoryUlong
//
// Inline implementation of RtlFillMemoryUlong. Destination has DWORD
// alignment.
//
// Parameters:
//
// Destination pointer to DWORD aligned destination
// Length number of bytes to fill
// Pattern fill pattern
//
_inline VOID LocalRtlFillMemoryUlong(PVOID Destination, ULONG Length, ULONG Pattern) { if ((Pattern == 0) || (Pattern == 0xffffffff)) memset(Destination, Pattern, Length); else { register ULONG *pDest = (ULONG *)Destination; LONG unroll;
Length >>= 2;
for (unroll = Length >> 5; unroll; unroll--) { pDest[0] = Pattern; pDest[1] = Pattern; pDest[2] = Pattern; pDest[3] = Pattern; pDest[4] = Pattern; pDest[5] = Pattern; pDest[6] = Pattern; pDest[7] = Pattern; pDest[8] = Pattern; pDest[9] = Pattern; pDest[10] = Pattern; pDest[11] = Pattern; pDest[12] = Pattern; pDest[13] = Pattern; pDest[14] = Pattern; pDest[15] = Pattern; pDest[16] = Pattern; pDest[17] = Pattern; pDest[18] = Pattern; pDest[19] = Pattern; pDest[20] = Pattern; pDest[21] = Pattern; pDest[22] = Pattern; pDest[23] = Pattern; pDest[24] = Pattern; pDest[25] = Pattern; pDest[26] = Pattern; pDest[27] = Pattern; pDest[28] = Pattern; pDest[29] = Pattern; pDest[30] = Pattern; pDest[31] = Pattern; pDest += 32; }
for (unroll = (Length & 0x1f) >> 2; unroll; unroll--) { pDest[0] = Pattern; pDest[1] = Pattern; pDest[2] = Pattern; pDest[3] = Pattern; pDest += 4; }
for (unroll = (Length & 0x3) - 1; unroll >= 0; unroll--) pDest[unroll] = Pattern; } }
//
// LocalCompareUlongMemory
//
// Inline implementation of RtlCompareUlongMemory. Both pointers
// must have DWORD alignment.
//
// Returns TRUE if the two source arrays are equal. FALSE otherwise.
//
// Parameters:
//
// Source1 pointer to DWORD aligned array to check
// Source1 pointer to DWORD aligned array to compare with
// Length number of bytes to fill
//
_inline BOOL LocalCompareUlongMemory(PVOID Source1, PVOID Source2, ULONG Length) { register ULONG *pSrc1 = (ULONG *) Source1; register ULONG *pSrc2 = (ULONG *) Source2; LONG unroll; BOOL bRet = FALSE;
Length >>= 2;
for (unroll = Length >> 5; unroll; unroll--) { if ( (pSrc1[0] != pSrc2[0]) || (pSrc1[1] != pSrc2[1]) || (pSrc1[2] != pSrc2[2]) || (pSrc1[3] != pSrc2[3]) || (pSrc1[4] != pSrc2[4]) || (pSrc1[5] != pSrc2[5]) || (pSrc1[6] != pSrc2[6]) || (pSrc1[7] != pSrc2[7]) || (pSrc1[8] != pSrc2[8]) || (pSrc1[9] != pSrc2[9]) || (pSrc1[10] != pSrc2[10]) || (pSrc1[11] != pSrc2[11]) || (pSrc1[12] != pSrc2[12]) || (pSrc1[13] != pSrc2[13]) || (pSrc1[14] != pSrc2[14]) || (pSrc1[15] != pSrc2[15]) || (pSrc1[16] != pSrc2[16]) || (pSrc1[17] != pSrc2[17]) || (pSrc1[18] != pSrc2[18]) || (pSrc1[19] != pSrc2[19]) || (pSrc1[20] != pSrc2[20]) || (pSrc1[21] != pSrc2[21]) || (pSrc1[22] != pSrc2[22]) || (pSrc1[23] != pSrc2[23]) || (pSrc1[24] != pSrc2[24]) || (pSrc1[25] != pSrc2[25]) || (pSrc1[26] != pSrc2[26]) || (pSrc1[27] != pSrc2[27]) || (pSrc1[28] != pSrc2[28]) || (pSrc1[29] != pSrc2[29]) || (pSrc1[30] != pSrc2[30]) || (pSrc1[31] != pSrc2[31]) ) goto LocalRtlCompareUlongMemory_exit;
pSrc1 += 32; pSrc2 += 32; }
for (unroll = (Length & 0x1f) >> 2; unroll; unroll--) { if ( (pSrc1[0] != pSrc2[0]) || (pSrc1[1] != pSrc2[1]) || (pSrc1[2] != pSrc2[2]) || (pSrc1[3] != pSrc2[3]) ) goto LocalRtlCompareUlongMemory_exit;
pSrc1 += 4; pSrc2 += 4; }
for (unroll = (Length & 0x3) - 1; unroll >= 0; unroll--) if ( pSrc1[unroll] != pSrc2[unroll] ) goto LocalRtlCompareUlongMemory_exit;
bRet = TRUE; // return TRUE if memory is identical
LocalRtlCompareUlongMemory_exit:
return bRet; }
//
// LocalRtlFillMemoryUshort
//
// Inline implementation of USHORT equivalent to RtlFillMemoryUlong,
// RtlFillMemoryUshort (does not currently exist in NT). WORD alignment
// assumed for Destination.
//
// Parameters:
//
// Destination pointer to USHORT aligned destination
// Length number of bytes to fill
// Pattern fill pattern
//
_inline VOID LocalRtlFillMemoryUshort(PVOID Destination, ULONG Length, USHORT Pattern) { if ( Length == 0 ) return;
// If odd WORD, make it DWORD aligned by writing a WORD up front.
if ( ((ULONG_PTR) Destination) & 0x2 ) { *((USHORT *) Destination)++ = Pattern; Length -= sizeof(USHORT);
if ( Length == 0 ) return; }
// Now the Destination start is DWORD aligned. If the remaining length
// is an odd number of WORDs, we will need to pick up an extra WORD write
// at the end.
if ((Pattern == 0x0000) || (Pattern == 0xffff)) memset(Destination, Pattern, Length); else { ULONG ulPattern = Pattern | (Pattern << 16); ULONG cjDwords;
// Do what we can with DWORD writes.
if ( cjDwords = (Length & (~3)) ) { LocalRtlFillMemoryUlong((PVOID) Destination, cjDwords, ulPattern); ((BYTE *) Destination) += cjDwords; }
// Pick up the last WORD.
if ( Length & 3 ) *((USHORT *) Destination) = Pattern; } }
//
// LocalRtlFillMemory24
//
// Inline implementation of 24bit equivalent to RtlFillMemoryUlong,
// No assumptions made about alignment.
// Parameters:
//
// Destination pointer to destination
// Length number of bytes to fill
// col0, col1, col2 Colors
//
_inline VOID LocalRtlFillMemory24(PVOID Destination, ULONG Length, BYTE col0, BYTE col1, BYTE col2) { BYTE col[3];
if ( Length == 0 ) return;
// Check for special cases, same valued components
if ((col0 == col1) && (col0 == col2)) {
memset(Destination, col0, Length);
} else { //Other colors
ULONG ulPat1, ulPat2, ulPat3; int rem; int i, tmp; register ULONG *pDest; register BYTE *pByte = (BYTE *)Destination; LONG unroll; // If not DWORD aligned, make it DWORD aligned.
tmp = (int)((ULONG_PTR) Destination & 0x3); switch ( 4 - tmp ) { case 1: *pByte++ = col0; Length--; ulPat1 = (col1 << 24) | (col0 << 16) | (col2 << 8) | col1; ulPat2 = (col2 << 24) | (col1 << 16) | (col0 << 8) | col2; ulPat3 = (col0 << 24) | (col2 << 16) | (col1 << 8) | col0; break; case 2: *pByte++ = col0; *pByte++ = col1; Length -= 2; ulPat1 = (col2 << 24) | (col1 << 16) | (col0 << 8) | col2; ulPat2 = (col0 << 24) | (col2 << 16) | (col1 << 8) | col0; ulPat3 = (col1 << 24) | (col0 << 16) | (col2 << 8) | col1; break; case 3: *pByte++ = col0; *pByte++ = col1; *pByte++ = col2; Length -= 3; case 4: // fall thru, 'cause the pattern is the same
default: ulPat1 = (col0 << 24) | (col2 << 16) | (col1 << 8) | col0; ulPat2 = (col1 << 24) | (col0 << 16) | (col2 << 8) | col1; ulPat3 = (col2 << 24) | (col1 << 16) | (col0 << 8) | col2; } pDest = (ULONG *)pByte; rem = Length % 48; Length >>= 2; for (unroll = Length/12; unroll; unroll--) { pDest[0] = ulPat1; pDest[1] = ulPat2; pDest[2] = ulPat3; pDest[3] = ulPat1; pDest[4] = ulPat2; pDest[5] = ulPat3; pDest[6] = ulPat1; pDest[7] = ulPat2; pDest[8] = ulPat3; pDest[9] = ulPat1; pDest[10] = ulPat2; pDest[11] = ulPat3; pDest += 12; }
col[0] = (BYTE) (ulPat1 & 0x000000ff); col[1] = (BYTE) ((ulPat1 & 0x0000ff00) >> 8); col[2] = (BYTE) ((ulPat1 & 0x00ff0000) >> 16);
pByte = (BYTE *)pDest; for (i=0; i<rem; i++) *pByte++ = col [i%3]; } }
//
// LocalWriteMemoryAlign
//
// Inline implementation of RtlCopyMemory that ensures that the copy
// operation will write to the destination with DWORD alignment.
//
_inline VOID LocalWriteMemoryAlign(PBYTE pjDst, PBYTE pjSrc, ULONG cj) { ULONG cjExtraBytes; ULONG cjDwords;
// If cj < sizeof(DWORD), then set cjExtraBytes to cj. That's all we will
// need to do.
//
// Otherwise, compute the number of leading bytes to the next DWORD boundary.
if ( cj < 4 ) cjExtraBytes = cj; else cjExtraBytes = (ULONG)(4 - (((ULONG_PTR) pjDst) & 3)) & 3;
// Make dst array DWORD aligned by copying the leading non-DWORD aligned bytes.
if ( cjExtraBytes ) { switch (cjExtraBytes) { case 3: *pjDst++ = *pjSrc++; case 2: *pjDst++ = *pjSrc++; case 1: *pjDst++ = *pjSrc++; }
if ( (cj -= cjExtraBytes) == 0 ) return; }
// Now the beginning of dst array is DWORD aligned. If the remaining length
// is an odd number of BYTEs, we will need to pick up the extra BYTE writes
// at the end.
// Do what we can with DWORD copy.
if ( cjDwords = (cj & (~3)) ) { memcpy(pjDst, pjSrc, cjDwords); pjDst += cjDwords; pjSrc += cjDwords; }
// Pick up the remaining BYTES.
if ( cjExtraBytes = (cj & 3) ) { switch (cjExtraBytes) { case 3: *pjDst++ = *pjSrc++; case 2: *pjDst++ = *pjSrc++; case 1: *pjDst++ = *pjSrc++; } } }
//
// LocalReadMemoryAlign
//
// Inline implementation of RtlCopyMemory that ensures that the copy
// operation will read from the source with DWORD alignment.
//
_inline VOID LocalReadMemoryAlign(PBYTE pjDst, PBYTE pjSrc, ULONG cj) { ULONG cjExtraBytes; ULONG cjDwords;
// If cj < sizeof(DWORD), then set cjExtraBytes to cj. That's all we will
// need to do.
//
// Otherwise, compute the number of leading bytes to the next DWORD boundary.
if ( cj < 4 ) cjExtraBytes = cj; else cjExtraBytes = (ULONG) (4 - (((ULONG_PTR) pjSrc) & 3)) & 3;
// Take care of the leading BYTES.
if ( cjExtraBytes ) { switch (cjExtraBytes) { case 3: *pjDst++ = *pjSrc++; case 2: *pjDst++ = *pjSrc++; case 1: *pjDst++ = *pjSrc++; }
if ( (cj -= cjExtraBytes) == 0 ) return; }
// Now the beginning of src array is DWORD aligned. If the remaining length
// is an odd number of BYTEs, we will need to pick up the extra BYTE writes
// at the end.
// Do what we can with DWORD copy.
if ( cjDwords = (cj & (~3)) ) { memcpy(pjDst, pjSrc, cjDwords); pjDst += cjDwords; pjSrc += cjDwords; }
// Pick up the remaining BYTES.
if ( cjExtraBytes = (cj & 3) ) { switch (cjExtraBytes) { case 3: *pjDst++ = *pjSrc++; case 2: *pjDst++ = *pjSrc++; case 1: *pjDst++ = *pjSrc++; } } }
//
// LocalFillMemory
//
// Inline implementation of RtlFillMemory. Assume that pjDst has only BYTE
// alignment.
//
_inline VOID LocalFillMemory(PBYTE pjDst, ULONG cj, BYTE j) { ULONG cjExtraBytes; ULONG cjDwords;
// If cj < sizeof(DWORD), then set cjExtraBytes to cj. That's all we will
// need to do.
//
// Otherwise, compute the number of leading bytes to the next DWORD boundary.
if ( cj < 4 ) cjExtraBytes = cj; else cjExtraBytes = (ULONG)(4 - (((ULONG_PTR) pjDst) & 3)) & 3;
// Take care of the leading BYTES.
if ( cjExtraBytes ) { switch ( cjExtraBytes ) { case 3: *pjDst++ = j; case 2: *pjDst++ = j; case 1: *pjDst++ = j; }
if ( (cj -= cjExtraBytes) == 0 ) return; }
// Now both arrays start is DWORD aligned. If the remaining length
// is an odd number of BYTEs, we will need to pick up the extra BYTE writes
// at the end.
// Do what we can with DWORD copy.
if ( cjDwords = (cj & (~3)) ) { ULONG ul = j | (j<<8) | (j<<16) | (j<<24);
LocalRtlFillMemoryUlong((PVOID) pjDst, cjDwords, ul); pjDst += cjDwords; }
// Pick up the remaining BYTES.
if ( cjExtraBytes = (cj & 3) ) { switch (cjExtraBytes) { case 3: *pjDst++ = j; case 2: *pjDst++ = j; case 1: *pjDst++ = j; } } }
//
// LocalZeroMemory
//
// Inline implementation of RtlFillMemory. Assume that pjDst has only BYTE
// alignment.
//
_inline VOID LocalZeroMemory(PBYTE pjDst, ULONG cj) { LocalFillMemory(pjDst, cj, 0); }
#undef RtlMoveMemory
#undef RtlCopyMemory
#undef RtlFillMemory
#undef RtlZeroMemory
#undef RtlFillMemoryUlong
#undef RtlFillMemory24
#define RtlMoveMemory(d, s, l) memmove((d),(s),(l))
#define RtlCopyMemory(d, s, l) memcpy((d),(s),(l))
#define RtlFillMemoryUlong(d, cj, ul) LocalRtlFillMemoryUlong((PVOID)(d),(ULONG)(cj),(ULONG)(ul))
#define RtlFillMemoryUshort(d, cj, us) LocalRtlFillMemoryUshort((PVOID)(d),(ULONG)(cj),(USHORT)(us))
#define RtlFillMemory24(d, cj, c0, c1, c2) LocalRtlFillMemory24((PVOID)(d),(ULONG)(cj),(BYTE)c0,(BYTE)c1,(BYTE)c2)
// RtlCopyMemory_UnalignedDst should be used if the src is guaranteed to have
// DWORD alignment, but the dst does not.
//
// RtlCopyMemory_UnalignedSrc should be used if the dst is guaranteed to have
// DWORD alignment, but the src does not.
#if defined(i386)
#define RtlFillMemory(d, cj, j) LocalFillMemory((PBYTE)(d),(ULONG)(cj),(BYTE)(j))
#define RtlZeroMemory(d, cj) LocalZeroMemory((PBYTE)(d),(ULONG)(cj))
#define RtlCopyMemory_UnalignedDst(d, s, l) LocalWriteMemoryAlign((PBYTE)(d),(PBYTE)(s),(ULONG)(l))
#define RtlCopyMemory_UnalignedSrc(d, s, l) LocalReadMemoryAlign((PBYTE)(d),(PBYTE)(s),(ULONG)(l))
#else
#define RtlFillMemory(d, cj, j) memset((d),(j),(cj))
#define RtlZeroMemory(d, cj) memset((d),0,(cj))
#define RtlCopyMemory_UnalignedDst(d, s, l) memcpy((d),(s),(l))
#define RtlCopyMemory_UnalignedSrc(d, s, l) memcpy((d),(s),(l))
#endif
#include "oleauto.h"
#include "batchinf.h"
#include "glteb.h"
#include "debug.h"
#include "asm.h"
#endif /* __glos_h_ */
|