|
|
//
// Copyright (c) 1998-1999, Microsoft Corporation, all rights reserved
//
// send.c
//
// IEEE1394 mini-port/call-manager driver
//
// Mini-port Send routines
//
// 12/28/1998 ADube Created, adapted from the l2tp and 1394diag sources.
//
//
// The Send Complete functions begin here. Send.c starts here
// Also present are the all thr buffer management routines that need to be expanded
//
//
// A Send follows this simple algorithm:
// Copy incoming data to local buffers
// Insert Fragment Headers if necessary
// Create an Mdl for the local copy
// Store the IRB and VC in the ndispacket
// Use the ndispacket as context in the irp's completion routine
//
#include <precomp.h>
//-----------------------------------------------------------------------------
// Global counts
//-----------------------------------------------------------------------------
extern UINT BusSendCompletes; extern UINT NicSendCompletes; extern UINT BusSends; extern ULONG MdlsAllocated[NoMoreCodePaths]; extern ULONG MdlsFreed[NoMoreCodePaths];
//-----------------------------------------------------------------------------
// prototypes implementations (alphabetically)
//-----------------------------------------------------------------------------
NDIS_STATUS nicCopyNdisBufferChainToBuffer( IN PNDIS_BUFFER pInBuffer, IN OUT PVOID pLocalBuffer, IN UINT BufferLength ) {
//
// This function copies the data the belongs to the
// pInMdl chain to the local Buffer.
// BufferLength is used for validation purposes only
// Fragmentation and insertion of headers will take place here
//
NDIS_STATUS NdisStatus = NDIS_STATUS_SUCCESS; UINT LocalBufferIndex = 0; // Used as an index to the LocalBuffer, used for validation
UINT MdlLength = 0; PVOID MdlAddress = 0; PNDIS_BUFFER pCurrBuffer;
TRACE( TL_T, TM_Send, ( "==>nicCopyNdisBufferChainToBuffer pNdisbuffer %x, Buffer %x, Length %x", pInBuffer, pLocalBuffer,BufferLength ) );
ASSERT (pLocalBuffer != NULL);
pCurrBuffer = pInBuffer; do {
MdlLength = nicNdisBufferLength(pCurrBuffer); MdlAddress= nicNdisBufferVirtualAddress(pCurrBuffer);
if (MdlLength != 0) { if (MdlAddress == NULL) { NdisStatus = NDIS_STATUS_FAILURE; TRACE (TL_A, TM_Send, ("Ndis Buffer at %x", pCurrBuffer) ); BREAK (TM_Send, (" nicCopyNdisBufferChainToBuffer: Mdl Address = NULL") );
}
if ( LocalBufferIndex + MdlLength > BufferLength) {
ASSERT(LocalBufferIndex + MdlLength <= BufferLength);
NdisStatus = NDIS_STATUS_BUFFER_TOO_SHORT;
BREAK (TM_Send, ("nicCopyNdisBufferChainToBuffer Copy Failed" ) ); }
//
// Copy the Data to local memory.
//
NdisMoveMemory((PVOID)((ULONG_PTR)pLocalBuffer+LocalBufferIndex), MdlAddress, MdlLength);
LocalBufferIndex += MdlLength; }
pCurrBuffer = pCurrBuffer->Next;
} while (pCurrBuffer!= NULL);
TRACE( TL_T, TM_Send, ( "<==nicCopyNdisBufferChainToBuffer %x",NdisStatus ) );
return NdisStatus;
}
NDIS_STATUS nicFreeIrb(PIRB pIrb) //
// Frees the Memory occcupied by the Irb
//
{
NDIS_STATUS NdisStatus = NDIS_STATUS_SUCCESS; ASSERT(pIrb != NULL);
TRACE( TL_T, TM_Irp, ( "==>nicFreeIrb %x", pIrb ) );
if (pIrb != NULL) { FREE_NONPAGED(pIrb); } TRACE( TL_T, TM_Irp, ( "<==nicFreeIrb, NdisStatus %x",NdisStatus ) ); return NdisStatus;
}
NDIS_STATUS nicFreePrivateIrb( PNDIS1394_IRB pIrb ) //
// Frees the Memory occcupied by the Irb
//
{
NDIS_STATUS NdisStatus = NDIS_STATUS_SUCCESS; ASSERT(pIrb != NULL);
TRACE( TL_T, TM_Irp, ( "==>nicFreeIrb %x", pIrb ) );
if (pIrb != NULL) { FREE_NONPAGED(pIrb); } TRACE( TL_T, TM_Irp, ( "<==nicFreeIrb, NdisStatus %x",NdisStatus ) ); return NdisStatus;
}
NDIS_STATUS nicFreeIrp(PIRP pIrp)
//
// Frees the memory occupied by the Irp
//
{
NDIS_STATUS NdisStatus = NDIS_STATUS_SUCCESS;
ASSERT(pIrp != NULL);
TRACE( TL_T, TM_Irp, ( "==>nicFreeIrp at %x",pIrp ) );
if (pIrp != NULL) { IoFreeIrp(pIrp); } TRACE( TL_T, TM_Irp, ( "<==nicFreeIrp, NdisStatus %x",NdisStatus ) );
return NdisStatus;
}
NDIS_STATUS nicFreeLocalBuffer ( IN UINT Length, IN PVOID Address ) //
// Free the Memory pointed to by Address.
// The Length parameter is superfluous and will be removed
// once I am sure we don;t need it
//
{
NDIS_STATUS NdisStatus = NDIS_STATUS_SUCCESS;
ASSERT(Address != NULL);
TRACE( TL_T, TM_Send, ( "==>nicFreeLocalBuffer , Address %x", Address) );
if (Address != NULL) { FREE_NONPAGED((PVOID)Address); } TRACE( TL_T, TM_Send, ( "<==niFreeLocalBuffer, NdisStatus %x",NdisStatus ) );
return NdisStatus;
}
NDIS_STATUS nicFreeMdl(PMDL pMdl) //
// This frees the memory belonging to the Mdl. Does not free the
// memory that the Mdl Points to
//
{ NDIS_STATUS NdisStatus = NDIS_STATUS_SUCCESS;
ASSERT (pMdl != NULL) TRACE( TL_T, TM_Send, ( "==> nicFreeMdl pMdl %x", pMdl ) ); if (pMdl != NULL) { IoFreeMdl(pMdl); } TRACE( TL_T, TM_Send, ( "<== nicFreeMdl, NdisStatus %x",NdisStatus ) );
return NdisStatus; }
VOID nicFreeToNPagedLookasideList ( IN PNIC_NPAGED_LOOKASIDE_LIST pLookasideList, IN PVOID pBuffer )
// Function Description:
// Return the local buffer to the lookaside list
//
// Atguments
// Lookaside list and its buffer
// Return Value:
// None
{
TRACE( TL_T, TM_Send, ( "==> nicFreeToNPagedLookasideList , Lookaside list %x, plocalbuffer %x",pLookasideList, pBuffer ) );
NdisFreeToNPagedLookasideList (&pLookasideList->List, pBuffer); NdisInterlockedDecrement (&pLookasideList->OutstandingPackets);
TRACE( TL_T, TM_Send, ( "<== nicFreeToNPagedLookasideList ") );
}
NDIS_STATUS nicGetIrb( OUT PIRB *ppIrb )
//
// This function is to be used in retrieving a free IRB.
// that will be supplied as an argument for an IRP
//
// Initially, this will simple allocate an IRB
// Intiailization could be added here
//
{
NDIS_STATUS NdisStatus;
TRACE( TL_T, TM_Irp, ( "==>nicGetIrb" ) ); *ppIrb = (PIRB)ALLOC_NONPAGED ( sizeof(IRB), MTAG_HBUFPOOL );
if (*ppIrb != NULL) { NdisZeroMemory ( *ppIrb, sizeof(IRB) ); NdisStatus = NDIS_STATUS_SUCCESS; TRACE( TL_V, TM_Send, ( " nicGetIrb: Irb allocated at %x", *ppIrb ) );
} else { nicIncrementMallocFailure(); NdisStatus = NDIS_STATUS_FAILURE; } TRACE( TL_T, TM_Irp, ( "<==nicGetIrb NdisStatus %x",NdisStatus ) ); return NdisStatus; }
NDIS_STATUS nicGetIrp( IN PDEVICE_OBJECT pPdo, OUT PIRP *ppIrp )
//
// This function returns am irp to the calling routine
// The irp is free and is owned by the nic1394.
// NEED TO CHANGE THE STACK SIZE
//
{
NDIS_STATUS NdisStatus; PIRP pIrp; CCHAR StackSize =0;
ASSERT (pPdo != NULL); TRACE( TL_T, TM_Irp, ( "==>nicGetIrp Pdo %x", pPdo ) );
if (pPdo == NULL) { ASSERT (pPdo != NULL); NdisStatus = NDIS_STATUS_FAILURE; *ppIrp = NULL; return NdisStatus; }
//
// Allocate the Irp with the correct stacksize
//
StackSize = pPdo->StackSize+1;
ASSERT (StackSize <=3); pIrp = IoAllocateIrp (StackSize, FALSE);
do { if (pIrp == NULL) { NdisStatus = NDIS_STATUS_FAILURE; break; }
TRACE( TL_V, TM_Send, ( " Irp allocated at %x, Stacksize %x",pIrp , StackSize ) );
*ppIrp = pIrp; //
// Initialize the Irp
//
IoInitializeIrp ( *ppIrp, sizeof(IRP), StackSize );
if (*ppIrp != NULL) { NdisStatus = NDIS_STATUS_SUCCESS; } else { nicIncrementMallocFailure(); NdisStatus = NDIS_STATUS_FAILURE; } } while (FALSE);
TRACE( TL_T, TM_Irp, ( "<==nicGetIrp ,irp %x",*ppIrp ) ); return NdisStatus; }
NDIS_STATUS nicGetPrivateIrb( IN PADAPTERCB pAdapter OPTIONAL, IN PREMOTE_NODE pRemoteNode OPTIONAL, IN PVCCB pVc, IN PVOID pContext, OUT PNDIS1394_IRB *ppIrb )
//
// This function is to be used in retrieving a free IRB.
// that will be supplied as an argument for an IRP
//
// Initially, this will simple allocate an IRB
// Intiailization could be added here
//
{
NDIS_STATUS NdisStatus; PNDIS1394_IRB pIrb = NULL; TRACE( TL_T, TM_Irp, ( "==> nicGetPrivateIrb pRemoteNode %x, pVc %x", pRemoteNode, pVc ) ); *ppIrb = (PNDIS1394_IRB)ALLOC_NONPAGED ( sizeof(NDIS1394_IRB), MTAG_HBUFPOOL );
if (*ppIrb != NULL) { NdisZeroMemory ( *ppIrb, sizeof(IRB) ); NdisStatus = NDIS_STATUS_SUCCESS;
pIrb = *ppIrb;
pIrb->pAdapter = pAdapter; pIrb->pRemoteNode = pRemoteNode; pIrb->pVc = pVc; pIrb->Context = pContext; TRACE( TL_V, TM_Send, ( " nicGetPrivateIrb: Irb allocated at %x", *ppIrb ) );
} else { nicIncrementMallocFailure(); NdisStatus = NDIS_STATUS_FAILURE; }
TRACE( TL_T, TM_Irp, ( "<==nicGetPrivateIrb NdisStatus %x",NdisStatus ) ); return NdisStatus; }
NDIS_STATUS nicGetLocalBuffer( OPTIONAL IN ULONG Length, OUT PVOID *ppLocalBuffer )
//
// If the lookaside list is not NULL then it is used to allocate the local buffer
//
// This function allocates memory of size 'Length' and returns
// a pointer to this memory
// Subsequently allocation will be done away with and pools will
// be used
//
{
NDIS_STATUS NdisStatus = NDIS_STATUS_FAILURE;
TRACE( TL_T, TM_Send, ( "==>nicGetLocalBuffer Length %x", Length ) ); //
// There is a bug in the Nic if this is zero
//
ASSERT (Length != 0 );
//
// There is no lookaside list, We need to allocate memory
//
*ppLocalBuffer = ALLOC_NONPAGED (Length, MTAG_FBUFPOOL);
if (*ppLocalBuffer != NULL) { NdisStatus = NDIS_STATUS_SUCCESS; } else { nicIncrementMallocFailure(); NdisStatus = NDIS_STATUS_FAILURE; }
TRACE( TL_T, TM_Send, ( "<==nicGetLocalBuffer, NdisStatus %x at %x",NdisStatus,*ppLocalBuffer ) ); return NdisStatus;
}
PVOID nicGetLookasideBuffer( IN PNIC_NPAGED_LOOKASIDE_LIST pLookasideList ) // Function Description:
// Allocate an buffer from the lookaside list.
// will be changed to a macro
//
//
//
// Arguments
// Lookaside list - from which the buffer is allocated
//
//
// Return Value:
// Return buffer can be NULL
//
{
PVOID pLocalBuffer = NULL; TRACE( TL_T, TM_Send, ( "==>nicGetLookasideBuffer pLookasideList %x", pLookasideList) ); ASSERT (pLookasideList != NULL);
//
// Optimize the lookaside list code path
//
pLocalBuffer = NdisAllocateFromNPagedLookasideList (&pLookasideList->List);
if (pLocalBuffer != NULL) { NdisZeroMemory (pLocalBuffer, pLookasideList->Size); NdisInterlockedIncrement (&pLookasideList->OutstandingPackets); } else { nicIncrementMallocFailure(); }
TRACE( TL_T, TM_Send, ( "<==nicGetLookasideBuffer, %x", pLocalBuffer ) ); return pLocalBuffer ;
}
NDIS_STATUS nicGetMdl( IN UINT Length, IN PVOID pLocalBuffer, OUT PMDL *ppMyMdl)
//
// Return a locally owned Mdl to the caller.
// This will also initialize the MDl with the localbuffer
// Initial implementation will allocate mdls
//
{
NDIS_STATUS NdisStatus; TRACE( TL_T, TM_Send, ( "==>nicGetMdl" ) ); ASSERT(pLocalBuffer != NULL);
//
// Allocate an MDl to point to the structure
//
(*ppMyMdl) = NULL; (*ppMyMdl) = IoAllocateMdl( pLocalBuffer, Length, FALSE, FALSE, NULL ); //
// Initialize the data structures with correct values
//
if (*ppMyMdl != NULL) { MmBuildMdlForNonPagedPool(*ppMyMdl);
(*ppMyMdl)->Next = NULL; NdisStatus = NDIS_STATUS_SUCCESS; } else { nicIncrementMallocFailure(); NdisStatus = NDIS_STATUS_FAILURE; *ppMyMdl = NULL; } TRACE( TL_T, TM_Send, ( "<==nicGetMdl, Mdl %x, LocalBuffer %x", *ppMyMdl, pLocalBuffer) ); return NdisStatus; }
VOID nicInitAsyncStreamIrb( IN PCHANNEL_VCCB pChannelVc, IN PMDL pMdl, IN OUT PIRB pIrb ) // This function initializes the Irb that will be used in the Irb
// It specifically handles the AsyncStream IRB
// It arguments are the Vc block (for destination address),
// Mdl (Memory desctiptor for the data and a pointer to the
// Irb structure that will be initialized
{ ASSERT (pMdl != NULL); ASSERT (pIrb != NULL);
NdisZeroMemory (pIrb, sizeof (IRB) ); pIrb->FunctionNumber = REQUEST_ASYNC_STREAM; pIrb->Flags = 0; pIrb->u.AsyncStream.nNumberOfBytesToStream = MmGetMdlByteCount(pMdl); pIrb->u.AsyncStream.fulFlags = 0;
//
// See comments for ISOCH_TAG
//
pIrb->u.AsyncStream.ulTag = g_IsochTag; pIrb->u.AsyncStream.nChannel = pChannelVc->Channel; pIrb->u.AsyncStream.ulSynch = pChannelVc->ulSynch; pIrb->u.AsyncStream.nSpeed = (INT)pChannelVc->Speed; pIrb->u.AsyncStream.Mdl = pMdl; TRACE( TL_V, TM_Send, ( "Number of Bytes to Stream %x ", pIrb->u.AsyncStream.nNumberOfBytesToStream ) ); TRACE( TL_V, TM_Send, ( "fulFlags %x ", pIrb->u.AsyncStream.fulFlags ) ); TRACE( TL_V, TM_Send, ( "ulTag %x ", pIrb->u.AsyncStream.ulTag ) ); TRACE( TL_V, TM_Send, ( "Channel %x", pIrb->u.AsyncStream.nChannel ) ); TRACE( TL_V, TM_Send, ( "Synch %x", pIrb->u.AsyncStream.ulSynch ) ); TRACE( TL_V, TM_Send, ( "Speed %x", pIrb->u.AsyncStream.nSpeed ) ); TRACE( TL_V, TM_Send, ( "Mdl %x", pIrb->u.AsyncStream.Mdl ) );
}
VOID nicInitAsyncWriteIrb( IN PSENDFIFO_VCCB pSendFIFOVc, IN PMDL pMyMdl, IN OUT PIRB pMyIrb ) // This function initializes the Irb that will be used in the Irb
// It specifically handles the AsyncWrite IRB
// It arguments are the Vc block (for destination address),
// Mdl (Memory desctiptor for the data and a pointer to the
// Irb structure that will be initialized
{
//
// Sanity check
//
ASSERT ((*(PULONG)pMyIrb) == 0)
pMyIrb->u.AsyncWrite.nNumberOfBytesToWrite = MmGetMdlByteCount(pMyMdl); pMyIrb->u.AsyncWrite.nBlockSize = 0; pMyIrb->u.AsyncWrite.fulFlags = 0; pMyIrb->u.AsyncWrite.Mdl = pMyMdl; pMyIrb->FunctionNumber = REQUEST_ASYNC_WRITE; pMyIrb->Flags = 0; pMyIrb->u.AsyncWrite.nSpeed = (UCHAR)pSendFIFOVc->MaxSendSpeed ;
pMyIrb->u.AsyncWrite.DestinationAddress.IA_Destination_Offset.Off_High = pSendFIFOVc->FifoAddress.Off_High; pMyIrb->u.AsyncWrite.DestinationAddress.IA_Destination_Offset.Off_Low = pSendFIFOVc->FifoAddress.Off_Low; pMyIrb->u.AsyncWrite.ulGeneration = *pSendFIFOVc->Hdr.pGeneration;
pMyIrb->u.AsyncWrite.nBlockSize = 0; pMyIrb->u.AsyncWrite.fulFlags = ASYNC_FLAGS_NONINCREMENTING;
//temporary additions from the 1394diag
pMyIrb->u.AsyncWrite.DestinationAddress.IA_Destination_ID.NA_Bus_Number = 0x3ff; TRACE(TL_V, TM_Send, ("DestinationAddress.IA_Destination_ID.NA_Bus_Number = 0x%x\n", pMyIrb->u.AsyncWrite.DestinationAddress.IA_Destination_ID.NA_Bus_Number) ); TRACE(TL_V, TM_Send, ("DestinationAddress.IA_Destination_ID.NA_Node_Number = 0x%x\n", pMyIrb->u.AsyncWrite.DestinationAddress.IA_Destination_ID.NA_Node_Number) ); TRACE(TL_V, TM_Send, ("DestinationAddress.IA_Destination_Offset.Off_High = 0x%x at 0x%x\n", pMyIrb->u.AsyncWrite.DestinationAddress.IA_Destination_Offset.Off_High, &pMyIrb->u.AsyncWrite.DestinationAddress.IA_Destination_Offset.Off_High) ); TRACE(TL_V, TM_Send, ("DestinationAddress.IA_Destination_Offset.Off_Low = 0x%x at 0x%x\n", pMyIrb->u.AsyncWrite.DestinationAddress.IA_Destination_Offset.Off_Low,&pMyIrb->u.AsyncWrite.DestinationAddress.IA_Destination_Offset.Off_Low) ); TRACE(TL_V, TM_Send, ("nNumberOfBytesToWrite = 0x%x\n", pMyIrb->u.AsyncWrite.nNumberOfBytesToWrite)); TRACE(TL_V, TM_Send, ("nBlockSize = 0x%x\n", pMyIrb->u.AsyncWrite.nBlockSize)); TRACE(TL_V, TM_Send, ("fulFlags = 0x%x\n", pMyIrb->u.AsyncWrite.fulFlags)); TRACE(TL_V, TM_Send, ("Mdl = 0x%x\n", pMyIrb->u.AsyncWrite.Mdl )); TRACE(TL_V, TM_Send, ("ulGeneration = 0x%x at 0x%x \n", pMyIrb->u.AsyncWrite.ulGeneration, &pMyIrb->u.AsyncWrite.ulGeneration)); TRACE(TL_V, TM_Send, ("chPriority = 0x%x\n", pMyIrb->u.AsyncWrite.chPriority)); TRACE(TL_V, TM_Send, ("nSpeed = 0x%x\n", pMyIrb->u.AsyncWrite.nSpeed));
}
NDIS_STATUS DummySendPacketsHandler( IN PVCCB pVc, IN PNDIS_PACKET pPacket ) //
// To be used on a non-send VC
//
{
return NDIS_STATUS_FAILURE;
}
VOID nicSendFailureInvalidGeneration( PVCCB pVc )
// Function Description:
//
// An AsyncStream or AnsyncWrite Irp may be completed
// with a status of InvalidGeneration. This function will try and
// get a new generation, so that future sends will not be blocked
//
// Arguments
//
//
//
// Return Value:
//
//
//
//
{ NDIS_STATUS NdisStatus = NDIS_STATUS_FAILURE; PADAPTERCB pAdapter = pVc->Hdr.pAF->pAdapter; TRACE( TL_T, TM_Send, ( "==>nicSendFailureInvalidGeneration ") );
ASSERT (pVc != NULL); do { PNDIS_WORK_ITEM pGetGenerationWorkItem = NULL; BOOLEAN fWorkItemAlreadyLaunched = FALSE; BOOLEAN fQueueWorkItem = FALSE;
TRACE( TL_A, TM_Send, ( "Cause: Invalid generation on the asyncwrite packet" ) );
VC_ACQUIRE_LOCK (pVc);
if (VC_ACTIVE(pVc) == TRUE) { fQueueWorkItem = TRUE; } fWorkItemAlreadyLaunched = (VC_TEST_FLAGS (pVc, VCBF_GenerationWorkItem)); if (fWorkItemAlreadyLaunched) { //
// If the Work Item has already been launched, then do not launch another instance
//
fQueueWorkItem = FALSE; } if ( fQueueWorkItem ) { nicReferenceCall (pVc, "nicSendFailureInvalidGeneration"); } VC_RELEASE_LOCK (pVc);
if (fQueueWorkItem == FALSE) { // this thread simply exits
break; } //
// We need to update the generation count
//
pGetGenerationWorkItem = ALLOC_NONPAGED (sizeof(NDIS_WORK_ITEM), MTAG_WORKITEM);
if (pGetGenerationWorkItem == NULL) { TRACE( TL_A, TM_Cm, ( "Local Alloc failed for WorkItem - GetGeneration FAILED" ) );
break; }
VC_ACQUIRE_LOCK (pVc);
VC_SET_FLAG(pVc, VCBF_GenerationWorkItem ); VC_RELEASE_LOCK (pVc);
NdisInitializeWorkItem ( pGetGenerationWorkItem , (NDIS_PROC)nicGetGenerationWorkItem, (PVOID)pVc );
NdisInterlockedIncrement(&pAdapter->OutstandingWorkItems);
NdisScheduleWorkItem (pGetGenerationWorkItem );
NdisStatus = NDIS_STATUS_SUCCESS;
} while (FALSE);
TRACE( TL_T, TM_Send, ( "<==nicSendFailureInvalidGeneration %x", NdisStatus) );
}
NDIS_STATUS nicInsertGaspHeader ( IN PADAPTERCB pAdapter, IN PNDIS_PACKET pNdisPacket ) // Function Description:
// For an async stream a GASP header needs to inserted at the head of the packet
// This will then be used in the send.
// The GASP Header will be removed before returning the Packet to the protocol
// Arguments
// pAdapter- Local Host
// pNdisPacket - Packet To be transmitted
//
// Return Value:
// Status - success, if all allocations and insertions succeed
//
{ NDIS_STATUS NdisStatus = NDIS_STATUS_FAILURE; PNDIS_BUFFER pGaspNdisBuffer = NULL; PGASP_HEADER pGaspHeader=NULL; USHORT SourceID; TRACE( TL_T, TM_Send, ( "==>nicInsertGaspHeader pAdapter %x, pNdisPacket%x", pAdapter, pNdisPacket) );
do { //
// Get Mdl and Memory for the GASP Header. Eventually we will have lookaside list of MDLS and Buffers
//
NdisStatus = nicGetGaspHeader ( &pGaspNdisBuffer);
if (NdisStatus != NDIS_STATUS_SUCCESS || pGaspNdisBuffer== NULL) { BREAK( TL_A, ( "nicInsertGaspHeader : nicGetGaspHeader FAILED") ); }
pGaspHeader = nicNdisBufferVirtualAddress(pGaspNdisBuffer);
ASSERT (pGaspHeader != NULL); TRACE( TL_V, TM_Send, ( "pGaspNdisBuffer %x, GaspHeader %x", pGaspNdisBuffer, pGaspHeader) );
TRACE( TL_V, TM_Send, ( "pAdapter->NodeAddress %x", pAdapter->NodeAddress) );
SourceID = *((PUSHORT)&pAdapter->NodeAddress);
TRACE( TL_V, TM_Send, ( "SourceId %x at %x", SourceID, &SourceID) ); pGaspHeader->FirstQuadlet.Bitmap.GH_Source_ID = SourceID ;
pGaspHeader->FirstQuadlet.Bitmap.GH_Specifier_ID_Hi = GASP_SPECIFIER_ID_HI; pGaspHeader->SecondQuadlet.Bitmap.GH_Specifier_ID_Lo = GASP_SPECIFIER_ID_LO;
pGaspHeader->SecondQuadlet.Bitmap.GH_Version = 0;
NdisChainBufferAtFront (pNdisPacket, pGaspNdisBuffer);
pGaspHeader->FirstQuadlet.GaspHeaderHigh = SWAPBYTES_ULONG (pGaspHeader->FirstQuadlet.GaspHeaderHigh ); pGaspHeader->SecondQuadlet.GaspHeaderLow = SWAPBYTES_ULONG (pGaspHeader->SecondQuadlet.GaspHeaderLow );
TRACE( TL_V, TM_Send, ( "Gasp Header High %x", pGaspHeader->FirstQuadlet.GaspHeaderHigh) ); TRACE( TL_V, TM_Send, ( "Gasp Header Low %x", pGaspHeader->SecondQuadlet.GaspHeaderLow ) );
NdisStatus = NDIS_STATUS_SUCCESS;
} while (FALSE); TRACE( TL_T, TM_Send, ( "<==nicInsertGaspHeader pNdisBuffer %x, NdisStatus %x ", pGaspNdisBuffer, NdisStatus) );
return NdisStatus; }
NDIS_STATUS nicGetGaspHeader ( IN OUT PNDIS_BUFFER *ppNdisBuffer ) // Function Description:
//
// Gets memory and an initialized NdisBuffer that can be used for
// the gasp header
// Arguments
// ppNdisBuffer - returned NdisBuffer
// Return Value:
// Status - success, if all allocations succeed
//
{
PVOID pBuffer= NULL; NDIS_STATUS NdisStatus = NDIS_STATUS_FAILURE; TRACE( TL_T, TM_Send, ( "==>nicGetGaspHeader ppNdisBuffer %x", ppNdisBuffer) );
*ppNdisBuffer = NULL; do { pBuffer = ALLOC_NONPAGED(sizeof(GASP_HEADER), MTAG_DEFAULT); if (pBuffer == NULL) { NdisStatus = NDIS_STATUS_FAILURE; nicIncrementMallocFailure(); BREAK ( TM_Send, ( "nicGetGaspHeader : MEM Alloc FAILED ") ); }
NdisStatus = nicGetNdisBuffer(sizeof(GASP_HEADER), pBuffer, ppNdisBuffer);
if (NdisStatus != NDIS_STATUS_SUCCESS) { BREAK( TM_Send, ( "nicGetGaspHeader : nicGetNdisBuffer FAILED") ); }
NdisStatus = NDIS_STATUS_SUCCESS; } while (FALSE);
TRACE( TL_T, TM_Send, ( "==>nicGetGaspHeader pNdisBuffer %x , Status %x", *ppNdisBuffer, NdisStatus) ); return NdisStatus;
}
VOID nicFreeGaspHeader ( IN PNDIS_BUFFER pGaspNdisBuffer ) // Function Description:
//
// Frees memory occupied by the Gasp Header. frees the Ndis Buffer pointing to the Gasp Header
//
// Arguments
// pGapsNdisBuffer - returned NdisBuffer
//
// Return Value:
// None
{
TRACE( TL_T, TM_Send, ( "==>nicFreeGaspHeader pGaspNdisBuffer %x ", pGaspNdisBuffer) ); ASSERT (pGaspNdisBuffer != NULL); //
// Free the locally allocated memory that the ndis buffer points to
//
FREE_NONPAGED (nicNdisBufferVirtualAddress (pGaspNdisBuffer) );
//
// Free the ndis buffer itself
//
NdisFreeBuffer (pGaspNdisBuffer);
TRACE( TL_T, TM_Send, ( "<==nicFreeGaspHeader pGaspNdisBuffer %x ", pGaspNdisBuffer) );
}
VOID nicMakeGaspHeader ( IN PADAPTERCB pAdapter, IN PGASP_HEADER pGaspHeader ) // Function Description:
// This function will take the adapter structure and construct a Gasp Header out of it.
// This will be used to make the AsyncStream packets.
//
//
//
// Arguments
// pAdapter - Local Host in question
// pGaspHeader - Location where the Gasp Header is to be stored
//
// Return Value:
// None
//
{ USHORT SourceID; NODE_ADDRESS LocalNodeAddress; NDIS_STATUS NdisStatus;
TRACE( TL_T, TM_Send, ( "==>nicMakeGaspHeader padapter %x, pGaspNdisBuffer %x ", pAdapter, pGaspHeader) ); ASSERT (pGaspHeader != NULL);
TRACE( TL_V, TM_Send, ( "pAdapter->NodeAddress %x", pAdapter->NodeAddress) );
SourceID = *((PUSHORT)&pAdapter->NodeAddress);
if(SourceID ==0) { NdisStatus = nicGet1394AddressFromDeviceObject (pAdapter->pNdisDeviceObject, &LocalNodeAddress, USE_LOCAL_NODE);
if ( NdisStatus == NDIS_STATUS_SUCCESS) { SourceID = *((PUSHORT)&LocalNodeAddress);
ADAPTER_ACQUIRE_LOCK (pAdapter);
pAdapter->NodeAddress = LocalNodeAddress; ADAPTER_RELEASE_LOCK (pAdapter); } //
// Do not handle failure. As the BCM or a Reset will fix this problem
//
}
TRACE( TL_V, TM_Send, ( "SourceId %x at %x", SourceID, &SourceID) ); pGaspHeader->FirstQuadlet.Bitmap.GH_Source_ID = SourceID ;
pGaspHeader->FirstQuadlet.Bitmap.GH_Specifier_ID_Hi = GASP_SPECIFIER_ID_HI; pGaspHeader->SecondQuadlet.Bitmap.GH_Specifier_ID_Lo = GASP_SPECIFIER_ID_LO;
pGaspHeader->SecondQuadlet.Bitmap.GH_Version = 1;
pGaspHeader->FirstQuadlet.GaspHeaderHigh = SWAPBYTES_ULONG (pGaspHeader->FirstQuadlet.GaspHeaderHigh ); pGaspHeader->SecondQuadlet.GaspHeaderLow = SWAPBYTES_ULONG (pGaspHeader->SecondQuadlet.GaspHeaderLow );
TRACE( TL_V, TM_Send, ( "Gasp Header High %x", pGaspHeader->FirstQuadlet.GaspHeaderHigh) ); TRACE( TL_V, TM_Send, ( "Gasp Header Low %x", pGaspHeader->SecondQuadlet.GaspHeaderLow ) );
TRACE( TL_T, TM_Send, ( "<==nicFreeGaspHeader %x, %x ", pGaspHeader->FirstQuadlet.GaspHeaderHigh, pGaspHeader->SecondQuadlet.GaspHeaderLow ) );
}
NTSTATUS AsyncWriteStreamSendComplete( IN PDEVICE_OBJECT DeviceObject, IN PIRP pMyIrp, IN PVOID Context )
//
// N.B. this completes both Fifo and channels
//
//
// This function is Completion handler for the Irp used to send data.
// This function will invoke NDisCoSendComplete Handler
// Needs to use the VC Handle stored in the MiniportReserved[0]
// of the packet.
// We free all the data structures allocated on the way down,
// by SendPacketsHandler (the Irb. Irp and Local memory used and Mdl)
//
// The LookasideHeader->OutstandingFragments should normally be one for
// the defualt ( non-fragmented) case. However, if a failure in SendPackets
// occurs, Outstanding fragments will be zero or the context will be null,
// in that case we will only free the lookaside buffer (if it exists) and exit,
// it will be the responsibility of the SendPacketsHandler
// to fail the packet.
//
{
NDIS_STATUS NdisStatus = NDIS_STATUS_SUCCESS; NTSTATUS IrpStatus = STATUS_UNSUCCESSFUL; PVOID pLookasideListBuffer = Context; PLOOKASIDE_BUFFER_HEADER pLookasideHeader = (PLOOKASIDE_BUFFER_HEADER)pLookasideListBuffer ; PNDIS_PACKET pPacket = NULL; PVCCB pVc = NULL; PREMOTE_NODE pRemoteNode = NULL; NDIS_HANDLE NdisVcHandle = NULL; ULONG OutstandingFragments = 0; BUS_OPERATION AsyncOp; PNIC_NPAGED_LOOKASIDE_LIST pLookasideList = NULL; STORE_CURRENT_IRQL;
TRACE( TL_T, TM_Send, ( "==>AsyncWriteStreamSendComplete, pMyIrp %x, Context %x", pMyIrp, Context ) );
do { if (pLookasideHeader == NULL) { TRACE( TL_V, TM_Send, ( " AsyncSendComplete - pLookasideHeader == NULL") ); break;
}
//
// This means that a lookaside buffer was allocated and
// perhaps MDLS were allocated
// if this is the last fragment, Free all the MDLs first
//
//
// Get all the valuable information out of the header.
//
pPacket = pLookasideHeader->pNdisPacket; pVc = pLookasideHeader->pVc; pRemoteNode = pVc->Hdr.pRemoteNode; pLookasideList = pLookasideHeader->pLookasideList; AsyncOp = pLookasideHeader->AsyncOp;
ASSERT (AsyncOp != InvalidOperation); TRACE( TL_V, TM_Send, ( " Vc %x,, pLookaside Buffer %x, pPacket, %x", pVc, pLookasideHeader ,pPacket ) );
ASSERT (pLookasideList != NULL);
//
// This will tell us if this thread has received the last fragment
// OustandingPackets == 0 gets to free the MDLS, and complete the packet
//
OutstandingFragments = NdisInterlockedDecrement (&pLookasideHeader->OutstandingFragments );
if (OutstandingFragments == 0) { //
// If there are no more fragments, then we need to
// free all the allocated structures ( the MDLS) on this buffer
//
ULONG MdlsToFree = pLookasideHeader->FragmentsGenerated;
PIRB pIrb = &((PUNFRAGMENTED_BUFFER)pLookasideHeader)->Irb;
//
// The maximum number of MDLS we can have is equal to
// the maximum number of Fragments that were generated
//
while (MdlsToFree != 0) { PMDL pMdl = NULL;
GET_MDL_FROM_IRB (pMdl, pIrb, AsyncOp);
TRACE( TL_V, TM_Send, ( " Freeing Mdl %x of Irb %x ", pMdl, pIrb) );
if (pMdl != NULL) { nicFreeMdl (pMdl); if (pVc->Hdr.VcType == NIC1394_SendFIFO) { nicDecFifoSendMdl(); } else { nicDecChannelSendMdl(); } }
//
// Set up for the next iteration
//
MdlsToFree --;
pIrb = (PVOID)((ULONG_PTR)pIrb + sizeof (IRB));
} //while (MdlsToFree != 0)
} //if (OutstandingFragments == 0)
//
// Map the NT_STATUS belonging to the Irp to an NdisStatus and call NdisMCoSendComplete
// Print Debug Output to help in testing. Need to Add more status cases
//
if (pMyIrp == NULL) { TRACE( TL_V, TM_Send, ( " AsyncSendComplete - pIrp is NULL") ); IrpStatus = STATUS_UNSUCCESSFUL; } else {
//
// We have a valid IRP, lets see if we failed the IRP and why
//
IrpStatus = pMyIrp->IoStatus.Status;
nicIncrementBusSendCompletes(pVc); } if (IrpStatus != STATUS_SUCCESS) { TRACE( TL_A, TM_Send, ( "==>IRP FAILED StatusCode = %x",IrpStatus ) );
nicIncrementBusFailure(); nicIncrementVcBusSendFailures(pVc, pPacket);
//
// The generation of the bus has changed. Lets get a new one.
//
if (IrpStatus == STATUS_INVALID_GENERATION) { nicSendFailureInvalidGeneration((PVCCB)pVc); } NdisStatus = NtStatusToNdisStatus(IrpStatus); NdisInterlockedIncrement (&pVc->Hdr.pAF->pAdapter->AdaptStats.ulXmitError); } else { NdisInterlockedIncrement(&pVc->Hdr.pAF->pAdapter->AdaptStats.ulXmitOk); nicIncrementVcBusSendSucess(pVc, pPacket); }
//
// Free the Irp and don't touch it after this
//
if (pMyIrp != NULL) { nicFreeIrp (pMyIrp); pMyIrp = NULL; } //
// At this point, we know that the IRP went down to the bus driver
// We know if this is the last fragment. So lets figure out if we need
// to Complete the packet
//
if (OutstandingFragments != 0) { //
// We need to wait for other fragments to complete
//
TRACE( TL_V, TM_Send, ( " AsyncSendComplete = NOT the last fragment") );
break;
} //
// This means that this thread has marked the lookaside header as 'to be freed'
// and it is this thread's responsibility to free it.
//
NdisVcHandle = pVc->Hdr.NdisVcHandle; TRACE( TL_V, TM_Send, ( "Calling NdisCoSendComplete, status %x, VcHandle %x, pPacket %x", NdisStatus,NdisVcHandle, pPacket ) );
nicMpCoSendComplete (NdisStatus, pVc, pPacket);
nicFreeToNPagedLookasideList (pLookasideList, pLookasideListBuffer);
nicDereferenceCall (pVc, "AsyncWriteStreamSendComplete");
//
// Remove the reference on the PDO that the IRP was sent to
//
if (AsyncOp == AsyncWrite) { //
// Async Write references the remote node
//
ASSERT (pRemoteNode != NULL); nicDereferenceRemoteNode (pRemoteNode, "AsyncWriteStreamSendComplete"); }
} while (FALSE);
TRACE( TL_T, TM_Send, ( "<== AsyncWriteStreamSendComplete, NdisStatus %x,IrpStatus %x ", NdisStatus, IrpStatus ) ); //
// ALWAYS RETURN STATUS_MORE_PROCESSING_REQUIRED
//
MATCH_IRQL;
return STATUS_MORE_PROCESSING_REQUIRED; }
NDIS_STATUS AsyncWriteSendPacketsHandler( IN PVCCB pVc, IN PNDIS_PACKET pPacket ) //
// This is the VC handler when packet is sent using the
// AsyncWrite 1394 Bus Api
// This function, copies the contents of the packet to locally
// owned memory, sets up the Irb and the Irp and calls
// nicSubmitIrp which is the generic cal to do a IoCallDriver
//
// The return value is success, if the I/o was successfully pended
{ PSENDFIFO_VCCB pSendFIFOVc = (SENDFIFO_VCCB*)pVc; PMDL pMyMdl = NULL; PIRB pMyIrb = NULL; PIRP pMyIrp = NULL; BOOLEAN fVcActive = TRUE; PREMOTE_NODE pRemoteNode = NULL; NDIS_STATUS NdisStatus = NDIS_STATUS_FAILURE; NTSTATUS NtStatus = STATUS_UNSUCCESSFUL; ULONG PacketLength = 0; PVOID pLookasideListBuffer = NULL; PADAPTERCB pAdapter = NULL; USHORT FragmentLength = 0; PNDIS_BUFFER pStartNdisBuffer = NULL; PVOID pStartPacketData = NULL; PLOOKASIDE_BUFFER_HEADER pLookasideHeader = NULL; PNIC_NPAGED_LOOKASIDE_LIST pLookasideList = NULL; ENUM_LOOKASIDE_LIST WhichLookasideList = NoLookasideList; FRAGMENTATION_STRUCTURE Fragment; ULONG NumFragmentsNeeded ; STORE_CURRENT_IRQL;
NdisZeroMemory (&Fragment, sizeof (FRAGMENTATION_STRUCTURE)); TRACE( TL_T, TM_Send, ( "==>AsyncWriteSendPacketHandler, Vc %x,Packet %x, FragmentationStruct %x", pSendFIFOVc, pPacket , &Fragment ) );
pRemoteNode = pSendFIFOVc->Hdr.pRemoteNode; ASSERT (pRemoteNode != NULL);
do { VC_ACQUIRE_LOCK (pSendFIFOVc);
//
// Make sure that the Vc is Activated and that no close calls
// are pending or that we have already completed a close call
//
if ( VC_ACTIVE (pSendFIFOVc) == FALSE || REMOTE_NODE_ACTIVE(pRemoteNode) == FALSE) { fVcActive = FALSE; }
if (VC_TEST_FLAG( pSendFIFOVc, VCBF_GenerationWorkItem) == TRUE) { TRACE( TL_N, TM_Send, ( "AsyncWriteSendPacketHandler, Getting a new Gen, Fail send ") );
fVcActive = FALSE; }
//
// This reference will either be dereferenced below in a call to FreeSendPacketDataStructure
// below or a call to FreeSendPacketDataStructure made from the Irp's completion routine
//
if (fVcActive == TRUE) { nicReferenceCall (pVc, "AsyncWriteSendPacketsHandler");
nicReferenceRemoteNode (pRemoteNode, "AsyncWriteSendPacketsHandler");
} VC_RELEASE_LOCK (pSendFIFOVc);
if (fVcActive == FALSE) { TRACE( TL_N, TM_Send, ( "AsyncWriteSendPacketHandler, VC Not Active, Vc %x Flag %x", pSendFIFOVc,pSendFIFOVc->Hdr.ulFlags ) );
NdisStatus = NDIS_STATUS_FAILURE; break; }
pAdapter = pSendFIFOVc->Hdr.pAF->pAdapter; //
// Copy NdisBuffer in Packet to Local Memory and get an Mdl that points
// to this memory
//
NdisQueryPacket( pPacket, NULL, NULL, NULL, &PacketLength);
ASSERT (pPacket->Private.Head != NULL);
//
// Temporary debug spew
//
PrintNdisPacket (TM_Send, pPacket);
//
// Initialize the start variables
//
pStartNdisBuffer = pPacket->Private.Head; pStartPacketData = nicNdisBufferVirtualAddress (pStartNdisBuffer);
if (pStartPacketData == NULL) { NdisStatus = NDIS_STATUS_RESOURCES; TRACE( TL_N, TM_Send, ( "AsyncWriteSendPacketHandler, pStartPacketData ") );
break; }
TRACE( TL_V, TM_Send, ( "PacketLength %x", PacketLength) );
//
// Make a decision on which lookaside list to use. If the tx is unfragmented
// then copy over the ndis packet as well
//
//
// first choose the lookaside list. the actual lookaside list is chosen so that the
// each can accomodate the maximum number of fragments at its payload
//
//
if (PacketLength < PAYLOAD_100) { pLookasideList = &pAdapter->SendLookasideList100; WhichLookasideList = SendLookasideList100; TRACE( TL_V, TM_Send, ( " PAYLOAD_100 Lookaside List %x", &pAdapter->SendLookasideList100) );
} else if (PacketLength < PAYLOAD_2K) { pLookasideList = &pAdapter->SendLookasideList2K; WhichLookasideList = SendLookasideList2K; TRACE( TL_V, TM_Send, ( " PAYLOAD_2K Lookaside List %x", &pAdapter->SendLookasideList2K) );
} else if (PacketLength < PAYLOAD_8K) { pLookasideList = &pAdapter->SendLookasideList8K; WhichLookasideList = SendLookasideList8K; TRACE( TL_V, TM_Send, ( " PAYLOAD_8K Lookaside List %x", &pAdapter->SendLookasideList8K) );
} else { //
// Large Sends not supported
// TODO : Add code for local allocation
//
ASSERT (!"SendPacket Too Large - Not supported Yet" ); break; }
//
// are we going to fragment
//
ASSERT (pLookasideList != NULL)
//
// We are not going to fragment. Optimize this path
//
pLookasideListBuffer = nicGetLookasideBuffer (pLookasideList); if (pLookasideListBuffer == NULL ) { NdisStatus = NDIS_STATUS_FAILURE; BREAK (TM_Send, ("nicGetLookasideBuffer FAILED") ); }
//
// Initialize the header with relevant information that the send complete
// will need
//
pLookasideHeader = (PLOOKASIDE_BUFFER_HEADER)pLookasideListBuffer; pLookasideHeader->IsFragmented = FALSE; // Default
pLookasideHeader->FragmentsGenerated = 0; pLookasideHeader->pLookasideList = pLookasideList; pLookasideHeader->pNdisPacket = pPacket; pLookasideHeader->pVc =(PVCCB)pVc; pLookasideHeader->AsyncOp = AsyncWrite;
//
// Initialize the Fragment structure
//
//
// Do we fragment or not. Base it on the MaxPayload possible
//
TRACE( TL_V, TM_Send, ( " PacketLength %x, pSendFIFOVc->MaxPayload%x ", PacketLength ,pSendFIFOVc->Hdr.MaxPayload) );
if (PacketLength <= pSendFIFOVc->Hdr.MaxPayload) { //
// No need to fragment here. We will use the UNFRAGMENTED Layout
//
// First Get a local buffer from our lookaside list
//
PUNFRAGMENTED_BUFFER pUnfragmentedBuffer = (PUNFRAGMENTED_BUFFER )pLookasideHeader;
NumFragmentsNeeded = 1;
NdisStatus = nicCopyNdisBufferChainToBuffer (pStartNdisBuffer, (PVOID)&pUnfragmentedBuffer ->Data[0], pLookasideList->MaxSendSize ); if (NdisStatus != NDIS_STATUS_SUCCESS) { pLookasideHeader->OutstandingFragments = 1; // this is our refcount
BREAK ( TM_Send, ( " AsyncStreamSendPacketHandler, nicCopyNdisPacketToUnfragmentedBuffer Failed ") ); } ASSERT (pLookasideListBuffer != NULL);
//
// Initialize all the variable needed by the Next section of the code.
// This deals with setting up the Mdl and the IRB
//
pStartNdisBuffer = NULL;
Fragment.pStartFragment = (PVOID) &pUnfragmentedBuffer ->Data[0]; Fragment.FragmentLength = PacketLength; Fragment.pCurrNdisBuffer = NULL;
pLookasideHeader->FragmentsGenerated = 1; pLookasideHeader->IsFragmented = FALSE; pLookasideHeader->OutstandingFragments = 1; // this is our refcount
} else { //
// We need to fragment
//
ULONG Dgl = NdisInterlockedIncrement(&pAdapter->dgl);
//
// Fragments will be needed . Make sure the calculation for numFragments catches the boundary conditions
//
NumFragmentsNeeded = nicNumFragmentsNeeded (PacketLength, pSendFIFOVc->Hdr.MaxPayload, sizeof (NDIS1394_FRAGMENT_HEADER) );
//
// Initialize the fragment structure. The unfragmented code path
// does not care about these fields
//
//
// This structure is local to this function and this thread.
//
Fragment.TxHeaderSize = sizeof (NDIS1394_FRAGMENT_HEADER); Fragment.pLookasideListBuffer = pLookasideListBuffer; Fragment.AsyncOp = AsyncWrite; Fragment.pAdapter = pRemoteNode->pAdapter; Fragment.pLookasideList = pLookasideList; Fragment.IPDatagramLength = (USHORT)PacketLength - sizeof (NDIS1394_UNFRAGMENTED_HEADER); //
// Get Start of first Dest fragment
//
Fragment.MaxFragmentLength = pSendFIFOVc->Hdr.MaxPayload; Fragment.NumFragmentsNeeded = NumFragmentsNeeded;
//
// Set up the Fragment Headers that will be used in fragmentation
//
NdisStatus = nicFirstFragmentInitialization (pPacket->Private.Head, Dgl, &Fragment);
if (pLookasideListBuffer == NULL || NdisStatus != NDIS_STATUS_SUCCESS) { BREAK (TM_Send, (" AsyncWriteSendPacketsHandler: nicFirstFragmentInitialization : FAILED" )) ; }
ASSERT (pLookasideListBuffer != NULL); pLookasideHeader->IsFragmented = TRUE; pLookasideHeader->OutstandingFragments = NumFragmentsNeeded ; // this is our refcount
}
TRACE( TL_V, TM_Send, ( "NumFragments %x, pSendFIFOVc->MaxSendSize %x, Packet Size %x", NumFragmentsNeeded,pSendFIFOVc->Hdr.MaxPayload, PacketLength) );
//
// Now begin the loop which will send n fragments
//
do {
//
// Do we need to fragment. If so , extract one fragment out of the NdisPacket
//
if (pLookasideHeader->IsFragmented == TRUE ) { //
// We copy one fragment over and this will allocate the lookaside list
//
NdisStatus = nicCopyOneFragment (&Fragment); if (NDIS_STATUS_SUCCESS != NdisStatus) { BREAK ( TM_Send, ( " AsyncWriteSendPacketHandler, nicCopyOneFragment Failed ") ); } //
// Get the pointer to the Irb here . Amd set it up for the next time
//
pMyIrb = Fragment.pCurrentIrb; Fragment.pCurrentIrb = (PIRB)((ULONG_PTR)Fragment.pCurrentIrb + sizeof (IRB) ); TRACE( TL_V, TM_Send, ( " pMyIrb %x, Next Irb %x ", pMyIrb , Fragment.pCurrentIrb ) );
} else { //
// No Curr NdisBuffer as this packet was never fragmented.
//
ASSERT (pLookasideHeader->IsFragmented == FALSE);
pMyIrb = &((PUNFRAGMENTED_BUFFER )pLookasideHeader)->Irb; } //
// At this point we have one fragment that needs to be transmitted.
// Data structures have been updated to set up the MDL and the IRB
//
ASSERT (Fragment.pStartFragment != NULL);
NdisStatus = nicGetMdl (Fragment.FragmentLength , Fragment.pStartFragment, &pMyMdl);
if (NdisStatus != NDIS_STATUS_SUCCESS) { pMyMdl = NULL; BREAK ( TM_Send, ( " AsyncWriteSendPacketHandler, nicCopyNdisBufferChainToBuffer Failed ") ); }
nicIncFifoSendMdl(); //
// Fill in the Irb with the correct values from the VC
// Stuff we need to add to the send VC - BlockSize,Generation
//
nicInitAsyncWriteIrb(pSendFIFOVc, pMyMdl, pMyIrb);
//
// Get a free Irp
//
NdisStatus = nicGetIrp (pRemoteNode->pPdo, &pMyIrp); if (NdisStatus != NDIS_STATUS_SUCCESS) { pMyIrp = NULL; break; } //
// At this point, we have a guarantee that the Completion routine will be called
//
ASSERT (NdisStatus == NDIS_STATUS_SUCCESS);
//
// Dump the Fragment
//
nicDumpMdl (pMyMdl , 0, "AsyncWrite Fragment");
NIC1394_LOG_PKT( pAdapter, NIC1394_LOGFLAGS_SEND_FIFO, pAdapter->BCRData.LocalNodeNumber, // SourceID
pRemoteNode->RemoteAddress.NA_Node_Number, // DestID
Fragment.pStartFragment, Fragment.FragmentLength );
//
// This function implements the common functionality to be implemented by
// all other send/recv cals to IoCallDriver
//
//
// We IGNORE the NtStatus as the completion handler will be called
//
nicIncrementBusSends(pVc); NtStatus = nicSubmitIrp(pRemoteNode->pPdo, pMyIrp, pMyIrb, AsyncWriteStreamSendComplete, (PVOID)pLookasideListBuffer);
TRACE( TL_V, TM_Send, ( " pCurrNdisBuffer %x, NdisStatus %x ", Fragment.pCurrNdisBuffer , NdisStatus ) );
} while (Fragment.pCurrNdisBuffer != NULL && NdisStatus == NDIS_STATUS_SUCCESS);
} while (FALSE);
//
// DO NOT touch the packet if status == NDIS_STATUS_SUCCESS.
//
//
// CleanUp if any of the allocations failed. We do not have a pointer
// to the LocalBuffer (it is embedded in the Mdl) so it remains NULL
//
// NdisStatus != Success means that we never got to nicSubmitIrp
//
if (NdisStatus != NDIS_STATUS_SUCCESS) {
ASSERT (pMyIrp == NULL);
//
// fVc Active makes sure that we actually got around to allocating
// and referencing structures
//
if (fVcActive == TRUE) {
if (pLookasideListBuffer != NULL) {
//
// Complete this fragment, as we never submit'd the IRP to
// the 1394 bus driver
//
AsyncWriteStreamSendComplete(NULL, // PDO
NULL, pLookasideListBuffer);
NdisStatus =NDIS_STATUS_SUCCESS; } else {
//
// This thread needs to decrement the refcounts as
// AsyncWriteStreamSendComplete was not called
//
nicDereferenceCall ((PVCCB) pSendFIFOVc, "AsyncWriteSendPacketsHandler");
nicDereferenceRemoteNode (pRemoteNode, "AsyncWriteSendPacketsHandler");
}
}
}
TRACE( TL_T, TM_Send, ( "<==AsyncWriteSendPacketHandler, NdisStatus %x", NdisStatus ) ); MATCH_IRQL;
return NdisStatus; }
//
// Split the lookaside header to a local variable + context
//
NDIS_STATUS nicCopyOneFragment ( PFRAGMENTATION_STRUCTURE pFragment ) // Function Description:
// This creates one fragment filled with valid data and returns it
//
//
// Arguments
// ppCurrNdisBuffer - CurrNdisBuffer from which the data is to be copied
// ppLookasideListBuffer - if this is NULL, it implies that this is the first fragment
// and a lookaside buffer will be allocated
//
// ppSourceAddress - is the current pointer to the start of the data that needs to be copied
// Should always lie within the NdisBuffer or be NULL
// Return Value:
// ppCurrNdisBuffer - If the CurrNdisBuffer does not contain enough data for the
// fragment, then CurrNdisBuffer will be incremented and the new
// CurrNdisBuffer will be returned here
//
//
{ NDIS_STATUS NdisStatus = NDIS_STATUS_FAILURE; PNDIS_BUFFER pCurrNdisBuffer = pFragment->pCurrNdisBuffer; PVOID pSourceAddressInNdisBuffer = pFragment->pSourceAddressInNdisBuffer; ULONG FragmentLengthRemaining = pFragment->MaxFragmentLength; USHORT FragmentLength=0; PVOID pSource = NULL; PVOID pDestination = NULL; PVOID pStartFragmentData = NULL; ULONG NdisBufferLengthRemaining = pFragment->NdisBufferLengthRemaining; ULONG LengthToCopy = 0; ULONG FragmentCopyStatus=0; PLOOKASIDE_BUFFER_HEADER pLookasideHeader = NULL; enum { FRAGMENT_COPY_Invalid, FRAGMENT_COPY_NdisBufferCompleted, FRAGMENT_COPY_NdisBufferAndFragmentCompleted, FRAGMENT_COPY_FragmentCompleted }; TRACE( TL_T, TM_Send, ( "==>nicCopyOneFragment pFragment %x", pFragment ) ); ASSERT (pCurrNdisBuffer != NULL); do {
//
// lets get the destination. We need to account for
// ther fragment size and add it to the previous start address
//
{ ULONG CurrFragOffset;
CurrFragOffset = pFragment->MaxFragmentLength * (pFragment->CurrFragmentNum++); pStartFragmentData = (PVOID) ((ULONG_PTR) pFragment->pStartOfFirstFragment + CurrFragOffset ); }
pFragment->pStartFragment = pStartFragmentData;
TRACE( TL_V, TM_Send, ( " pStartFragmentData %x", pStartFragmentData) );
pLookasideHeader = (PLOOKASIDE_BUFFER_HEADER)pFragment->pLookasideListBuffer;
//
// Do the bookkeeping , Increase refcount and num of fragments used. Refcount decremented in FreeSendDataStructures
//
NdisInterlockedIncrement (&pLookasideHeader->FragmentsGenerated);
//
// The Start of the data beginning with the fragment header goes here or in the
// case of async stream fragment header and gasp header go here
//
ASSERT (pFragment->TxHeaderSize == 8 || pFragment->TxHeaderSize == 16);
pDestination = (PVOID) ((ULONG_PTR)pStartFragmentData + pFragment->TxHeaderSize );
FragmentLengthRemaining -= pFragment->TxHeaderSize;
//
// Now we start the copy. Keep on copying into the current fragment until the MaxLength is reached
// or the NdisBufferChain is exhausted
//
pSource = pSourceAddressInNdisBuffer;
do {
TRACE( TL_T, TM_Send, ( " LengthNdisBuffer %x, FragmentLengthRemaining %x, pCurrNdisBuffer %x", NdisBufferLengthRemaining , FragmentLengthRemaining ,pCurrNdisBuffer ) );
if (FragmentLengthRemaining > NdisBufferLengthRemaining ) { //
// Copy the complete NdisBuffer over
//
LengthToCopy = NdisBufferLengthRemaining; FragmentCopyStatus = FRAGMENT_COPY_NdisBufferCompleted;
}
if (FragmentLengthRemaining < NdisBufferLengthRemaining ) { //
// Copy only as much as required
//
LengthToCopy = FragmentLengthRemaining; FragmentCopyStatus = FRAGMENT_COPY_FragmentCompleted; } if (FragmentLengthRemaining == NdisBufferLengthRemaining ) { //
// Copy the complete Ndis Buffer , move to the next ndis buffer
// and update the NdisBufferLengthRemaining field
//
LengthToCopy = NdisBufferLengthRemaining; FragmentCopyStatus = FRAGMENT_COPY_NdisBufferAndFragmentCompleted;
}
//
// Sanity check to make sure we are not overwriting into free memory.
// As this should never happen, there is no recovery mechanism in place.
//
ASSERT (((PUCHAR)pDestination + LengthToCopy) <= (((PUCHAR) pLookasideHeader) + (pLookasideHeader->pLookasideList->Size) )); //
// Do the copy
//
TRACE ( TL_V, TM_Send, (" nicCopyOneFragment pSource %x , pDestination %x, Length %x", pSource, pDestination, LengthToCopy ) ); NdisMoveMemory (pDestination, pSource, LengthToCopy);
//
// Update the fragment length remaininig and Total Buffer Size
//
FragmentLengthRemaining -= LengthToCopy;
FragmentLength += (USHORT)LengthToCopy;
pDestination = (PVOID) ((ULONG_PTR) pDestination + LengthToCopy); //
// Update the NdisBuffer variables
//
ASSERT (pCurrNdisBuffer != NULL); TRACE( TL_V, TM_Send, ( " FragmentCopyStatus %x", FragmentCopyStatus) );
switch (FragmentCopyStatus) { case FRAGMENT_COPY_NdisBufferCompleted: case FRAGMENT_COPY_NdisBufferAndFragmentCompleted: { //
// Move to the next Ndisbuffer
//
pCurrNdisBuffer = pCurrNdisBuffer->Next; if (pCurrNdisBuffer != NULL) { NdisBufferLengthRemaining = nicNdisBufferLength (pCurrNdisBuffer);
pSourceAddressInNdisBuffer = nicNdisBufferVirtualAddress(pCurrNdisBuffer);
if (pSourceAddressInNdisBuffer == NULL) { NdisStatus = NDIS_STATUS_RESOURCES; BREAK (TM_Send, ("nicNdisBufferVirtualAddress FAILED " ) ); }
//
// Set up the values for the next iteration
//
pSource = pSourceAddressInNdisBuffer; NdisBufferLengthRemaining = nicNdisBufferLength (pCurrNdisBuffer);
} else { //
// we have reached the end of the NdisPAcket. Mark the fragment header as such
//
pFragment->lf = lf_LastFragment; } break; } case FRAGMENT_COPY_FragmentCompleted: { //
// Fragment has completed. Do not move to the next NdisBuffer
// However update StartCopy Address in the NdisBuffer
//
pSourceAddressInNdisBuffer = (PVOID) ((ULONG_PTR) pSource + LengthToCopy );
NdisBufferLengthRemaining -= LengthToCopy ; break; }
default : { ASSERT (0); }
}
TRACE( TL_T, TM_Send, ( " LengthToCopy %x, FragmentLength %x, ", LengthToCopy, FragmentLength) ); TRACE( TL_T, TM_Send, ( " FragmentLengthRemaining %x, pCurrNdisBuffer %x",FragmentLengthRemaining , pCurrNdisBuffer ) );
}while (FragmentLengthRemaining > 0 && pCurrNdisBuffer != NULL);
//
// Now that we have the buffer size. Add the fragment header
//
nicAddFragmentHeader (pStartFragmentData, pFragment, FragmentLength); TRACE( TL_T, TM_Send, ( " Fragment Header added %x", *(PULONG)pStartFragmentData) );
NdisStatus = NDIS_STATUS_SUCCESS;
}while (FALSE);
//
// Now update the output parameters.
//
if (NdisStatus == NDIS_STATUS_SUCCESS) {
//
// Update the Lookaside Header structure, to reflect the new position of all the pointers
//
pFragment->pCurrNdisBuffer = pCurrNdisBuffer; pFragment->pSourceAddressInNdisBuffer = pSourceAddressInNdisBuffer;
//
// Update the fragment structure with the length remaining in the NdisBuffer
//
pFragment->NdisBufferLengthRemaining = NdisBufferLengthRemaining ; pFragment->FragmentLength = FragmentLength + pFragment->TxHeaderSize;
}
TRACE( TL_T, TM_Send, ( "<==nicCopyOneFragment pStartFragmentData %x, pLookasideListBuffer %x, pSourceAddressInNdisBuffer %x, NdisStatus %x", pStartFragmentData, pSourceAddressInNdisBuffer, NdisStatus) );
return NdisStatus; }
VOID nicCopyUnfragmentedHeader ( IN PNIC1394_UNFRAGMENTED_HEADER pDestUnfragmentedHeader, IN PVOID pSrcUnfragmentedHeader ) // Function Description:
// Expect the Src to be a big Endian unfragmented packet header
// It will reverse the byte order in a temp variable and copy it into the
// Destination provided.
//
// Arguments
// pDestUnfragmentedHeader - Destination (Little Endian
// pSrcUnfragmentedHeader - Source (Big Endian)
//
// Return Value:
//
// Success if all the pointers and copy is valid
//
{
ULONG UnfragmentedHeader; TRACE( TL_T, TM_Send, ( "==> nicCopyUnfragmentedHeader pDestUnfragmentedHeader %x, pSrcUnfragmentedHeader %x", pDestUnfragmentedHeader, pSrcUnfragmentedHeader ) );
ASSERT (pSrcUnfragmentedHeader != NULL && pDestUnfragmentedHeader != NULL) ; *((PULONG)pDestUnfragmentedHeader) = SWAPBYTES_ULONG ( *(PULONG) pSrcUnfragmentedHeader);
TRACE( TL_T, TM_Send, ( "pDestUnfragmentedHeader %x, ", *(PULONG)pDestUnfragmentedHeader) );
TRACE( TL_T, TM_Send, ( " <== nicCopyUnfragmentedHeader " ) );
}
NDIS_STATUS nicFirstFragmentInitialization ( IN PNDIS_BUFFER pStartNdisBuffer, IN ULONG DatagramLabelLong, IN OUT PFRAGMENTATION_STRUCTURE pFragment ) // Function Description:
// This will set up the fragement headers that are required for
// transmitting multiple fragments.
// Sets up the first source and destination for the first fragment
//
// Arguments
// pAdapter - to be used to get the dgl label and the lookaside list
// pStartOfData - start of the packet data . To be used in extracting the Unfragmented Header
// ppLookasideListBuffer Points to the allocated lookaside buffer
// pplookasideheader - points to the lookaside header
//
// Return Value:
// Success if the allocation succeeds
//
//
{
NDIS_STATUS NdisStatus = NDIS_STATUS_FAILURE; PNDIS1394_FRAGMENT_HEADER pHeader = NULL; PVOID pPacketStartData = NULL; USHORT dgl = (USHORT) DatagramLabelLong;
TRACE( TL_T, TM_Send, ( "==> nicFirstFragmentInitialization pStartNdisBuffer%x, pFragment%x dgl %x ", pStartNdisBuffer, pFragment, dgl ) );
do {
//
// Get the start address for the 1st NdisBuffer. This contains
// the unfragmented header
//
pPacketStartData = nicNdisBufferVirtualAddress(pStartNdisBuffer);
if (pPacketStartData == NULL) { NdisStatus = NDIS_STATUS_RESOURCES; BREAK (TM_Send, ("NdisBufferVirtual Address is NULL " ) ); }
pFragment->UnfragmentedHeader.HeaderUlong = SWAPBYTES_ULONG (((PNDIS1394_UNFRAGMENTED_HEADER)pPacketStartData)->HeaderUlong);
TRACE ( TL_V, TM_Send, (" Unfragmented Header %x, pPacketStartData %x", pFragment->UnfragmentedHeader.HeaderUlong , pPacketStartData) );
TRACE ( TL_V, TM_Send, (" original Header lf %x, etherType %x", pFragment->UnfragmentedHeader.u.FH_lf, pFragment->UnfragmentedHeader.u.FH_EtherType) );
//
// Now construct a fragmentation header to be used by all the fragments.
//
pHeader = &pFragment->FragmentationHeader;
pHeader ->u.FirstQuadlet.FH_lf = lf_FirstFragment; pHeader ->u.FirstQuadlet.FH_buffersize = pFragment->IPDatagramLength-1; pHeader ->u.FirstQuadlet_FirstFragment.FH_EtherType = pFragment->UnfragmentedHeader.u.FH_EtherType; pHeader ->u1.SecondQuadlet.FH_dgl = dgl;
TRACE ( TL_V, TM_Send, (" fragmented Header Hi %x Lo %x", pHeader->u.FH_High, pHeader->u1.FH_Low) );
TRACE ( TL_V, TM_Send, (" fragmented Header lf %x EtherType %x", pHeader ->u.FirstQuadlet_FirstFragment.FH_lf , pHeader ->u.FirstQuadlet_FirstFragment.FH_EtherType ) );
//
// temporaty debug spew
//
TRACE (TL_V, TM_Send, (" copy Header at %x, Orig Header at %x", &pHeader ->u.FirstQuadlet_FirstFragment, pFragment->UnfragmentedHeader) ); //
// Initialize the fragmentation structure with packet's first ndis buffer
//
pFragment->pSourceAddressInNdisBuffer = NdisBufferVirtualAddress (pStartNdisBuffer);
if (pFragment->pSourceAddressInNdisBuffer == NULL) { NdisStatus = NDIS_STATUS_FAILURE;
}
//
// Set up the copy source . The first four bytes of data contain the unfragmented header.
// We need to skip past these bytes and start the copy from the next byte
//
pFragment->pSourceAddressInNdisBuffer = (PVOID) ((ULONG_PTR)pFragment->pSourceAddressInNdisBuffer + sizeof (NDIS1394_UNFRAGMENTED_HEADER) ); pFragment->NdisBufferLengthRemaining = NdisBufferLength (pStartNdisBuffer) - sizeof (NDIS1394_UNFRAGMENTED_HEADER); pFragment->pCurrNdisBuffer = pStartNdisBuffer; //
// Set up the destination
//
pFragment->pStartFragment = (PVOID)((ULONG_PTR)pFragment->pLookasideListBuffer + (pFragment->NumFragmentsNeeded*sizeof(IRB)));
((PLOOKASIDE_BUFFER_HEADER)pFragment->pLookasideListBuffer)->pStartOfData = pFragment->pStartFragment; pFragment->pStartOfFirstFragment = pFragment->pStartFragment ; pFragment->CurrFragmentNum = 0;
pFragment->lf = lf_FirstFragment;
//
// The First IRB will reside at the end of the lookaside-header
//
pFragment->pCurrentIrb = &((PUNFRAGMENTED_BUFFER)pFragment->pLookasideListBuffer)->Irb; TRACE( TL_T, TM_Send, ( " pStartFragment %x, pFragment %x,NumFragmentsNeeded %x,MaxFragmentLength %x ", pFragment->pStartFragment, pFragment->NumFragmentsNeeded, pFragment->MaxFragmentLength) );
NdisStatus = NDIS_STATUS_SUCCESS;
} while (FALSE);
TRACE( TL_T, TM_Send, ( " <== nicFirstFragmentInitialization NdisStautus %x, pFragment %x, ", NdisStatus, pFragment) );
return NdisStatus; }
VOID nicAddFragmentHeader ( IN PVOID pStartFragmentData, IN PFRAGMENTATION_STRUCTURE pFragmentStructure, IN ULONG FragmentLength ) // Function Description:
// Copies the Fragment header over after byteswapping it.
// For the the first time, the ether type and so forth is already initialized and waiting to be copied.
// This funciotn also sets up the values for the next invocation of this function
// Arguments
// pStartFragmentData - Start of the fragment. Header goes after the gasp header if necessary .
// pFragmentationHeader - Header to copy over
// fIsFirstFragment - TRUE if this is the first fragment and needs a special header
// Return Value:
// None
//
{ PNDIS1394_FRAGMENT_HEADER pDestFragmentHeader = (PNDIS1394_FRAGMENT_HEADER)pStartFragmentData; PNDIS1394_FRAGMENT_HEADER pSrcFragmentHeader = &pFragmentStructure->FragmentationHeader; TRACE( TL_T, TM_Send, ( "==> nicAddFragmentHeader pStartFragmentData %x, pFragmentationHeader %x, , FragmentLength %x, lf %x", pStartFragmentData , pSrcFragmentHeader , FragmentLength, pFragmentStructure->lf) );
if (pFragmentStructure->AsyncOp == AsyncStream) { //
// First Copy the GaspHeader
//
NdisMoveMemory (pStartFragmentData , &pFragmentStructure->pAdapter->GaspHeader, sizeof (GASP_HEADER) );
//
// Increment the pointers so that the fragment header will be copied after the gasp header
//
pStartFragmentData = (PVOID) ((ULONG_PTR) pStartFragmentData + sizeof (GASP_HEADER) ); pDestFragmentHeader = (PVOID) pStartFragmentData; TRACE( TL_T, TM_Send, ( " nicAddFragmentHeader Added Gasp Header from %x ", pFragmentStructure->pAdapter->GaspHeader) ); }
//
// Sanity check , are we overwriting anybody ?
//
ASSERT (*(PULONG)pDestFragmentHeader == 0); ASSERT (*(PULONG)pFragmentStructure->pCurrentIrb == 0);
TRACE( TL_V, TM_Send, ( " pSrcFragmentHeader Hi %x,Lo %x", pSrcFragmentHeader->u.FH_High, pSrcFragmentHeader->u1.FH_Low) );
//
// Copy over the lf;
//
pSrcFragmentHeader->u.FirstQuadlet.FH_lf = pFragmentStructure->lf;
//
// Now copy over the 8 bytes of the fragment header and byteswap them into big endian
//
pDestFragmentHeader->u.FH_High = SWAPBYTES_ULONG ( pSrcFragmentHeader->u.FH_High);
pDestFragmentHeader->u1.FH_Low = SWAPBYTES_ULONG ( pSrcFragmentHeader->u1.FH_Low);
TRACE( TL_V, TM_Send, ( " Fragment Offset %x", pSrcFragmentHeader->u.FirstQuadlet.FH_fragment_offset ) );
//
// PREPARE the FRAGMENT STRUCTURE FOR THE NEXT ITERATION
//
//
// Set the first fragment completed flag to true and set up the header for the next fragment
//
if (pFragmentStructure->lf == lf_FirstFragment) { pFragmentStructure->lf = lf_InteriorFragment; pSrcFragmentHeader->u.FirstQuadlet.FH_fragment_offset = 0;
}
//
// Increase the fragment offset for use in the next fragment
//
pSrcFragmentHeader->u.FirstQuadlet.FH_fragment_offset += FragmentLength;
TRACE( TL_T, TM_Send, ( "<== nicAddFragmentHeader lf %x", pFragmentStructure->lf) );
}
NDIS_STATUS AsyncStreamSendPacketsHandler ( IN PVCCB pVc, IN PNDIS_PACKET pPacket ) // Function Description:
// This function is used to send packets to the bus
// via the async stream irp. the Ndis Packet is copied
// to locally owned buffers and mdls and then sent
// down to the bus driver
//
// This code is borrowed heavily from the AsyncStreamIrp code below
//
// Arguments
// pChannelVc - The Vc which needs to send the packets
// pPacket - the packet being transmitted
//
// Return Value:
// NdisStatus - if all allocations and irp operations complete
// successfully, and the i/o will be completed asynchronously
//
{ NDIS_STATUS NdisStatus = NDIS_STATUS_FAILURE; NTSTATUS NtStatus = STATUS_UNSUCCESSFUL; PCHANNEL_VCCB pChannelVc = (PCHANNEL_VCCB) pVc; BOOLEAN fVcActive = TRUE; PMDL pMyMdl = NULL; PIRB pMyIrb = NULL; PIRP pMyIrp = NULL; ULONG PacketLength = 0; PVOID pLookasideListBuffer = NULL; PADAPTERCB pAdapter = NULL; PNDIS_BUFFER pStartNdisBuffer = NULL ; PVOID pStartPacketData= NULL ; PNIC_NPAGED_LOOKASIDE_LIST pLookasideList = NULL; PLOOKASIDE_BUFFER_HEADER pLookasideHeader = NULL; ULONG NumFragmentsNeeded = 0; FRAGMENTATION_STRUCTURE Fragment; STORE_CURRENT_IRQL;
NdisZeroMemory (&Fragment, sizeof (FRAGMENTATION_STRUCTURE)); TRACE( TL_T, TM_Send, ( "==>AsyncStreamSendPacketsHandler , pVc %x, pPacket %x", pChannelVc , pPacket ) ); pAdapter = pChannelVc->Hdr.pAF->pAdapter; //
// This reference will either be dereferenced below in a call to FreeSendPacketDataStructure
// below or a call to FreeSendPacketDataStructure made from the Irp's completion routine
//
do { VC_ACQUIRE_LOCK (pVc);
//
// Make sure that the Vc is Activated and that no close calls
// are pending or that we have already completed a close call
//
if ( VC_ACTIVE (pChannelVc) == FALSE || ADAPTER_ACTIVE(pAdapter) == FALSE) { fVcActive = FALSE; }
if (VC_TEST_FLAG( pChannelVc, VCBF_GenerationWorkItem) == TRUE) { TRACE( TL_N, TM_Send, ( "AsyncStreamSendPacketHandler, Getting a new Gen, Fail send ") );
fVcActive = FALSE; }
if (fVcActive == TRUE) { nicReferenceCall (pVc, "AsyncStreamSendPacketsHandler"); } VC_RELEASE_LOCK (pVc);
if (fVcActive == FALSE) { TRACE( TL_N, TM_Send, ( "AsyncStreamSendPacketHandler, VC Not Active VC %x , Flag %x", pVc, pVc->Hdr.ulFlags ) );
NdisStatus = NDIS_STATUS_FAILURE; break; }
//
// Copy NdisBuffer in Packet to Local Memory and get an Mdl that points
// to this memory (we get 1 Mdl only)
NdisQueryPacket( pPacket, NULL, NULL, NULL, &PacketLength);
ASSERT (pPacket->Private.Head != NULL);
pStartNdisBuffer = pPacket->Private.Head; pStartPacketData = nicNdisBufferVirtualAddress (pStartNdisBuffer);
if (pStartPacketData == NULL) { NdisStatus = NDIS_STATUS_RESOURCES; TRACE( TL_N, TM_Send, ( "AsyncStreamSendPacketHandler, pStartPacketData ") );
break; }
TRACE( TL_V, TM_Send, ( "PacketLength %x", PacketLength) );
NumFragmentsNeeded = nicNumFragmentsNeeded (PacketLength, pChannelVc->Hdr.MaxPayload, sizeof (NDIS1394_FRAGMENT_HEADER) + ISOCH_PREFIX_LENGTH );
TRACE( TL_V, TM_Send, ( "NumFragments %x, pVc->MaxSendSize", NumFragmentsNeeded,pVc->Hdr.MaxPayload) );
//
// first choose the lookaside list
//
//
if (PacketLength < PAYLOAD_100) { pLookasideList = &pAdapter->SendLookasideList100; TRACE( TL_V, TM_Send, ( " PAYLOAD_100 Lookaside List %x", &pAdapter->SendLookasideList100) );
} else if (PacketLength < PAYLOAD_2K) { pLookasideList = &pAdapter->SendLookasideList2K; TRACE( TL_V, TM_Send, ( " PAYLOAD_2K Lookaside List %x", &pAdapter->SendLookasideList2K) );
} else if (PacketLength < PAYLOAD_8K) { pLookasideList = &pAdapter->SendLookasideList8K; TRACE( TL_V, TM_Send, ( " PAYLOAD_8K Lookaside List %x", &pAdapter->SendLookasideList8K) );
}else { //
// Add code for local allocation
//
ASSERT (0); }
//
// are we going to fragment
//
ASSERT (pLookasideList != NULL)
//
// We are not going to fragment. Optimize this path
//
pLookasideListBuffer = nicGetLookasideBuffer (pLookasideList); if (pLookasideListBuffer == NULL ) { NdisStatus = NDIS_STATUS_FAILURE; BREAK (TM_Send, ("nicGetLookasideBuffer FAILED") ); }
//
// Initialize the header with relevant information that the send complete
// will need
//
pLookasideHeader = (PLOOKASIDE_BUFFER_HEADER)pLookasideListBuffer; pLookasideHeader->IsFragmented = FALSE; // Default
pLookasideHeader->FragmentsGenerated = 0; pLookasideHeader->pLookasideList = pLookasideList; pLookasideHeader->pNdisPacket = pPacket; pLookasideHeader->pVc =(PVCCB)pVc; pLookasideHeader->AsyncOp = AsyncStream; pLookasideHeader->OutstandingFragments = NumFragmentsNeeded ;
//
// Initialize the Fragment structure
//
//
// Do we fragment or not. Base it on the MaxPayload field
//
TRACE( TL_V, TM_Send, ( " Fragment PacketLength %x, pVc->MaxPayload %x ", PacketLength ,pVc->Hdr.MaxPayload) );
//
// Do we need to fragment. Use the number of fragments generated to figure it out
//
if (NumFragmentsNeeded == 1) { //
// No need to fragment here. We will use the UNFRAGMENTED Layout
//
// First Get a local buffer from our lookaside list
//
PUNFRAGMENTED_BUFFER pUnfragmentedBuffer = (PUNFRAGMENTED_BUFFER )pLookasideHeader; PPACKET_FORMAT pDestination = (PPACKET_FORMAT)&pUnfragmentedBuffer->Data[0]; //
// Add the gasp header
//
NdisMoveMemory ((PVOID)&pDestination->AsyncStreamNonFragmented.GaspHeader, &pAdapter->GaspHeader, sizeof (GASP_HEADER) );
//
// copy the data over, to the location just after the Gasp Header
// In the unfragmented case, the packet already has the correct header
//
NdisStatus = nicCopyNdisBufferChainToBuffer (pStartNdisBuffer, (PVOID)&pDestination->AsyncStreamNonFragmented.NonFragmentedHeader, pLookasideList->MaxSendSize); if (NdisStatus != NDIS_STATUS_SUCCESS) { BREAK ( TM_Send, ( " AsyncStreamSendPacketHandler, nicCopyNdisPacketToUnfragmentedBuffer Failed ") ); } ASSERT (pLookasideListBuffer != NULL);
//
// Initialize all the variable needed by the Next section of the code.
// This deals with setting up the Mdl and the IRB
//
pStartNdisBuffer = NULL;
Fragment.pStartFragment = (PVOID)pDestination; Fragment.FragmentLength = PacketLength + sizeof (GASP_HEADER); Fragment.pCurrNdisBuffer = NULL;
pLookasideHeader->FragmentsGenerated = 1; pLookasideHeader->IsFragmented = FALSE; } else { //
// We need to fragment
//
ULONG Dgl = NdisInterlockedIncrement(&pAdapter->dgl);
//
// Initialize the fragment header. The unfragmented code path
// does not care about these fields
//
Fragment.TxHeaderSize = sizeof (NDIS1394_FRAGMENT_HEADER) + sizeof (GASP_HEADER); Fragment.AsyncOp = AsyncStream; Fragment.pLookasideList = pLookasideList; Fragment.pAdapter = pAdapter; Fragment.pLookasideListBuffer = pLookasideListBuffer; Fragment.IPDatagramLength = (USHORT)PacketLength - sizeof (NDIS1394_UNFRAGMENTED_HEADER);
Fragment.MaxFragmentLength = pChannelVc->Hdr.MaxPayload; Fragment.NumFragmentsNeeded = NumFragmentsNeeded;
//
// Allocate from the fragmented pool and initialize the fragment header structure
//
NdisStatus = nicFirstFragmentInitialization (pPacket->Private.Head, Dgl, &Fragment);
if (pLookasideListBuffer == NULL || NdisStatus != NDIS_STATUS_SUCCESS) { BREAK (TM_Send, (" AsyncStreamSendPacketsHandler: nicFirstFragmentInitialization : FAILED" )) ; }
ASSERT (pLookasideListBuffer != NULL); pLookasideHeader->IsFragmented = TRUE; }
//
// Now begin the loop which will send n fragments
//
do {
//
// Do we need to fragment. If so , extract one fragment out of the NdisPacket
//
if (pLookasideHeader->IsFragmented == TRUE ) { //
// We copy one fragment over and this will allocate the lookaside list
//
NdisStatus = nicCopyOneFragment (&Fragment); if (NDIS_STATUS_SUCCESS != NdisStatus) { BREAK ( TM_Send, ( " AsyncStreamSendPacketHandler, nicCopyOneFragment Failed ") ); } //
// Get the pointer to the Irb here. and set it up for the next time
//
//
pMyIrb = Fragment.pCurrentIrb; Fragment.pCurrentIrb = (PIRB)((ULONG_PTR)Fragment.pCurrentIrb + sizeof (IRB) ); } else { //
// No Curr NdisBuffer as this packet was never fragmented.
//
ASSERT (pLookasideHeader->IsFragmented == FALSE);
pMyIrb = &((PUNFRAGMENTED_BUFFER )pLookasideHeader)->Irb; } //
// At this point we have one fragment that needs to be transmitted.
// Data structures have been updated to set up the MDL and the IRB
//
NdisStatus = nicGetMdl (Fragment.FragmentLength , Fragment.pStartFragment , &pMyMdl);
if (NdisStatus != NDIS_STATUS_SUCCESS) { BREAK ( TM_Send, ( " AsyncStreamSendPacketHandler, nicCopyNdisBufferChainToBuffer Failed ") ); }
nicIncChannelSendMdl() //
// Fill in the Irb with the correct values from the VC
// Stuff we need to add to the send VC - BlockSize,Generation
//
nicInitAsyncStreamIrb((PCHANNEL_VCCB)pVc, pMyMdl, pMyIrb);
//
// Get a free Irp
//
NdisStatus = nicGetIrp (pAdapter->pNdisDeviceObject, &pMyIrp); if (NdisStatus != NDIS_STATUS_SUCCESS) { break; } //
// At this point, we have a guarantee that the Completion routine will be called
//
ASSERT (NdisStatus == NDIS_STATUS_SUCCESS);
//
// Dump the Fragment
//
nicDumpMdl (pMyMdl , 0, "AsyncStream Fragment");
NIC1394_LOG_PKT( pAdapter, NIC1394_LOGFLAGS_SEND_CHANNEL, pAdapter->BCRData.LocalNodeNumber, // SourceID
pChannelVc->Channel, Fragment.pStartFragment, Fragment.FragmentLength );
//
// This function implements the common functionality to be implemented by
// all other send/recv cals to IoCallDriver
//
//
// We IGNORE the NtStatus as the completion handler will be called
//
nicIncrementBusSends(pVc); NtStatus = nicSubmitIrp(pAdapter->pNdisDeviceObject, pMyIrp, pMyIrb, AsyncWriteStreamSendComplete, (PVOID)pLookasideListBuffer);
TRACE( TL_V, TM_Send, ( " pCurrNdisBuffer %x, NdisStatus %x ", Fragment.pCurrNdisBuffer , NdisStatus ) );
} while (Fragment.pCurrNdisBuffer != NULL && NdisStatus == NDIS_STATUS_SUCCESS);
} while (FALSE);
//
// DO NOT touch the packet if status == NDIS_STATUS_SUCCESS.
//
//
// CleanUp if any of the allocations failed. We do not have a pointer
// to the LocalBuffer (it is embedded in the Mdl) so it remains NULL
//
// NdisStatus != Success means that we never got to nicSubmitIrp
//
if (NdisStatus != NDIS_STATUS_SUCCESS) {
ASSERT (pMyIrp == NULL);
//
// fVc Active makes sure that we actually got around to allocating
// and referencing structures
//
if (fVcActive == TRUE) {
if (pLookasideListBuffer != NULL) {
//
// Complete this fragment, as we never submit'd the IRP to
// the 1394 bus driver
//
AsyncWriteStreamSendComplete(NULL, // PDO
NULL, pLookasideListBuffer);
NdisStatus =NDIS_STATUS_SUCCESS; } else {
//
// This thread needs to decrement the refcounts as
// AsyncWriteStreamSendComplete was not called
//
nicDereferenceCall ((PVCCB) pVc, "AsyncStreamSendPacketsHandler");
}
}
}
TRACE( TL_T, TM_Send, ( "<==AsyncStreamSendPacketHandler, NdisStatus %x", NdisStatus ) ); MATCH_IRQL;
//
// Make sure this is NDIS_STATUS_PENDING if the Irp was sent down or
// AsyncWriteStreamSendCOmplete was called.
//
return NdisStatus; }
NDIS_STATUS nicEthernetVcSend( IN PVCCB pVc, IN PNDIS_PACKET pPacket ) /*++
Routine Description: reroutes all sends as an CL receive
Arguments:
Return Value:
--*/ {
PETHERNET_VCCB pEthernetVc = (PETHERNET_VCCB)pVc; PADAPTERCB pAdapter = pVc->Hdr.pAF->pAdapter; BOOLEAN fVcActive = FALSE; NDIS_STATUS NdisStatus = NDIS_STATUS_FAILURE; PNDIS_PACKET pMyPacket = NULL; NDIS_STATUS IndicatedStatus= NDIS_STATUS_FAILURE; PPKT_CONTEXT pPktContext = NULL; TRACE( TL_T, TM_Send, ( "==>nicEthernetVcSend, pVc %x, pPacket %x", pVc , pPacket ) );
do {
ADAPTER_ACQUIRE_LOCK (pAdapter);
if (VC_ACTIVE (pEthernetVc)==TRUE) { fVcActive = TRUE; nicReferenceCall (pVc, "nicEthernetVcSend" ) ; }
ADAPTER_RELEASE_LOCK (pAdapter); if (fVcActive == FALSE) { NdisStatus = NDIS_STATUS_FAILURE; break; }
nicAllocatePacket (&NdisStatus, &pMyPacket , &pEthernetVc->PacketPool );
if (NdisStatus != NDIS_STATUS_SUCCESS || pMyPacket == NULL) { pMyPacket = NULL; BREAK (TM_Send, "Ethernet VC - AllocatePacket failed" ) ; }
pMyPacket->Private.Head = pPacket->Private.Head; pMyPacket->Private.Tail = pPacket->Private.Tail;
IndicatedStatus = NDIS_STATUS_RESOURCES; NDIS_SET_PACKET_STATUS(pMyPacket, IndicatedStatus);
//
// Set up the context
//
pPktContext = (PPKT_CONTEXT)&pMyPacket->MiniportReservedEx; pPktContext->EthernetSend.pOrigPacket = pPacket;
//
// Dump the packet
//
{ nicDumpPkt (pMyPacket, "Conn Less Rcv "); nicCheckForEthArps (pMyPacket); } //
// Now indicate the packet
//
//
// Bluff the OOB Size. To get past an assert on debug Ndis
//
NDIS_SET_PACKET_HEADER_SIZE (pMyPacket, 14); NdisMIndicateReceivePacket (pAdapter->MiniportAdapterHandle, &pMyPacket, 1);
pPktContext = (PPKT_CONTEXT)&pMyPacket->MiniportReservedEx; ASSERT ( pPacket == pPktContext->EthernetSend.pOrigPacket );
nicMpCoSendComplete (NDIS_STATUS_SUCCESS, pVc, pPacket);
//
// We have successfully pended the Io/
// Now the completion routine will be called
//
NdisStatus = NDIS_STATUS_SUCCESS;
} while (FALSE);
if (pMyPacket != NULL) { //
// Free the locally allcoate packet
//
nicFreePacket(pMyPacket, &pEthernetVc->PacketPool); }
if (fVcActive == TRUE) { nicDereferenceCall (pVc, "nicEthernetVcSend" ) ;
}
TRACE( TL_T, TM_Send, ( "<==nicEthernetVcSend, ") );
return NdisStatus; }
VOID nicGetGenerationWorkItem( NDIS_WORK_ITEM* pGetGenerationWorkItem, IN PVOID Context ) // Function Description:
// Work Item used to submit a Get Generation IRP at Passive Level
//
// Arguments
//
// Return Value:
// Generation -
{ PVCCB pVc = (PVCCB) Context; PADAPTERCB pAdapter = pVc->Hdr.pAF->pAdapter; NDIS_STATUS NdisStatus = NDIS_STATUS_FAILURE; UINT Generation = 0;
TRACE( TL_T, TM_Mp, ( "==>nicGetGenerationWorkItem, pVc", Context ) );
NdisStatus = nicGetGenerationCount (pAdapter , &Generation);
//
// Update the generation
//
VC_ACQUIRE_LOCK (pVc); if (NdisStatus == NDIS_STATUS_SUCCESS && Generation > *pVc->Hdr.pGeneration ) { pAdapter->Generation = Generation; } VC_CLEAR_FLAGS(pVc, VCBF_GenerationWorkItem); VC_RELEASE_LOCK (pVc);
// Dereference the call, this will allow the close call to complete. Do not touch VC after this.
//
nicDereferenceCall(pVc, "nicSendFailureInvalidGeneration");
TRACE( TL_T, TM_Mp, ( "<==nicGetGenerationWorkItem, Gen %x", Generation) );
FREE_NONPAGED (pGetGenerationWorkItem); NdisInterlockedDecrement(&pAdapter->OutstandingWorkItems);
}
VOID nicUpdatePacketState ( IN PNDIS_PACKET pPacket, IN ULONG Tag ) /*++
Routine Description: Validates and then updates that packet tag. So we can heep track of the packet
Arguments:
Return Value:
--*/ {
switch (Tag) { case NIC1394_TAG_COMPLETED: {
*(PULONG)(&pPacket->MiniportReserved[0]) = NIC1394_TAG_COMPLETED;
break; }
case NIC1394_TAG_IN_SEND: { *(PULONG)(&pPacket->MiniportReserved[0]) = NIC1394_TAG_IN_SEND; break; }
default: { ASSERT (!"Invalid Tag on NdisPacket"); }
}
}
NDIS_STATUS nicQueueSendPacket( PNDIS_PACKET pPacket, PVCCB pVc ) /*++
Routine Description:
This function inserts a packet into the send queue. If there is no timer servicing the queue then it queues a timer to dequeue the packet in Global Event's context
Arguments:
Self explanatory Return Value: Success - if inserted into the the queue
--*/ { NDIS_STATUS Status = NDIS_STATUS_FAILURE;
BOOLEAN fSetTimer = FALSE; PADAPTERCB pAdapter = pVc->Hdr.pAF->pAdapter; PNDIS_SEND_CONTEXT pSendContext = (PNDIS_SEND_CONTEXT)(pPacket->MiniportReservedEx) ;
do { extern ULONG TotSends; TotSends++;
//
// Store the pvc in the Miniport Reserved
//
pSendContext->pVc = pVc; ADAPTER_ACQUIRE_LOCK (pAdapter);
//
// Find out if this thread needs to fire the timer
//
if (pAdapter->SerSend.bTimerAlreadySet == FALSE) { fSetTimer = TRUE; pAdapter->SerSend.bTimerAlreadySet = TRUE;
} InsertTailList( &pAdapter->SerSend.Queue, &pSendContext->Link ); pAdapter->SerSend.PktsInQueue++;
nicReferenceCall (pVc, "nicQueueSendPacket ");
ADAPTER_RELEASE_LOCK (pAdapter);
//
// Now queue the timer
//
if (fSetTimer == TRUE) { PNDIS_MINIPORT_TIMER pSendTimer; //
// Initialize the timer
//
pSendTimer = &pAdapter->SerSend.Timer;
TRACE( TL_V, TM_Recv, ( " Set Timer ")); NdisMSetTimer ( pSendTimer, 0);
}
Status = NDIS_STATUS_SUCCESS;
} while (FALSE);
ASSERT (Status == NDIS_STATUS_SUCCESS); return Status; }
NDIS_STATUS nicInitSerializedSendStruct( PADAPTERCB pAdapter ) /*++
Routine Description: Used to initialize the Send Serialization Struct
Arguments:
Return Value:
--*/ {
NdisZeroMemory (&pAdapter->SerSend, sizeof(pAdapter->SerSend)); InitializeListHead(&pAdapter->SerSend.Queue);
NdisMInitializeTimer (&pAdapter->SerSend.Timer, pAdapter->MiniportAdapterHandle, nicSendTimer , pAdapter);
return NDIS_STATUS_SUCCESS;
}
VOID nicDeInitSerializedSendStruct( PADAPTERCB pAdapter ) /*++
Routine Description:
Deinit's the Serialize send struct. Does nothing for now
Arguments:
Return Value:
--*/ {
}
VOID nicSendTimer ( IN PVOID SystemSpecific1, IN PVOID FunctionContext, IN PVOID SystemSpecific2, IN PVOID SystemSpecific3 ) /*++
Routine Description: This function dequeues a packet and invokes the appropriate send handler to fire this packet off to the 1394 bus driver
Arguments:
Function context - Adapter structure, which has the Packet queue. Each packet has the VC embedded in it.
Return Value:
--*/ {
PADAPTERCB pAdapter = (PADAPTERCB) FunctionContext; BOOLEAN fVcCorrupted = FALSE;
TRACE( TL_T, TM_Recv, ( "==>nicSendTimer Context %x", FunctionContext));
nicIncrementSendTimerCount();
ADAPTER_ACQUIRE_LOCK (pAdapter);
//
// Get the stats out
//
nicSetCountInHistogram(pAdapter->SerSend.PktsInQueue, SendStats);
nicSetMax(nicMaxSend, pAdapter->SerSend.PktsInQueue);
//
// Empty the Queue indicating as many packets as possible
//
while (IsListEmpty(&pAdapter->SerSend.Queue)==FALSE) { PNDIS_SEND_CONTEXT pSendContext; PNDIS_PACKET pPacket; PVCCB pVc; PLIST_ENTRY pLink; NDIS_STATUS NdisStatus;
pAdapter->SerSend.PktsInQueue--;
pLink = RemoveHeadList(&pAdapter->SerSend.Queue);
ADAPTER_RELEASE_LOCK (pAdapter);
//
// Extract the send context
//
pSendContext = CONTAINING_RECORD( pLink, NDIS_SEND_CONTEXT, Link);
pVc = pSendContext->pVc;
if (pVc->Hdr.ulTag != MTAG_VCCB) { ASSERT (pVc->Hdr.ulTag == MTAG_VCCB); fVcCorrupted = TRUE; break; }
//
// Now get the packet
//
pPacket = CONTAINING_RECORD ( pSendContext, NDIS_PACKET, MiniportReservedEx);
//
// Call the send handler for the Vc, packet
//
nicUpdatePacketState (pPacket, NIC1394_TAG_IN_SEND);
NdisStatus = pVc->Hdr.VcHandlers.SendPackets(pVc, pPacket);
//
// Reference was made before queueing the packet
//
nicDereferenceCall (pVc, "nicSendTimer "); //
// Complete the packet , if the send was synchronous
//
if (NT_SUCCESS(NdisStatus) == FALSE) // can pend
{ nicMpCoSendComplete( NdisStatus,pVc,pPacket); }
ADAPTER_ACQUIRE_LOCK (pAdapter);
} //
// clear the flag
//
ASSERT (pAdapter->SerSend.PktsInQueue==0); ASSERT (IsListEmpty(&pAdapter->SerSend.Queue));
pAdapter->SerSend.bTimerAlreadySet = FALSE;
ADAPTER_RELEASE_LOCK (pAdapter);
TRACE( TL_T, TM_Recv, ( "<==nicSendTimer "));
}
VOID nicMpCoSendComplete ( NDIS_STATUS NdisStatus, PVCCB pVc, PNDIS_PACKET pPacket ) /*++
Routine Description: Wrapper function around NdisMCoSendComplete
Arguments:
Return Value:
--*/ {
nicIncrementSendCompletes (pVc); if (NdisStatus == NDIS_STATUS_SUCCESS) { nicIncrementVcSendPktCount(pVc, pPacket); } else { nicIncrementVcSendFailures (pVc, pPacket); }
nicUpdatePacketState (pPacket, NIC1394_TAG_COMPLETED);
NdisMCoSendComplete(NdisStatus, pVc->Hdr.NdisVcHandle, pPacket);
}
UINT nicNumFragmentsNeeded ( UINT PacketLength , UINT MaxPayload, UINT FragmentOverhead ) /*++
Routine Description:
Now account for the Fragment headers as well. A fragment header will be added at the head of each fragment. The Unfragmented header at the head of the data will be removed
Arguments:
FragmentOverhead - the size of the fragment header, in the asyncstream it includes the gasp header+fragment header. for asyncwrite it is just the fragmentation header
Return Value:
--*/
{
UINT NewPacketSize; UINT TotalCapacitySoFar; UINT NumFragmentsNeeded ;
ASSERT (PacketLength != 0 ); ASSERT (MaxPayload != 0) ; ASSERT (FragmentOverhead != 0);
//
// This division takes care of the case where PacketLength
// is an integral multiple of the MaxPayload. Since we add 1 to the fragment
// it takes care of the overhead added by the fragment headers
//
NumFragmentsNeeded = (PacketLength / MaxPayload) + 1;
//
// If we add the fragment and gasp header to our fragments, we
// might need another fragment due to an overflow
//
//
// Calculate the new packet size after fragmentation
//
{ //
// Add the length of the fragment headers
//
NewPacketSize = PacketLength + (NumFragmentsNeeded * FragmentOverhead);
//
// Now remove the default non-fragment header
//
NewPacketSize -= sizeof (NDIS1394_UNFRAGMENTED_HEADER) ; }
//
//
//
TotalCapacitySoFar = NumFragmentsNeeded * MaxPayload; if ( NewPacketSize > TotalCapacitySoFar) { //
// We'll need one more fragment
//
NumFragmentsNeeded ++; }
return NumFragmentsNeeded ;
}
VOID nicCheckForEthArps ( IN PNDIS_PACKET pPkt ) /*++
Routine Description:
It will print the pkt if an eth arp or arp response goes through nic1394 Arguments:
Return Value:
--*/ {
PNDIS_BUFFER pBuffer; ULONG Len; ENetHeader* pENetHeader = NULL; PETH_ARP_PKT pArp = NULL; USHORT PacketType; USHORT opcode; extern ULONG g_ulDumpEthPacket ; do {
if (g_ulDumpEthPacket == 0) { break; }
pBuffer = pPkt->Private.Head; Len = NdisBufferLength (pBuffer);
if (Len < sizeof (ENetHeader) ) { ASSERT (Len >= sizeof (ENetHeader) ); break; }
pENetHeader = (ENetHeader*) NdisBufferVirtualAddress (pBuffer);
if (pENetHeader == NULL) { ASSERT ( pENetHeader != NULL); break; }
PacketType = ntohs (pENetHeader->eh_type);
if (PacketType == ARP_ETH_ETYPE_IP) { break; }
if (PacketType == ARP_ETH_ETYPE_ARP) { DbgPrint ("Arp Pkt - "); }
pArp = (ETH_ARP_PKT*)pENetHeader;
opcode = ntohs(pArp->opcode);
if (opcode == ARP_ETH_REQUEST ) { DbgPrint ("Request "); } else if (opcode == ARP_ETH_RESPONSE ) { DbgPrint ("Response "); } else { break; }
// Print the packet
DbgPrint("\n"); {
ENetAddr Addr;
Addr = pArp->sender_hw_address;
DbgPrint ("Sender Hw Addr %x %x %x %x %x %x \n", Addr.addr[0], Addr.addr[1], Addr.addr[2], Addr.addr[3], Addr.addr[4], Addr.addr[5]); DbgPrint ("Ip Addr %x\n",pArp->sender_IP_address);
Addr = pArp->target_hw_address;
DbgPrint ("Target Hw Addr %x %x %x %x %x %x \n", Addr.addr[0], Addr.addr[1], Addr.addr[2], Addr.addr[3], Addr.addr[4], Addr.addr[5]); DbgPrint ("Ip Addr %x\n",pArp->target_IP_address);
}
} while (FALSE);
}
|