Source code of Windows XP (NT5)
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

3797 lines
104 KiB

//
// Copyright (c) 1998-1999, Microsoft Corporation, all rights reserved
//
// send.c
//
// IEEE1394 mini-port/call-manager driver
//
// Mini-port Send routines
//
// 12/28/1998 ADube Created, adapted from the l2tp and 1394diag sources.
//
//
// The Send Complete functions begin here. Send.c starts here
// Also present are the all thr buffer management routines that need to be expanded
//
//
// A Send follows this simple algorithm:
// Copy incoming data to local buffers
// Insert Fragment Headers if necessary
// Create an Mdl for the local copy
// Store the IRB and VC in the ndispacket
// Use the ndispacket as context in the irp's completion routine
//
#include <precomp.h>
//-----------------------------------------------------------------------------
// Global counts
//-----------------------------------------------------------------------------
extern UINT BusSendCompletes;
extern UINT NicSendCompletes;
extern UINT BusSends;
extern ULONG MdlsAllocated[NoMoreCodePaths];
extern ULONG MdlsFreed[NoMoreCodePaths];
//-----------------------------------------------------------------------------
// prototypes implementations (alphabetically)
//-----------------------------------------------------------------------------
NDIS_STATUS
nicCopyNdisBufferChainToBuffer(
IN PNDIS_BUFFER pInBuffer,
IN OUT PVOID pLocalBuffer,
IN UINT BufferLength )
{
//
// This function copies the data the belongs to the
// pInMdl chain to the local Buffer.
// BufferLength is used for validation purposes only
// Fragmentation and insertion of headers will take place here
//
NDIS_STATUS NdisStatus = NDIS_STATUS_SUCCESS;
UINT LocalBufferIndex = 0; // Used as an index to the LocalBuffer, used for validation
UINT MdlLength = 0;
PVOID MdlAddress = 0;
PNDIS_BUFFER pCurrBuffer;
TRACE( TL_T, TM_Send, ( "==>nicCopyNdisBufferChainToBuffer pNdisbuffer %x, Buffer %x, Length %x",
pInBuffer, pLocalBuffer,BufferLength ) );
ASSERT (pLocalBuffer != NULL);
pCurrBuffer = pInBuffer;
do
{
MdlLength = nicNdisBufferLength(pCurrBuffer);
MdlAddress= nicNdisBufferVirtualAddress(pCurrBuffer);
if (MdlLength != 0)
{
if (MdlAddress == NULL)
{
NdisStatus = NDIS_STATUS_FAILURE;
TRACE (TL_A, TM_Send, ("Ndis Buffer at %x", pCurrBuffer) );
BREAK (TM_Send, (" nicCopyNdisBufferChainToBuffer: Mdl Address = NULL") );
}
if ( LocalBufferIndex + MdlLength > BufferLength)
{
ASSERT(LocalBufferIndex + MdlLength <= BufferLength);
NdisStatus = NDIS_STATUS_BUFFER_TOO_SHORT;
BREAK (TM_Send, ("nicCopyNdisBufferChainToBuffer Copy Failed" ) );
}
//
// Copy the Data to local memory.
//
NdisMoveMemory((PVOID)((ULONG_PTR)pLocalBuffer+LocalBufferIndex),
MdlAddress,
MdlLength);
LocalBufferIndex += MdlLength;
}
pCurrBuffer = pCurrBuffer->Next;
} while (pCurrBuffer!= NULL);
TRACE( TL_T, TM_Send, ( "<==nicCopyNdisBufferChainToBuffer %x",NdisStatus ) );
return NdisStatus;
}
NDIS_STATUS
nicFreeIrb(PIRB pIrb)
//
// Frees the Memory occcupied by the Irb
//
{
NDIS_STATUS NdisStatus = NDIS_STATUS_SUCCESS;
ASSERT(pIrb != NULL);
TRACE( TL_T, TM_Irp, ( "==>nicFreeIrb %x", pIrb ) );
if (pIrb != NULL)
{
FREE_NONPAGED(pIrb);
}
TRACE( TL_T, TM_Irp, ( "<==nicFreeIrb, NdisStatus %x",NdisStatus ) );
return NdisStatus;
}
NDIS_STATUS
nicFreePrivateIrb(
PNDIS1394_IRB pIrb
)
//
// Frees the Memory occcupied by the Irb
//
{
NDIS_STATUS NdisStatus = NDIS_STATUS_SUCCESS;
ASSERT(pIrb != NULL);
TRACE( TL_T, TM_Irp, ( "==>nicFreeIrb %x", pIrb ) );
if (pIrb != NULL)
{
FREE_NONPAGED(pIrb);
}
TRACE( TL_T, TM_Irp, ( "<==nicFreeIrb, NdisStatus %x",NdisStatus ) );
return NdisStatus;
}
NDIS_STATUS
nicFreeIrp(PIRP pIrp)
//
// Frees the memory occupied by the Irp
//
{
NDIS_STATUS NdisStatus = NDIS_STATUS_SUCCESS;
ASSERT(pIrp != NULL);
TRACE( TL_T, TM_Irp, ( "==>nicFreeIrp at %x",pIrp ) );
if (pIrp != NULL)
{
IoFreeIrp(pIrp);
}
TRACE( TL_T, TM_Irp, ( "<==nicFreeIrp, NdisStatus %x",NdisStatus ) );
return NdisStatus;
}
NDIS_STATUS
nicFreeLocalBuffer (
IN UINT Length,
IN PVOID Address )
//
// Free the Memory pointed to by Address.
// The Length parameter is superfluous and will be removed
// once I am sure we don;t need it
//
{
NDIS_STATUS NdisStatus = NDIS_STATUS_SUCCESS;
ASSERT(Address != NULL);
TRACE( TL_T, TM_Send, ( "==>nicFreeLocalBuffer , Address %x", Address) );
if (Address != NULL)
{
FREE_NONPAGED((PVOID)Address);
}
TRACE( TL_T, TM_Send, ( "<==niFreeLocalBuffer, NdisStatus %x",NdisStatus ) );
return NdisStatus;
}
NDIS_STATUS
nicFreeMdl(PMDL pMdl)
//
// This frees the memory belonging to the Mdl. Does not free the
// memory that the Mdl Points to
//
{
NDIS_STATUS NdisStatus = NDIS_STATUS_SUCCESS;
ASSERT (pMdl != NULL)
TRACE( TL_T, TM_Send, ( "==> nicFreeMdl pMdl %x", pMdl ) );
if (pMdl != NULL)
{
IoFreeMdl(pMdl);
}
TRACE( TL_T, TM_Send, ( "<== nicFreeMdl, NdisStatus %x",NdisStatus ) );
return NdisStatus;
}
VOID
nicFreeToNPagedLookasideList (
IN PNIC_NPAGED_LOOKASIDE_LIST pLookasideList,
IN PVOID pBuffer
)
// Function Description:
// Return the local buffer to the lookaside list
//
// Atguments
// Lookaside list and its buffer
// Return Value:
// None
{
TRACE( TL_T, TM_Send, ( "==> nicFreeToNPagedLookasideList , Lookaside list %x, plocalbuffer %x",pLookasideList, pBuffer ) );
NdisFreeToNPagedLookasideList (&pLookasideList->List, pBuffer);
NdisInterlockedDecrement (&pLookasideList->OutstandingPackets);
TRACE( TL_T, TM_Send, ( "<== nicFreeToNPagedLookasideList ") );
}
NDIS_STATUS
nicGetIrb(
OUT PIRB *ppIrb )
//
// This function is to be used in retrieving a free IRB.
// that will be supplied as an argument for an IRP
//
// Initially, this will simple allocate an IRB
// Intiailization could be added here
//
{
NDIS_STATUS NdisStatus;
TRACE( TL_T, TM_Irp, ( "==>nicGetIrb" ) );
*ppIrb = (PIRB)ALLOC_NONPAGED ( sizeof(IRB), MTAG_HBUFPOOL );
if (*ppIrb != NULL)
{
NdisZeroMemory ( *ppIrb, sizeof(IRB) );
NdisStatus = NDIS_STATUS_SUCCESS;
TRACE( TL_V, TM_Send, ( " nicGetIrb: Irb allocated at %x", *ppIrb ) );
}
else
{
nicIncrementMallocFailure();
NdisStatus = NDIS_STATUS_FAILURE;
}
TRACE( TL_T, TM_Irp, ( "<==nicGetIrb NdisStatus %x",NdisStatus ) );
return NdisStatus;
}
NDIS_STATUS
nicGetIrp(
IN PDEVICE_OBJECT pPdo,
OUT PIRP *ppIrp
)
//
// This function returns am irp to the calling routine
// The irp is free and is owned by the nic1394.
// NEED TO CHANGE THE STACK SIZE
//
{
NDIS_STATUS NdisStatus;
PIRP pIrp;
CCHAR StackSize =0;
ASSERT (pPdo != NULL);
TRACE( TL_T, TM_Irp, ( "==>nicGetIrp Pdo %x", pPdo ) );
if (pPdo == NULL)
{
ASSERT (pPdo != NULL);
NdisStatus = NDIS_STATUS_FAILURE;
*ppIrp = NULL;
return NdisStatus;
}
//
// Allocate the Irp with the correct stacksize
//
StackSize = pPdo->StackSize+1;
ASSERT (StackSize <=3);
pIrp = IoAllocateIrp (StackSize, FALSE);
do
{
if (pIrp == NULL)
{
NdisStatus = NDIS_STATUS_FAILURE;
break;
}
TRACE( TL_V, TM_Send, ( " Irp allocated at %x, Stacksize %x",pIrp , StackSize ) );
*ppIrp = pIrp;
//
// Initialize the Irp
//
IoInitializeIrp ( *ppIrp, sizeof(IRP), StackSize );
if (*ppIrp != NULL)
{
NdisStatus = NDIS_STATUS_SUCCESS;
}
else
{
nicIncrementMallocFailure();
NdisStatus = NDIS_STATUS_FAILURE;
}
} while (FALSE);
TRACE( TL_T, TM_Irp, ( "<==nicGetIrp ,irp %x",*ppIrp ) );
return NdisStatus;
}
NDIS_STATUS
nicGetPrivateIrb(
IN PADAPTERCB pAdapter OPTIONAL,
IN PREMOTE_NODE pRemoteNode OPTIONAL,
IN PVCCB pVc,
IN PVOID pContext,
OUT PNDIS1394_IRB *ppIrb
)
//
// This function is to be used in retrieving a free IRB.
// that will be supplied as an argument for an IRP
//
// Initially, this will simple allocate an IRB
// Intiailization could be added here
//
{
NDIS_STATUS NdisStatus;
PNDIS1394_IRB pIrb = NULL;
TRACE( TL_T, TM_Irp, ( "==> nicGetPrivateIrb pRemoteNode %x, pVc %x", pRemoteNode, pVc ) );
*ppIrb = (PNDIS1394_IRB)ALLOC_NONPAGED ( sizeof(NDIS1394_IRB), MTAG_HBUFPOOL );
if (*ppIrb != NULL)
{
NdisZeroMemory ( *ppIrb, sizeof(IRB) );
NdisStatus = NDIS_STATUS_SUCCESS;
pIrb = *ppIrb;
pIrb->pAdapter = pAdapter;
pIrb->pRemoteNode = pRemoteNode;
pIrb->pVc = pVc;
pIrb->Context = pContext;
TRACE( TL_V, TM_Send, ( " nicGetPrivateIrb: Irb allocated at %x", *ppIrb ) );
}
else
{
nicIncrementMallocFailure();
NdisStatus = NDIS_STATUS_FAILURE;
}
TRACE( TL_T, TM_Irp, ( "<==nicGetPrivateIrb NdisStatus %x",NdisStatus ) );
return NdisStatus;
}
NDIS_STATUS
nicGetLocalBuffer(
OPTIONAL IN ULONG Length,
OUT PVOID *ppLocalBuffer
)
//
// If the lookaside list is not NULL then it is used to allocate the local buffer
//
// This function allocates memory of size 'Length' and returns
// a pointer to this memory
// Subsequently allocation will be done away with and pools will
// be used
//
{
NDIS_STATUS NdisStatus = NDIS_STATUS_FAILURE;
TRACE( TL_T, TM_Send, ( "==>nicGetLocalBuffer Length %x", Length ) );
//
// There is a bug in the Nic if this is zero
//
ASSERT (Length != 0 );
//
// There is no lookaside list, We need to allocate memory
//
*ppLocalBuffer = ALLOC_NONPAGED (Length, MTAG_FBUFPOOL);
if (*ppLocalBuffer != NULL)
{
NdisStatus = NDIS_STATUS_SUCCESS;
}
else
{
nicIncrementMallocFailure();
NdisStatus = NDIS_STATUS_FAILURE;
}
TRACE( TL_T, TM_Send, ( "<==nicGetLocalBuffer, NdisStatus %x at %x",NdisStatus,*ppLocalBuffer ) );
return NdisStatus;
}
PVOID
nicGetLookasideBuffer(
IN PNIC_NPAGED_LOOKASIDE_LIST pLookasideList
)
// Function Description:
// Allocate an buffer from the lookaside list.
// will be changed to a macro
//
//
//
// Arguments
// Lookaside list - from which the buffer is allocated
//
//
// Return Value:
// Return buffer can be NULL
//
{
PVOID pLocalBuffer = NULL;
TRACE( TL_T, TM_Send, ( "==>nicGetLookasideBuffer pLookasideList %x", pLookasideList) );
ASSERT (pLookasideList != NULL);
//
// Optimize the lookaside list code path
//
pLocalBuffer = NdisAllocateFromNPagedLookasideList (&pLookasideList->List);
if (pLocalBuffer != NULL)
{
NdisZeroMemory (pLocalBuffer, pLookasideList->Size);
NdisInterlockedIncrement (&pLookasideList->OutstandingPackets);
}
else
{
nicIncrementMallocFailure();
}
TRACE( TL_T, TM_Send, ( "<==nicGetLookasideBuffer, %x", pLocalBuffer ) );
return pLocalBuffer ;
}
NDIS_STATUS
nicGetMdl(
IN UINT Length,
IN PVOID pLocalBuffer,
OUT PMDL *ppMyMdl)
//
// Return a locally owned Mdl to the caller.
// This will also initialize the MDl with the localbuffer
// Initial implementation will allocate mdls
//
{
NDIS_STATUS NdisStatus;
TRACE( TL_T, TM_Send, ( "==>nicGetMdl" ) );
ASSERT(pLocalBuffer != NULL);
//
// Allocate an MDl to point to the structure
//
(*ppMyMdl) = NULL;
(*ppMyMdl) = IoAllocateMdl( pLocalBuffer,
Length,
FALSE,
FALSE,
NULL );
//
// Initialize the data structures with correct values
//
if (*ppMyMdl != NULL)
{
MmBuildMdlForNonPagedPool(*ppMyMdl);
(*ppMyMdl)->Next = NULL;
NdisStatus = NDIS_STATUS_SUCCESS;
}
else
{
nicIncrementMallocFailure();
NdisStatus = NDIS_STATUS_FAILURE;
*ppMyMdl = NULL;
}
TRACE( TL_T, TM_Send, ( "<==nicGetMdl, Mdl %x, LocalBuffer %x",
*ppMyMdl, pLocalBuffer) );
return NdisStatus;
}
VOID
nicInitAsyncStreamIrb(
IN PCHANNEL_VCCB pChannelVc,
IN PMDL pMdl,
IN OUT PIRB pIrb
)
// This function initializes the Irb that will be used in the Irb
// It specifically handles the AsyncStream IRB
// It arguments are the Vc block (for destination address),
// Mdl (Memory desctiptor for the data and a pointer to the
// Irb structure that will be initialized
{
ASSERT (pMdl != NULL);
ASSERT (pIrb != NULL);
NdisZeroMemory (pIrb, sizeof (IRB) );
pIrb->FunctionNumber = REQUEST_ASYNC_STREAM;
pIrb->Flags = 0;
pIrb->u.AsyncStream.nNumberOfBytesToStream = MmGetMdlByteCount(pMdl);
pIrb->u.AsyncStream.fulFlags = 0;
//
// See comments for ISOCH_TAG
//
pIrb->u.AsyncStream.ulTag = g_IsochTag;
pIrb->u.AsyncStream.nChannel = pChannelVc->Channel;
pIrb->u.AsyncStream.ulSynch = pChannelVc->ulSynch;
pIrb->u.AsyncStream.nSpeed = (INT)pChannelVc->Speed;
pIrb->u.AsyncStream.Mdl = pMdl;
TRACE( TL_V, TM_Send, ( "Number of Bytes to Stream %x ", pIrb->u.AsyncStream.nNumberOfBytesToStream ) );
TRACE( TL_V, TM_Send, ( "fulFlags %x ", pIrb->u.AsyncStream.fulFlags ) );
TRACE( TL_V, TM_Send, ( "ulTag %x ", pIrb->u.AsyncStream.ulTag ) );
TRACE( TL_V, TM_Send, ( "Channel %x", pIrb->u.AsyncStream.nChannel ) );
TRACE( TL_V, TM_Send, ( "Synch %x", pIrb->u.AsyncStream.ulSynch ) );
TRACE( TL_V, TM_Send, ( "Speed %x", pIrb->u.AsyncStream.nSpeed ) );
TRACE( TL_V, TM_Send, ( "Mdl %x", pIrb->u.AsyncStream.Mdl ) );
}
VOID
nicInitAsyncWriteIrb(
IN PSENDFIFO_VCCB pSendFIFOVc,
IN PMDL pMyMdl,
IN OUT PIRB pMyIrb
)
// This function initializes the Irb that will be used in the Irb
// It specifically handles the AsyncWrite IRB
// It arguments are the Vc block (for destination address),
// Mdl (Memory desctiptor for the data and a pointer to the
// Irb structure that will be initialized
{
//
// Sanity check
//
ASSERT ((*(PULONG)pMyIrb) == 0)
pMyIrb->u.AsyncWrite.nNumberOfBytesToWrite = MmGetMdlByteCount(pMyMdl);
pMyIrb->u.AsyncWrite.nBlockSize = 0;
pMyIrb->u.AsyncWrite.fulFlags = 0;
pMyIrb->u.AsyncWrite.Mdl = pMyMdl;
pMyIrb->FunctionNumber = REQUEST_ASYNC_WRITE;
pMyIrb->Flags = 0;
pMyIrb->u.AsyncWrite.nSpeed = (UCHAR)pSendFIFOVc->MaxSendSpeed ;
pMyIrb->u.AsyncWrite.DestinationAddress.IA_Destination_Offset.Off_High = pSendFIFOVc->FifoAddress.Off_High;
pMyIrb->u.AsyncWrite.DestinationAddress.IA_Destination_Offset.Off_Low = pSendFIFOVc->FifoAddress.Off_Low;
pMyIrb->u.AsyncWrite.ulGeneration = *pSendFIFOVc->Hdr.pGeneration;
pMyIrb->u.AsyncWrite.nBlockSize = 0;
pMyIrb->u.AsyncWrite.fulFlags = ASYNC_FLAGS_NONINCREMENTING;
//temporary additions from the 1394diag
pMyIrb->u.AsyncWrite.DestinationAddress.IA_Destination_ID.NA_Bus_Number = 0x3ff;
TRACE(TL_V, TM_Send, ("DestinationAddress.IA_Destination_ID.NA_Bus_Number = 0x%x\n", pMyIrb->u.AsyncWrite.DestinationAddress.IA_Destination_ID.NA_Bus_Number) );
TRACE(TL_V, TM_Send, ("DestinationAddress.IA_Destination_ID.NA_Node_Number = 0x%x\n", pMyIrb->u.AsyncWrite.DestinationAddress.IA_Destination_ID.NA_Node_Number) );
TRACE(TL_V, TM_Send, ("DestinationAddress.IA_Destination_Offset.Off_High = 0x%x at 0x%x\n", pMyIrb->u.AsyncWrite.DestinationAddress.IA_Destination_Offset.Off_High, &pMyIrb->u.AsyncWrite.DestinationAddress.IA_Destination_Offset.Off_High) );
TRACE(TL_V, TM_Send, ("DestinationAddress.IA_Destination_Offset.Off_Low = 0x%x at 0x%x\n", pMyIrb->u.AsyncWrite.DestinationAddress.IA_Destination_Offset.Off_Low,&pMyIrb->u.AsyncWrite.DestinationAddress.IA_Destination_Offset.Off_Low) );
TRACE(TL_V, TM_Send, ("nNumberOfBytesToWrite = 0x%x\n", pMyIrb->u.AsyncWrite.nNumberOfBytesToWrite));
TRACE(TL_V, TM_Send, ("nBlockSize = 0x%x\n", pMyIrb->u.AsyncWrite.nBlockSize));
TRACE(TL_V, TM_Send, ("fulFlags = 0x%x\n", pMyIrb->u.AsyncWrite.fulFlags));
TRACE(TL_V, TM_Send, ("Mdl = 0x%x\n", pMyIrb->u.AsyncWrite.Mdl ));
TRACE(TL_V, TM_Send, ("ulGeneration = 0x%x at 0x%x \n", pMyIrb->u.AsyncWrite.ulGeneration, &pMyIrb->u.AsyncWrite.ulGeneration));
TRACE(TL_V, TM_Send, ("chPriority = 0x%x\n", pMyIrb->u.AsyncWrite.chPriority));
TRACE(TL_V, TM_Send, ("nSpeed = 0x%x\n", pMyIrb->u.AsyncWrite.nSpeed));
}
NDIS_STATUS
DummySendPacketsHandler(
IN PVCCB pVc,
IN PNDIS_PACKET pPacket
)
//
// To be used on a non-send VC
//
{
return NDIS_STATUS_FAILURE;
}
VOID
nicSendFailureInvalidGeneration(
PVCCB pVc
)
// Function Description:
//
// An AsyncStream or AnsyncWrite Irp may be completed
// with a status of InvalidGeneration. This function will try and
// get a new generation, so that future sends will not be blocked
//
// Arguments
//
//
//
// Return Value:
//
//
//
//
{
NDIS_STATUS NdisStatus = NDIS_STATUS_FAILURE;
PADAPTERCB pAdapter = pVc->Hdr.pAF->pAdapter;
TRACE( TL_T, TM_Send, ( "==>nicSendFailureInvalidGeneration ") );
ASSERT (pVc != NULL);
do
{
PNDIS_WORK_ITEM pGetGenerationWorkItem = NULL;
BOOLEAN fWorkItemAlreadyLaunched = FALSE;
BOOLEAN fQueueWorkItem = FALSE;
TRACE( TL_A, TM_Send, ( "Cause: Invalid generation on the asyncwrite packet" ) );
VC_ACQUIRE_LOCK (pVc);
if (VC_ACTIVE(pVc) == TRUE)
{
fQueueWorkItem = TRUE;
}
fWorkItemAlreadyLaunched = (VC_TEST_FLAGS (pVc, VCBF_GenerationWorkItem));
if (fWorkItemAlreadyLaunched)
{
//
// If the Work Item has already been launched, then do not launch another instance
//
fQueueWorkItem = FALSE;
}
if ( fQueueWorkItem )
{
nicReferenceCall (pVc, "nicSendFailureInvalidGeneration");
}
VC_RELEASE_LOCK (pVc);
if (fQueueWorkItem == FALSE)
{
// this thread simply exits
break;
}
//
// We need to update the generation count
//
pGetGenerationWorkItem = ALLOC_NONPAGED (sizeof(NDIS_WORK_ITEM), MTAG_WORKITEM);
if (pGetGenerationWorkItem == NULL)
{
TRACE( TL_A, TM_Cm, ( "Local Alloc failed for WorkItem - GetGeneration FAILED" ) );
break;
}
VC_ACQUIRE_LOCK (pVc);
VC_SET_FLAG(pVc, VCBF_GenerationWorkItem );
VC_RELEASE_LOCK (pVc);
NdisInitializeWorkItem ( pGetGenerationWorkItem ,
(NDIS_PROC)nicGetGenerationWorkItem,
(PVOID)pVc );
NdisInterlockedIncrement(&pAdapter->OutstandingWorkItems);
NdisScheduleWorkItem (pGetGenerationWorkItem );
NdisStatus = NDIS_STATUS_SUCCESS;
} while (FALSE);
TRACE( TL_T, TM_Send, ( "<==nicSendFailureInvalidGeneration %x", NdisStatus) );
}
NDIS_STATUS
nicInsertGaspHeader (
IN PADAPTERCB pAdapter,
IN PNDIS_PACKET pNdisPacket
)
// Function Description:
// For an async stream a GASP header needs to inserted at the head of the packet
// This will then be used in the send.
// The GASP Header will be removed before returning the Packet to the protocol
// Arguments
// pAdapter- Local Host
// pNdisPacket - Packet To be transmitted
//
// Return Value:
// Status - success, if all allocations and insertions succeed
//
{
NDIS_STATUS NdisStatus = NDIS_STATUS_FAILURE;
PNDIS_BUFFER pGaspNdisBuffer = NULL;
PGASP_HEADER pGaspHeader=NULL;
USHORT SourceID;
TRACE( TL_T, TM_Send, ( "==>nicInsertGaspHeader pAdapter %x, pNdisPacket%x", pAdapter, pNdisPacket) );
do
{
//
// Get Mdl and Memory for the GASP Header. Eventually we will have lookaside list of MDLS and Buffers
//
NdisStatus = nicGetGaspHeader ( &pGaspNdisBuffer);
if (NdisStatus != NDIS_STATUS_SUCCESS || pGaspNdisBuffer== NULL)
{
BREAK( TL_A, ( "nicInsertGaspHeader : nicGetGaspHeader FAILED") );
}
pGaspHeader = nicNdisBufferVirtualAddress(pGaspNdisBuffer);
ASSERT (pGaspHeader != NULL);
TRACE( TL_V, TM_Send, ( "pGaspNdisBuffer %x, GaspHeader %x", pGaspNdisBuffer, pGaspHeader) );
TRACE( TL_V, TM_Send, ( "pAdapter->NodeAddress %x", pAdapter->NodeAddress) );
SourceID = *((PUSHORT)&pAdapter->NodeAddress);
TRACE( TL_V, TM_Send, ( "SourceId %x at %x", SourceID, &SourceID) );
pGaspHeader->FirstQuadlet.Bitmap.GH_Source_ID = SourceID ;
pGaspHeader->FirstQuadlet.Bitmap.GH_Specifier_ID_Hi = GASP_SPECIFIER_ID_HI;
pGaspHeader->SecondQuadlet.Bitmap.GH_Specifier_ID_Lo = GASP_SPECIFIER_ID_LO;
pGaspHeader->SecondQuadlet.Bitmap.GH_Version = 0;
NdisChainBufferAtFront (pNdisPacket, pGaspNdisBuffer);
pGaspHeader->FirstQuadlet.GaspHeaderHigh = SWAPBYTES_ULONG (pGaspHeader->FirstQuadlet.GaspHeaderHigh );
pGaspHeader->SecondQuadlet.GaspHeaderLow = SWAPBYTES_ULONG (pGaspHeader->SecondQuadlet.GaspHeaderLow );
TRACE( TL_V, TM_Send, ( "Gasp Header High %x", pGaspHeader->FirstQuadlet.GaspHeaderHigh) );
TRACE( TL_V, TM_Send, ( "Gasp Header Low %x", pGaspHeader->SecondQuadlet.GaspHeaderLow ) );
NdisStatus = NDIS_STATUS_SUCCESS;
} while (FALSE);
TRACE( TL_T, TM_Send, ( "<==nicInsertGaspHeader pNdisBuffer %x, NdisStatus %x ", pGaspNdisBuffer, NdisStatus) );
return NdisStatus;
}
NDIS_STATUS
nicGetGaspHeader (
IN OUT PNDIS_BUFFER *ppNdisBuffer
)
// Function Description:
//
// Gets memory and an initialized NdisBuffer that can be used for
// the gasp header
// Arguments
// ppNdisBuffer - returned NdisBuffer
// Return Value:
// Status - success, if all allocations succeed
//
{
PVOID pBuffer= NULL;
NDIS_STATUS NdisStatus = NDIS_STATUS_FAILURE;
TRACE( TL_T, TM_Send, ( "==>nicGetGaspHeader ppNdisBuffer %x", ppNdisBuffer) );
*ppNdisBuffer = NULL;
do
{
pBuffer = ALLOC_NONPAGED(sizeof(GASP_HEADER), MTAG_DEFAULT);
if (pBuffer == NULL)
{
NdisStatus = NDIS_STATUS_FAILURE;
nicIncrementMallocFailure();
BREAK ( TM_Send, ( "nicGetGaspHeader : MEM Alloc FAILED ") );
}
NdisStatus = nicGetNdisBuffer(sizeof(GASP_HEADER), pBuffer, ppNdisBuffer);
if (NdisStatus != NDIS_STATUS_SUCCESS)
{
BREAK( TM_Send, ( "nicGetGaspHeader : nicGetNdisBuffer FAILED") );
}
NdisStatus = NDIS_STATUS_SUCCESS;
} while (FALSE);
TRACE( TL_T, TM_Send, ( "==>nicGetGaspHeader pNdisBuffer %x , Status %x", *ppNdisBuffer, NdisStatus) );
return NdisStatus;
}
VOID
nicFreeGaspHeader (
IN PNDIS_BUFFER pGaspNdisBuffer
)
// Function Description:
//
// Frees memory occupied by the Gasp Header. frees the Ndis Buffer pointing to the Gasp Header
//
// Arguments
// pGapsNdisBuffer - returned NdisBuffer
//
// Return Value:
// None
{
TRACE( TL_T, TM_Send, ( "==>nicFreeGaspHeader pGaspNdisBuffer %x ", pGaspNdisBuffer) );
ASSERT (pGaspNdisBuffer != NULL);
//
// Free the locally allocated memory that the ndis buffer points to
//
FREE_NONPAGED (nicNdisBufferVirtualAddress (pGaspNdisBuffer) );
//
// Free the ndis buffer itself
//
NdisFreeBuffer (pGaspNdisBuffer);
TRACE( TL_T, TM_Send, ( "<==nicFreeGaspHeader pGaspNdisBuffer %x ", pGaspNdisBuffer) );
}
VOID
nicMakeGaspHeader (
IN PADAPTERCB pAdapter,
IN PGASP_HEADER pGaspHeader
)
// Function Description:
// This function will take the adapter structure and construct a Gasp Header out of it.
// This will be used to make the AsyncStream packets.
//
//
//
// Arguments
// pAdapter - Local Host in question
// pGaspHeader - Location where the Gasp Header is to be stored
//
// Return Value:
// None
//
{
USHORT SourceID;
NODE_ADDRESS LocalNodeAddress;
NDIS_STATUS NdisStatus;
TRACE( TL_T, TM_Send, ( "==>nicMakeGaspHeader padapter %x, pGaspNdisBuffer %x ", pAdapter, pGaspHeader) );
ASSERT (pGaspHeader != NULL);
TRACE( TL_V, TM_Send, ( "pAdapter->NodeAddress %x", pAdapter->NodeAddress) );
SourceID = *((PUSHORT)&pAdapter->NodeAddress);
if(SourceID ==0)
{
NdisStatus = nicGet1394AddressFromDeviceObject (pAdapter->pNdisDeviceObject,
&LocalNodeAddress,
USE_LOCAL_NODE);
if ( NdisStatus == NDIS_STATUS_SUCCESS)
{
SourceID = *((PUSHORT)&LocalNodeAddress);
ADAPTER_ACQUIRE_LOCK (pAdapter);
pAdapter->NodeAddress = LocalNodeAddress;
ADAPTER_RELEASE_LOCK (pAdapter);
}
//
// Do not handle failure. As the BCM or a Reset will fix this problem
//
}
TRACE( TL_V, TM_Send, ( "SourceId %x at %x", SourceID, &SourceID) );
pGaspHeader->FirstQuadlet.Bitmap.GH_Source_ID = SourceID ;
pGaspHeader->FirstQuadlet.Bitmap.GH_Specifier_ID_Hi = GASP_SPECIFIER_ID_HI;
pGaspHeader->SecondQuadlet.Bitmap.GH_Specifier_ID_Lo = GASP_SPECIFIER_ID_LO;
pGaspHeader->SecondQuadlet.Bitmap.GH_Version = 1;
pGaspHeader->FirstQuadlet.GaspHeaderHigh = SWAPBYTES_ULONG (pGaspHeader->FirstQuadlet.GaspHeaderHigh );
pGaspHeader->SecondQuadlet.GaspHeaderLow = SWAPBYTES_ULONG (pGaspHeader->SecondQuadlet.GaspHeaderLow );
TRACE( TL_V, TM_Send, ( "Gasp Header High %x", pGaspHeader->FirstQuadlet.GaspHeaderHigh) );
TRACE( TL_V, TM_Send, ( "Gasp Header Low %x", pGaspHeader->SecondQuadlet.GaspHeaderLow ) );
TRACE( TL_T, TM_Send, ( "<==nicFreeGaspHeader %x, %x ", pGaspHeader->FirstQuadlet.GaspHeaderHigh, pGaspHeader->SecondQuadlet.GaspHeaderLow ) );
}
NTSTATUS
AsyncWriteStreamSendComplete(
IN PDEVICE_OBJECT DeviceObject,
IN PIRP pMyIrp,
IN PVOID Context
)
//
// N.B. this completes both Fifo and channels
//
//
// This function is Completion handler for the Irp used to send data.
// This function will invoke NDisCoSendComplete Handler
// Needs to use the VC Handle stored in the MiniportReserved[0]
// of the packet.
// We free all the data structures allocated on the way down,
// by SendPacketsHandler (the Irb. Irp and Local memory used and Mdl)
//
// The LookasideHeader->OutstandingFragments should normally be one for
// the defualt ( non-fragmented) case. However, if a failure in SendPackets
// occurs, Outstanding fragments will be zero or the context will be null,
// in that case we will only free the lookaside buffer (if it exists) and exit,
// it will be the responsibility of the SendPacketsHandler
// to fail the packet.
//
{
NDIS_STATUS NdisStatus = NDIS_STATUS_SUCCESS;
NTSTATUS IrpStatus = STATUS_UNSUCCESSFUL;
PVOID pLookasideListBuffer = Context;
PLOOKASIDE_BUFFER_HEADER pLookasideHeader = (PLOOKASIDE_BUFFER_HEADER)pLookasideListBuffer ;
PNDIS_PACKET pPacket = NULL;
PVCCB pVc = NULL;
PREMOTE_NODE pRemoteNode = NULL;
NDIS_HANDLE NdisVcHandle = NULL;
ULONG OutstandingFragments = 0;
BUS_OPERATION AsyncOp;
PNIC_NPAGED_LOOKASIDE_LIST pLookasideList = NULL;
STORE_CURRENT_IRQL;
TRACE( TL_T, TM_Send, ( "==>AsyncWriteStreamSendComplete, pMyIrp %x, Context %x",
pMyIrp, Context ) );
do
{
if (pLookasideHeader == NULL)
{
TRACE( TL_V, TM_Send, ( " AsyncSendComplete - pLookasideHeader == NULL") );
break;
}
//
// This means that a lookaside buffer was allocated and
// perhaps MDLS were allocated
// if this is the last fragment, Free all the MDLs first
//
//
// Get all the valuable information out of the header.
//
pPacket = pLookasideHeader->pNdisPacket;
pVc = pLookasideHeader->pVc;
pRemoteNode = pVc->Hdr.pRemoteNode;
pLookasideList = pLookasideHeader->pLookasideList;
AsyncOp = pLookasideHeader->AsyncOp;
ASSERT (AsyncOp != InvalidOperation);
TRACE( TL_V, TM_Send, ( " Vc %x,, pLookaside Buffer %x, pPacket, %x",
pVc, pLookasideHeader ,pPacket ) );
ASSERT (pLookasideList != NULL);
//
// This will tell us if this thread has received the last fragment
// OustandingPackets == 0 gets to free the MDLS, and complete the packet
//
OutstandingFragments = NdisInterlockedDecrement (&pLookasideHeader->OutstandingFragments );
if (OutstandingFragments == 0)
{
//
// If there are no more fragments, then we need to
// free all the allocated structures ( the MDLS) on this buffer
//
ULONG MdlsToFree = pLookasideHeader->FragmentsGenerated;
PIRB pIrb = &((PUNFRAGMENTED_BUFFER)pLookasideHeader)->Irb;
//
// The maximum number of MDLS we can have is equal to
// the maximum number of Fragments that were generated
//
while (MdlsToFree != 0)
{
PMDL pMdl = NULL;
GET_MDL_FROM_IRB (pMdl, pIrb, AsyncOp);
TRACE( TL_V, TM_Send, ( " Freeing Mdl %x of Irb %x ",
pMdl, pIrb) );
if (pMdl != NULL)
{
nicFreeMdl (pMdl);
if (pVc->Hdr.VcType == NIC1394_SendFIFO)
{
nicDecFifoSendMdl();
}
else
{
nicDecChannelSendMdl();
}
}
//
// Set up for the next iteration
//
MdlsToFree --;
pIrb = (PVOID)((ULONG_PTR)pIrb + sizeof (IRB));
} //while (MdlsToFree != 0)
} //if (OutstandingFragments == 0)
//
// Map the NT_STATUS belonging to the Irp to an NdisStatus and call NdisMCoSendComplete
// Print Debug Output to help in testing. Need to Add more status cases
//
if (pMyIrp == NULL)
{
TRACE( TL_V, TM_Send, ( " AsyncSendComplete - pIrp is NULL") );
IrpStatus = STATUS_UNSUCCESSFUL;
}
else
{
//
// We have a valid IRP, lets see if we failed the IRP and why
//
IrpStatus = pMyIrp->IoStatus.Status;
nicIncrementBusSendCompletes(pVc);
}
if (IrpStatus != STATUS_SUCCESS)
{
TRACE( TL_A, TM_Send, ( "==>IRP FAILED StatusCode = %x",IrpStatus ) );
nicIncrementBusFailure();
nicIncrementVcBusSendFailures(pVc, pPacket);
//
// The generation of the bus has changed. Lets get a new one.
//
if (IrpStatus == STATUS_INVALID_GENERATION)
{
nicSendFailureInvalidGeneration((PVCCB)pVc);
}
NdisStatus = NtStatusToNdisStatus(IrpStatus);
NdisInterlockedIncrement (&pVc->Hdr.pAF->pAdapter->AdaptStats.ulXmitError);
}
else
{
NdisInterlockedIncrement(&pVc->Hdr.pAF->pAdapter->AdaptStats.ulXmitOk);
nicIncrementVcBusSendSucess(pVc, pPacket);
}
//
// Free the Irp and don't touch it after this
//
if (pMyIrp != NULL)
{
nicFreeIrp (pMyIrp);
pMyIrp = NULL;
}
//
// At this point, we know that the IRP went down to the bus driver
// We know if this is the last fragment. So lets figure out if we need
// to Complete the packet
//
if (OutstandingFragments != 0)
{
//
// We need to wait for other fragments to complete
//
TRACE( TL_V, TM_Send, ( " AsyncSendComplete = NOT the last fragment") );
break;
}
//
// This means that this thread has marked the lookaside header as 'to be freed'
// and it is this thread's responsibility to free it.
//
NdisVcHandle = pVc->Hdr.NdisVcHandle;
TRACE( TL_V, TM_Send, ( "Calling NdisCoSendComplete, status %x, VcHandle %x, pPacket %x",
NdisStatus,NdisVcHandle, pPacket ) );
nicMpCoSendComplete (NdisStatus,
pVc,
pPacket);
nicFreeToNPagedLookasideList (pLookasideList, pLookasideListBuffer);
nicDereferenceCall (pVc, "AsyncWriteStreamSendComplete");
//
// Remove the reference on the PDO that the IRP was sent to
//
if (AsyncOp == AsyncWrite)
{
//
// Async Write references the remote node
//
ASSERT (pRemoteNode != NULL);
nicDereferenceRemoteNode (pRemoteNode, "AsyncWriteStreamSendComplete");
}
} while (FALSE);
TRACE( TL_T, TM_Send, ( "<== AsyncWriteStreamSendComplete, NdisStatus %x,IrpStatus %x ",
NdisStatus, IrpStatus ) );
//
// ALWAYS RETURN STATUS_MORE_PROCESSING_REQUIRED
//
MATCH_IRQL;
return STATUS_MORE_PROCESSING_REQUIRED;
}
NDIS_STATUS
AsyncWriteSendPacketsHandler(
IN PVCCB pVc,
IN PNDIS_PACKET pPacket
)
//
// This is the VC handler when packet is sent using the
// AsyncWrite 1394 Bus Api
// This function, copies the contents of the packet to locally
// owned memory, sets up the Irb and the Irp and calls
// nicSubmitIrp which is the generic cal to do a IoCallDriver
//
// The return value is success, if the I/o was successfully pended
{
PSENDFIFO_VCCB pSendFIFOVc = (SENDFIFO_VCCB*)pVc;
PMDL pMyMdl = NULL;
PIRB pMyIrb = NULL;
PIRP pMyIrp = NULL;
BOOLEAN fVcActive = TRUE;
PREMOTE_NODE pRemoteNode = NULL;
NDIS_STATUS NdisStatus = NDIS_STATUS_FAILURE;
NTSTATUS NtStatus = STATUS_UNSUCCESSFUL;
ULONG PacketLength = 0;
PVOID pLookasideListBuffer = NULL;
PADAPTERCB pAdapter = NULL;
USHORT FragmentLength = 0;
PNDIS_BUFFER pStartNdisBuffer = NULL;
PVOID pStartPacketData = NULL;
PLOOKASIDE_BUFFER_HEADER pLookasideHeader = NULL;
PNIC_NPAGED_LOOKASIDE_LIST pLookasideList = NULL;
ENUM_LOOKASIDE_LIST WhichLookasideList = NoLookasideList;
FRAGMENTATION_STRUCTURE Fragment;
ULONG NumFragmentsNeeded ;
STORE_CURRENT_IRQL;
NdisZeroMemory (&Fragment, sizeof (FRAGMENTATION_STRUCTURE));
TRACE( TL_T, TM_Send, ( "==>AsyncWriteSendPacketHandler, Vc %x,Packet %x, FragmentationStruct %x",
pSendFIFOVc, pPacket , &Fragment ) );
pRemoteNode = pSendFIFOVc->Hdr.pRemoteNode;
ASSERT (pRemoteNode != NULL);
do
{
VC_ACQUIRE_LOCK (pSendFIFOVc);
//
// Make sure that the Vc is Activated and that no close calls
// are pending or that we have already completed a close call
//
if ( VC_ACTIVE (pSendFIFOVc) == FALSE || REMOTE_NODE_ACTIVE(pRemoteNode) == FALSE)
{
fVcActive = FALSE;
}
if (VC_TEST_FLAG( pSendFIFOVc, VCBF_GenerationWorkItem) == TRUE)
{
TRACE( TL_N, TM_Send, ( "AsyncWriteSendPacketHandler, Getting a new Gen, Fail send ") );
fVcActive = FALSE;
}
//
// This reference will either be dereferenced below in a call to FreeSendPacketDataStructure
// below or a call to FreeSendPacketDataStructure made from the Irp's completion routine
//
if (fVcActive == TRUE)
{
nicReferenceCall (pVc, "AsyncWriteSendPacketsHandler");
nicReferenceRemoteNode (pRemoteNode, "AsyncWriteSendPacketsHandler");
}
VC_RELEASE_LOCK (pSendFIFOVc);
if (fVcActive == FALSE)
{
TRACE( TL_N, TM_Send, ( "AsyncWriteSendPacketHandler, VC Not Active, Vc %x Flag %x", pSendFIFOVc,pSendFIFOVc->Hdr.ulFlags ) );
NdisStatus = NDIS_STATUS_FAILURE;
break;
}
pAdapter = pSendFIFOVc->Hdr.pAF->pAdapter;
//
// Copy NdisBuffer in Packet to Local Memory and get an Mdl that points
// to this memory
//
NdisQueryPacket( pPacket,
NULL,
NULL,
NULL,
&PacketLength);
ASSERT (pPacket->Private.Head != NULL);
//
// Temporary debug spew
//
PrintNdisPacket (TM_Send, pPacket);
//
// Initialize the start variables
//
pStartNdisBuffer = pPacket->Private.Head;
pStartPacketData = nicNdisBufferVirtualAddress (pStartNdisBuffer);
if (pStartPacketData == NULL)
{
NdisStatus = NDIS_STATUS_RESOURCES;
TRACE( TL_N, TM_Send, ( "AsyncWriteSendPacketHandler, pStartPacketData ") );
break;
}
TRACE( TL_V, TM_Send, ( "PacketLength %x", PacketLength) );
//
// Make a decision on which lookaside list to use. If the tx is unfragmented
// then copy over the ndis packet as well
//
//
// first choose the lookaside list. the actual lookaside list is chosen so that the
// each can accomodate the maximum number of fragments at its payload
//
//
if (PacketLength < PAYLOAD_100)
{
pLookasideList = &pAdapter->SendLookasideList100;
WhichLookasideList = SendLookasideList100;
TRACE( TL_V, TM_Send, ( " PAYLOAD_100 Lookaside List %x",
&pAdapter->SendLookasideList100) );
}
else
if (PacketLength < PAYLOAD_2K)
{
pLookasideList = &pAdapter->SendLookasideList2K;
WhichLookasideList = SendLookasideList2K;
TRACE( TL_V, TM_Send, ( " PAYLOAD_2K Lookaside List %x",
&pAdapter->SendLookasideList2K) );
}
else
if (PacketLength < PAYLOAD_8K)
{
pLookasideList = &pAdapter->SendLookasideList8K;
WhichLookasideList = SendLookasideList8K;
TRACE( TL_V, TM_Send, ( " PAYLOAD_8K Lookaside List %x",
&pAdapter->SendLookasideList8K) );
}
else
{
//
// Large Sends not supported
// TODO : Add code for local allocation
//
ASSERT (!"SendPacket Too Large - Not supported Yet" );
break;
}
//
// are we going to fragment
//
ASSERT (pLookasideList != NULL)
//
// We are not going to fragment. Optimize this path
//
pLookasideListBuffer = nicGetLookasideBuffer (pLookasideList);
if (pLookasideListBuffer == NULL )
{
NdisStatus = NDIS_STATUS_FAILURE;
BREAK (TM_Send, ("nicGetLookasideBuffer FAILED") );
}
//
// Initialize the header with relevant information that the send complete
// will need
//
pLookasideHeader = (PLOOKASIDE_BUFFER_HEADER)pLookasideListBuffer;
pLookasideHeader->IsFragmented = FALSE; // Default
pLookasideHeader->FragmentsGenerated = 0;
pLookasideHeader->pLookasideList = pLookasideList;
pLookasideHeader->pNdisPacket = pPacket;
pLookasideHeader->pVc =(PVCCB)pVc;
pLookasideHeader->AsyncOp = AsyncWrite;
//
// Initialize the Fragment structure
//
//
// Do we fragment or not. Base it on the MaxPayload possible
//
TRACE( TL_V, TM_Send, ( " PacketLength %x, pSendFIFOVc->MaxPayload%x ",
PacketLength ,pSendFIFOVc->Hdr.MaxPayload) );
if (PacketLength <= pSendFIFOVc->Hdr.MaxPayload)
{
//
// No need to fragment here. We will use the UNFRAGMENTED Layout
//
// First Get a local buffer from our lookaside list
//
PUNFRAGMENTED_BUFFER pUnfragmentedBuffer = (PUNFRAGMENTED_BUFFER )pLookasideHeader;
NumFragmentsNeeded = 1;
NdisStatus = nicCopyNdisBufferChainToBuffer (pStartNdisBuffer,
(PVOID)&pUnfragmentedBuffer ->Data[0],
pLookasideList->MaxSendSize );
if (NdisStatus != NDIS_STATUS_SUCCESS)
{
pLookasideHeader->OutstandingFragments = 1; // this is our refcount
BREAK ( TM_Send, ( " AsyncStreamSendPacketHandler, nicCopyNdisPacketToUnfragmentedBuffer Failed ") );
}
ASSERT (pLookasideListBuffer != NULL);
//
// Initialize all the variable needed by the Next section of the code.
// This deals with setting up the Mdl and the IRB
//
pStartNdisBuffer = NULL;
Fragment.pStartFragment = (PVOID) &pUnfragmentedBuffer ->Data[0];
Fragment.FragmentLength = PacketLength;
Fragment.pCurrNdisBuffer = NULL;
pLookasideHeader->FragmentsGenerated = 1;
pLookasideHeader->IsFragmented = FALSE;
pLookasideHeader->OutstandingFragments = 1; // this is our refcount
}
else
{
//
// We need to fragment
//
ULONG Dgl = NdisInterlockedIncrement(&pAdapter->dgl);
//
// Fragments will be needed . Make sure the calculation for numFragments catches the boundary conditions
//
NumFragmentsNeeded = nicNumFragmentsNeeded (PacketLength,
pSendFIFOVc->Hdr.MaxPayload,
sizeof (NDIS1394_FRAGMENT_HEADER) );
//
// Initialize the fragment structure. The unfragmented code path
// does not care about these fields
//
//
// This structure is local to this function and this thread.
//
Fragment.TxHeaderSize = sizeof (NDIS1394_FRAGMENT_HEADER);
Fragment.pLookasideListBuffer = pLookasideListBuffer;
Fragment.AsyncOp = AsyncWrite;
Fragment.pAdapter = pRemoteNode->pAdapter;
Fragment.pLookasideList = pLookasideList;
Fragment.IPDatagramLength = (USHORT)PacketLength - sizeof (NDIS1394_UNFRAGMENTED_HEADER);
//
// Get Start of first Dest fragment
//
Fragment.MaxFragmentLength = pSendFIFOVc->Hdr.MaxPayload;
Fragment.NumFragmentsNeeded = NumFragmentsNeeded;
//
// Set up the Fragment Headers that will be used in fragmentation
//
NdisStatus = nicFirstFragmentInitialization (pPacket->Private.Head,
Dgl,
&Fragment);
if (pLookasideListBuffer == NULL || NdisStatus != NDIS_STATUS_SUCCESS)
{
BREAK (TM_Send, (" AsyncWriteSendPacketsHandler: nicFirstFragmentInitialization : FAILED" )) ;
}
ASSERT (pLookasideListBuffer != NULL);
pLookasideHeader->IsFragmented = TRUE;
pLookasideHeader->OutstandingFragments = NumFragmentsNeeded ; // this is our refcount
}
TRACE( TL_V, TM_Send, ( "NumFragments %x, pSendFIFOVc->MaxSendSize %x, Packet Size %x",
NumFragmentsNeeded,pSendFIFOVc->Hdr.MaxPayload, PacketLength) );
//
// Now begin the loop which will send n fragments
//
do
{
//
// Do we need to fragment. If so , extract one fragment out of the NdisPacket
//
if (pLookasideHeader->IsFragmented == TRUE )
{
//
// We copy one fragment over and this will allocate the lookaside list
//
NdisStatus = nicCopyOneFragment (&Fragment);
if (NDIS_STATUS_SUCCESS != NdisStatus)
{
BREAK ( TM_Send, ( " AsyncWriteSendPacketHandler, nicCopyOneFragment Failed ") );
}
//
// Get the pointer to the Irb here . Amd set it up for the next time
//
pMyIrb = Fragment.pCurrentIrb;
Fragment.pCurrentIrb = (PIRB)((ULONG_PTR)Fragment.pCurrentIrb + sizeof (IRB) );
TRACE( TL_V, TM_Send, ( " pMyIrb %x, Next Irb %x ", pMyIrb , Fragment.pCurrentIrb ) );
}
else
{
//
// No Curr NdisBuffer as this packet was never fragmented.
//
ASSERT (pLookasideHeader->IsFragmented == FALSE);
pMyIrb = &((PUNFRAGMENTED_BUFFER )pLookasideHeader)->Irb;
}
//
// At this point we have one fragment that needs to be transmitted.
// Data structures have been updated to set up the MDL and the IRB
//
ASSERT (Fragment.pStartFragment != NULL);
NdisStatus = nicGetMdl (Fragment.FragmentLength ,
Fragment.pStartFragment,
&pMyMdl);
if (NdisStatus != NDIS_STATUS_SUCCESS)
{
pMyMdl = NULL;
BREAK ( TM_Send, ( " AsyncWriteSendPacketHandler, nicCopyNdisBufferChainToBuffer Failed ") );
}
nicIncFifoSendMdl();
//
// Fill in the Irb with the correct values from the VC
// Stuff we need to add to the send VC - BlockSize,Generation
//
nicInitAsyncWriteIrb(pSendFIFOVc, pMyMdl, pMyIrb);
//
// Get a free Irp
//
NdisStatus = nicGetIrp (pRemoteNode->pPdo, &pMyIrp);
if (NdisStatus != NDIS_STATUS_SUCCESS)
{
pMyIrp = NULL;
break;
}
//
// At this point, we have a guarantee that the Completion routine will be called
//
ASSERT (NdisStatus == NDIS_STATUS_SUCCESS);
//
// Dump the Fragment
//
nicDumpMdl (pMyMdl , 0, "AsyncWrite Fragment");
NIC1394_LOG_PKT(
pAdapter,
NIC1394_LOGFLAGS_SEND_FIFO,
pAdapter->BCRData.LocalNodeNumber, // SourceID
pRemoteNode->RemoteAddress.NA_Node_Number, // DestID
Fragment.pStartFragment,
Fragment.FragmentLength
);
//
// This function implements the common functionality to be implemented by
// all other send/recv cals to IoCallDriver
//
//
// We IGNORE the NtStatus as the completion handler will be called
//
nicIncrementBusSends(pVc);
NtStatus = nicSubmitIrp(pRemoteNode->pPdo,
pMyIrp,
pMyIrb,
AsyncWriteStreamSendComplete,
(PVOID)pLookasideListBuffer);
TRACE( TL_V, TM_Send, ( " pCurrNdisBuffer %x, NdisStatus %x ", Fragment.pCurrNdisBuffer , NdisStatus ) );
} while (Fragment.pCurrNdisBuffer != NULL && NdisStatus == NDIS_STATUS_SUCCESS);
} while (FALSE);
//
// DO NOT touch the packet if status == NDIS_STATUS_SUCCESS.
//
//
// CleanUp if any of the allocations failed. We do not have a pointer
// to the LocalBuffer (it is embedded in the Mdl) so it remains NULL
//
// NdisStatus != Success means that we never got to nicSubmitIrp
//
if (NdisStatus != NDIS_STATUS_SUCCESS)
{
ASSERT (pMyIrp == NULL);
//
// fVc Active makes sure that we actually got around to allocating
// and referencing structures
//
if (fVcActive == TRUE)
{
if (pLookasideListBuffer != NULL)
{
//
// Complete this fragment, as we never submit'd the IRP to
// the 1394 bus driver
//
AsyncWriteStreamSendComplete(NULL, // PDO
NULL,
pLookasideListBuffer);
NdisStatus =NDIS_STATUS_SUCCESS;
}
else
{
//
// This thread needs to decrement the refcounts as
// AsyncWriteStreamSendComplete was not called
//
nicDereferenceCall ((PVCCB) pSendFIFOVc, "AsyncWriteSendPacketsHandler");
nicDereferenceRemoteNode (pRemoteNode, "AsyncWriteSendPacketsHandler");
}
}
}
TRACE( TL_T, TM_Send, ( "<==AsyncWriteSendPacketHandler, NdisStatus %x", NdisStatus ) );
MATCH_IRQL;
return NdisStatus;
}
//
// Split the lookaside header to a local variable + context
//
NDIS_STATUS
nicCopyOneFragment (
PFRAGMENTATION_STRUCTURE pFragment
)
// Function Description:
// This creates one fragment filled with valid data and returns it
//
//
// Arguments
// ppCurrNdisBuffer - CurrNdisBuffer from which the data is to be copied
// ppLookasideListBuffer - if this is NULL, it implies that this is the first fragment
// and a lookaside buffer will be allocated
//
// ppSourceAddress - is the current pointer to the start of the data that needs to be copied
// Should always lie within the NdisBuffer or be NULL
// Return Value:
// ppCurrNdisBuffer - If the CurrNdisBuffer does not contain enough data for the
// fragment, then CurrNdisBuffer will be incremented and the new
// CurrNdisBuffer will be returned here
//
//
{
NDIS_STATUS NdisStatus = NDIS_STATUS_FAILURE;
PNDIS_BUFFER pCurrNdisBuffer = pFragment->pCurrNdisBuffer;
PVOID pSourceAddressInNdisBuffer = pFragment->pSourceAddressInNdisBuffer;
ULONG FragmentLengthRemaining = pFragment->MaxFragmentLength;
USHORT FragmentLength=0;
PVOID pSource = NULL;
PVOID pDestination = NULL;
PVOID pStartFragmentData = NULL;
ULONG NdisBufferLengthRemaining = pFragment->NdisBufferLengthRemaining;
ULONG LengthToCopy = 0;
ULONG FragmentCopyStatus=0;
PLOOKASIDE_BUFFER_HEADER pLookasideHeader = NULL;
enum
{
FRAGMENT_COPY_Invalid,
FRAGMENT_COPY_NdisBufferCompleted,
FRAGMENT_COPY_NdisBufferAndFragmentCompleted,
FRAGMENT_COPY_FragmentCompleted
};
TRACE( TL_T, TM_Send, ( "==>nicCopyOneFragment pFragment %x", pFragment ) );
ASSERT (pCurrNdisBuffer != NULL);
do
{
//
// lets get the destination. We need to account for
// ther fragment size and add it to the previous start address
//
{
ULONG CurrFragOffset;
CurrFragOffset = pFragment->MaxFragmentLength * (pFragment->CurrFragmentNum++);
pStartFragmentData = (PVOID) ((ULONG_PTR) pFragment->pStartOfFirstFragment + CurrFragOffset );
}
pFragment->pStartFragment = pStartFragmentData;
TRACE( TL_V, TM_Send, ( " pStartFragmentData %x", pStartFragmentData) );
pLookasideHeader = (PLOOKASIDE_BUFFER_HEADER)pFragment->pLookasideListBuffer;
//
// Do the bookkeeping , Increase refcount and num of fragments used. Refcount decremented in FreeSendDataStructures
//
NdisInterlockedIncrement (&pLookasideHeader->FragmentsGenerated);
//
// The Start of the data beginning with the fragment header goes here or in the
// case of async stream fragment header and gasp header go here
//
ASSERT (pFragment->TxHeaderSize == 8 || pFragment->TxHeaderSize == 16);
pDestination = (PVOID) ((ULONG_PTR)pStartFragmentData + pFragment->TxHeaderSize );
FragmentLengthRemaining -= pFragment->TxHeaderSize;
//
// Now we start the copy. Keep on copying into the current fragment until the MaxLength is reached
// or the NdisBufferChain is exhausted
//
pSource = pSourceAddressInNdisBuffer;
do
{
TRACE( TL_T, TM_Send, ( " LengthNdisBuffer %x, FragmentLengthRemaining %x, pCurrNdisBuffer %x",
NdisBufferLengthRemaining , FragmentLengthRemaining ,pCurrNdisBuffer ) );
if (FragmentLengthRemaining > NdisBufferLengthRemaining )
{
//
// Copy the complete NdisBuffer over
//
LengthToCopy = NdisBufferLengthRemaining;
FragmentCopyStatus = FRAGMENT_COPY_NdisBufferCompleted;
}
if (FragmentLengthRemaining < NdisBufferLengthRemaining )
{
//
// Copy only as much as required
//
LengthToCopy = FragmentLengthRemaining;
FragmentCopyStatus = FRAGMENT_COPY_FragmentCompleted;
}
if (FragmentLengthRemaining == NdisBufferLengthRemaining )
{
//
// Copy the complete Ndis Buffer , move to the next ndis buffer
// and update the NdisBufferLengthRemaining field
//
LengthToCopy = NdisBufferLengthRemaining;
FragmentCopyStatus = FRAGMENT_COPY_NdisBufferAndFragmentCompleted;
}
//
// Sanity check to make sure we are not overwriting into free memory.
// As this should never happen, there is no recovery mechanism in place.
//
ASSERT (((PUCHAR)pDestination + LengthToCopy) <= (((PUCHAR) pLookasideHeader) + (pLookasideHeader->pLookasideList->Size) ));
//
// Do the copy
//
TRACE ( TL_V, TM_Send, (" nicCopyOneFragment pSource %x , pDestination %x, Length %x", pSource, pDestination, LengthToCopy ) );
NdisMoveMemory (pDestination, pSource, LengthToCopy);
//
// Update the fragment length remaininig and Total Buffer Size
//
FragmentLengthRemaining -= LengthToCopy;
FragmentLength += (USHORT)LengthToCopy;
pDestination = (PVOID) ((ULONG_PTR) pDestination + LengthToCopy);
//
// Update the NdisBuffer variables
//
ASSERT (pCurrNdisBuffer != NULL);
TRACE( TL_V, TM_Send, ( " FragmentCopyStatus %x", FragmentCopyStatus) );
switch (FragmentCopyStatus)
{
case FRAGMENT_COPY_NdisBufferCompleted:
case FRAGMENT_COPY_NdisBufferAndFragmentCompleted:
{
//
// Move to the next Ndisbuffer
//
pCurrNdisBuffer = pCurrNdisBuffer->Next;
if (pCurrNdisBuffer != NULL)
{
NdisBufferLengthRemaining = nicNdisBufferLength (pCurrNdisBuffer);
pSourceAddressInNdisBuffer = nicNdisBufferVirtualAddress(pCurrNdisBuffer);
if (pSourceAddressInNdisBuffer == NULL)
{
NdisStatus = NDIS_STATUS_RESOURCES;
BREAK (TM_Send, ("nicNdisBufferVirtualAddress FAILED " ) );
}
//
// Set up the values for the next iteration
//
pSource = pSourceAddressInNdisBuffer;
NdisBufferLengthRemaining = nicNdisBufferLength (pCurrNdisBuffer);
}
else
{
//
// we have reached the end of the NdisPAcket. Mark the fragment header as such
//
pFragment->lf = lf_LastFragment;
}
break;
}
case FRAGMENT_COPY_FragmentCompleted:
{
//
// Fragment has completed. Do not move to the next NdisBuffer
// However update StartCopy Address in the NdisBuffer
//
pSourceAddressInNdisBuffer = (PVOID) ((ULONG_PTR) pSource + LengthToCopy );
NdisBufferLengthRemaining -= LengthToCopy ;
break;
}
default :
{
ASSERT (0);
}
}
TRACE( TL_T, TM_Send, ( " LengthToCopy %x, FragmentLength %x, ", LengthToCopy, FragmentLength) );
TRACE( TL_T, TM_Send, ( " FragmentLengthRemaining %x, pCurrNdisBuffer %x",FragmentLengthRemaining , pCurrNdisBuffer ) );
}while (FragmentLengthRemaining > 0 && pCurrNdisBuffer != NULL);
//
// Now that we have the buffer size. Add the fragment header
//
nicAddFragmentHeader (pStartFragmentData,
pFragment,
FragmentLength);
TRACE( TL_T, TM_Send, ( " Fragment Header added %x", *(PULONG)pStartFragmentData) );
NdisStatus = NDIS_STATUS_SUCCESS;
}while (FALSE);
//
// Now update the output parameters.
//
if (NdisStatus == NDIS_STATUS_SUCCESS)
{
//
// Update the Lookaside Header structure, to reflect the new position of all the pointers
//
pFragment->pCurrNdisBuffer = pCurrNdisBuffer;
pFragment->pSourceAddressInNdisBuffer = pSourceAddressInNdisBuffer;
//
// Update the fragment structure with the length remaining in the NdisBuffer
//
pFragment->NdisBufferLengthRemaining = NdisBufferLengthRemaining ;
pFragment->FragmentLength = FragmentLength + pFragment->TxHeaderSize;
}
TRACE( TL_T, TM_Send, ( "<==nicCopyOneFragment pStartFragmentData %x, pLookasideListBuffer %x, pSourceAddressInNdisBuffer %x, NdisStatus %x",
pStartFragmentData, pSourceAddressInNdisBuffer, NdisStatus) );
return NdisStatus;
}
VOID
nicCopyUnfragmentedHeader (
IN PNIC1394_UNFRAGMENTED_HEADER pDestUnfragmentedHeader,
IN PVOID pSrcUnfragmentedHeader
)
// Function Description:
// Expect the Src to be a big Endian unfragmented packet header
// It will reverse the byte order in a temp variable and copy it into the
// Destination provided.
//
// Arguments
// pDestUnfragmentedHeader - Destination (Little Endian
// pSrcUnfragmentedHeader - Source (Big Endian)
//
// Return Value:
//
// Success if all the pointers and copy is valid
//
{
ULONG UnfragmentedHeader;
TRACE( TL_T, TM_Send, ( "==> nicCopyUnfragmentedHeader pDestUnfragmentedHeader %x, pSrcUnfragmentedHeader %x",
pDestUnfragmentedHeader, pSrcUnfragmentedHeader ) );
ASSERT (pSrcUnfragmentedHeader != NULL && pDestUnfragmentedHeader != NULL) ;
*((PULONG)pDestUnfragmentedHeader) = SWAPBYTES_ULONG ( *(PULONG) pSrcUnfragmentedHeader);
TRACE( TL_T, TM_Send, ( "pDestUnfragmentedHeader %x, ", *(PULONG)pDestUnfragmentedHeader) );
TRACE( TL_T, TM_Send, ( " <== nicCopyUnfragmentedHeader " ) );
}
NDIS_STATUS
nicFirstFragmentInitialization (
IN PNDIS_BUFFER pStartNdisBuffer,
IN ULONG DatagramLabelLong,
IN OUT PFRAGMENTATION_STRUCTURE pFragment
)
// Function Description:
// This will set up the fragement headers that are required for
// transmitting multiple fragments.
// Sets up the first source and destination for the first fragment
//
// Arguments
// pAdapter - to be used to get the dgl label and the lookaside list
// pStartOfData - start of the packet data . To be used in extracting the Unfragmented Header
// ppLookasideListBuffer Points to the allocated lookaside buffer
// pplookasideheader - points to the lookaside header
//
// Return Value:
// Success if the allocation succeeds
//
//
{
NDIS_STATUS NdisStatus = NDIS_STATUS_FAILURE;
PNDIS1394_FRAGMENT_HEADER pHeader = NULL;
PVOID pPacketStartData = NULL;
USHORT dgl = (USHORT) DatagramLabelLong;
TRACE( TL_T, TM_Send, ( "==> nicFirstFragmentInitialization pStartNdisBuffer%x, pFragment%x dgl %x ",
pStartNdisBuffer, pFragment, dgl ) );
do
{
//
// Get the start address for the 1st NdisBuffer. This contains
// the unfragmented header
//
pPacketStartData = nicNdisBufferVirtualAddress(pStartNdisBuffer);
if (pPacketStartData == NULL)
{
NdisStatus = NDIS_STATUS_RESOURCES;
BREAK (TM_Send, ("NdisBufferVirtual Address is NULL " ) );
}
pFragment->UnfragmentedHeader.HeaderUlong =
SWAPBYTES_ULONG (((PNDIS1394_UNFRAGMENTED_HEADER)pPacketStartData)->HeaderUlong);
TRACE ( TL_V, TM_Send, (" Unfragmented Header %x, pPacketStartData %x",
pFragment->UnfragmentedHeader.HeaderUlong , pPacketStartData) );
TRACE ( TL_V, TM_Send, (" original Header lf %x, etherType %x",
pFragment->UnfragmentedHeader.u.FH_lf,
pFragment->UnfragmentedHeader.u.FH_EtherType) );
//
// Now construct a fragmentation header to be used by all the fragments.
//
pHeader = &pFragment->FragmentationHeader;
pHeader ->u.FirstQuadlet.FH_lf = lf_FirstFragment;
pHeader ->u.FirstQuadlet.FH_buffersize = pFragment->IPDatagramLength-1;
pHeader ->u.FirstQuadlet_FirstFragment.FH_EtherType
= pFragment->UnfragmentedHeader.u.FH_EtherType;
pHeader ->u1.SecondQuadlet.FH_dgl = dgl;
TRACE ( TL_V, TM_Send, (" fragmented Header Hi %x Lo %x",
pHeader->u.FH_High,
pHeader->u1.FH_Low) );
TRACE ( TL_V, TM_Send, (" fragmented Header lf %x EtherType %x",
pHeader ->u.FirstQuadlet_FirstFragment.FH_lf ,
pHeader ->u.FirstQuadlet_FirstFragment.FH_EtherType ) );
//
// temporaty debug spew
//
TRACE (TL_V, TM_Send, (" copy Header at %x, Orig Header at %x",
&pHeader ->u.FirstQuadlet_FirstFragment,
pFragment->UnfragmentedHeader) );
//
// Initialize the fragmentation structure with packet's first ndis buffer
//
pFragment->pSourceAddressInNdisBuffer = NdisBufferVirtualAddress (pStartNdisBuffer);
if (pFragment->pSourceAddressInNdisBuffer == NULL)
{
NdisStatus = NDIS_STATUS_FAILURE;
}
//
// Set up the copy source . The first four bytes of data contain the unfragmented header.
// We need to skip past these bytes and start the copy from the next byte
//
pFragment->pSourceAddressInNdisBuffer = (PVOID) ((ULONG_PTR)pFragment->pSourceAddressInNdisBuffer +
sizeof (NDIS1394_UNFRAGMENTED_HEADER) );
pFragment->NdisBufferLengthRemaining = NdisBufferLength (pStartNdisBuffer) - sizeof (NDIS1394_UNFRAGMENTED_HEADER);
pFragment->pCurrNdisBuffer = pStartNdisBuffer;
//
// Set up the destination
//
pFragment->pStartFragment = (PVOID)((ULONG_PTR)pFragment->pLookasideListBuffer
+ (pFragment->NumFragmentsNeeded*sizeof(IRB)));
((PLOOKASIDE_BUFFER_HEADER)pFragment->pLookasideListBuffer)->pStartOfData = pFragment->pStartFragment;
pFragment->pStartOfFirstFragment = pFragment->pStartFragment ;
pFragment->CurrFragmentNum = 0;
pFragment->lf = lf_FirstFragment;
//
// The First IRB will reside at the end of the lookaside-header
//
pFragment->pCurrentIrb = &((PUNFRAGMENTED_BUFFER)pFragment->pLookasideListBuffer)->Irb;
TRACE( TL_T, TM_Send, ( " pStartFragment %x, pFragment %x,NumFragmentsNeeded %x,MaxFragmentLength %x ",
pFragment->pStartFragment,
pFragment->NumFragmentsNeeded,
pFragment->MaxFragmentLength) );
NdisStatus = NDIS_STATUS_SUCCESS;
} while (FALSE);
TRACE( TL_T, TM_Send, ( " <== nicFirstFragmentInitialization NdisStautus %x, pFragment %x, ",
NdisStatus, pFragment) );
return NdisStatus;
}
VOID
nicAddFragmentHeader (
IN PVOID pStartFragmentData,
IN PFRAGMENTATION_STRUCTURE pFragmentStructure,
IN ULONG FragmentLength
)
// Function Description:
// Copies the Fragment header over after byteswapping it.
// For the the first time, the ether type and so forth is already initialized and waiting to be copied.
// This funciotn also sets up the values for the next invocation of this function
// Arguments
// pStartFragmentData - Start of the fragment. Header goes after the gasp header if necessary .
// pFragmentationHeader - Header to copy over
// fIsFirstFragment - TRUE if this is the first fragment and needs a special header
// Return Value:
// None
//
{
PNDIS1394_FRAGMENT_HEADER pDestFragmentHeader = (PNDIS1394_FRAGMENT_HEADER)pStartFragmentData;
PNDIS1394_FRAGMENT_HEADER pSrcFragmentHeader = &pFragmentStructure->FragmentationHeader;
TRACE( TL_T, TM_Send, ( "==> nicAddFragmentHeader pStartFragmentData %x, pFragmentationHeader %x, , FragmentLength %x, lf %x",
pStartFragmentData , pSrcFragmentHeader , FragmentLength, pFragmentStructure->lf) );
if (pFragmentStructure->AsyncOp == AsyncStream)
{
//
// First Copy the GaspHeader
//
NdisMoveMemory (pStartFragmentData ,
&pFragmentStructure->pAdapter->GaspHeader,
sizeof (GASP_HEADER) );
//
// Increment the pointers so that the fragment header will be copied after the gasp header
//
pStartFragmentData = (PVOID) ((ULONG_PTR) pStartFragmentData + sizeof (GASP_HEADER) );
pDestFragmentHeader = (PVOID) pStartFragmentData;
TRACE( TL_T, TM_Send, ( " nicAddFragmentHeader Added Gasp Header from %x ",
pFragmentStructure->pAdapter->GaspHeader) );
}
//
// Sanity check , are we overwriting anybody ?
//
ASSERT (*(PULONG)pDestFragmentHeader == 0);
ASSERT (*(PULONG)pFragmentStructure->pCurrentIrb == 0);
TRACE( TL_V, TM_Send, ( " pSrcFragmentHeader Hi %x,Lo %x",
pSrcFragmentHeader->u.FH_High, pSrcFragmentHeader->u1.FH_Low) );
//
// Copy over the lf;
//
pSrcFragmentHeader->u.FirstQuadlet.FH_lf = pFragmentStructure->lf;
//
// Now copy over the 8 bytes of the fragment header and byteswap them into big endian
//
pDestFragmentHeader->u.FH_High = SWAPBYTES_ULONG ( pSrcFragmentHeader->u.FH_High);
pDestFragmentHeader->u1.FH_Low = SWAPBYTES_ULONG ( pSrcFragmentHeader->u1.FH_Low);
TRACE( TL_V, TM_Send, ( " Fragment Offset %x", pSrcFragmentHeader->u.FirstQuadlet.FH_fragment_offset ) );
//
// PREPARE the FRAGMENT STRUCTURE FOR THE NEXT ITERATION
//
//
// Set the first fragment completed flag to true and set up the header for the next fragment
//
if (pFragmentStructure->lf == lf_FirstFragment)
{
pFragmentStructure->lf = lf_InteriorFragment;
pSrcFragmentHeader->u.FirstQuadlet.FH_fragment_offset = 0;
}
//
// Increase the fragment offset for use in the next fragment
//
pSrcFragmentHeader->u.FirstQuadlet.FH_fragment_offset += FragmentLength;
TRACE( TL_T, TM_Send, ( "<== nicAddFragmentHeader lf %x", pFragmentStructure->lf) );
}
NDIS_STATUS
AsyncStreamSendPacketsHandler (
IN PVCCB pVc,
IN PNDIS_PACKET pPacket
)
// Function Description:
// This function is used to send packets to the bus
// via the async stream irp. the Ndis Packet is copied
// to locally owned buffers and mdls and then sent
// down to the bus driver
//
// This code is borrowed heavily from the AsyncStreamIrp code below
//
// Arguments
// pChannelVc - The Vc which needs to send the packets
// pPacket - the packet being transmitted
//
// Return Value:
// NdisStatus - if all allocations and irp operations complete
// successfully, and the i/o will be completed asynchronously
//
{
NDIS_STATUS NdisStatus = NDIS_STATUS_FAILURE;
NTSTATUS NtStatus = STATUS_UNSUCCESSFUL;
PCHANNEL_VCCB pChannelVc = (PCHANNEL_VCCB) pVc;
BOOLEAN fVcActive = TRUE;
PMDL pMyMdl = NULL;
PIRB pMyIrb = NULL;
PIRP pMyIrp = NULL;
ULONG PacketLength = 0;
PVOID pLookasideListBuffer = NULL;
PADAPTERCB pAdapter = NULL;
PNDIS_BUFFER pStartNdisBuffer = NULL ;
PVOID pStartPacketData= NULL ;
PNIC_NPAGED_LOOKASIDE_LIST pLookasideList = NULL;
PLOOKASIDE_BUFFER_HEADER pLookasideHeader = NULL;
ULONG NumFragmentsNeeded = 0;
FRAGMENTATION_STRUCTURE Fragment;
STORE_CURRENT_IRQL;
NdisZeroMemory (&Fragment, sizeof (FRAGMENTATION_STRUCTURE));
TRACE( TL_T, TM_Send, ( "==>AsyncStreamSendPacketsHandler , pVc %x, pPacket %x",
pChannelVc , pPacket ) );
pAdapter = pChannelVc->Hdr.pAF->pAdapter;
//
// This reference will either be dereferenced below in a call to FreeSendPacketDataStructure
// below or a call to FreeSendPacketDataStructure made from the Irp's completion routine
//
do
{
VC_ACQUIRE_LOCK (pVc);
//
// Make sure that the Vc is Activated and that no close calls
// are pending or that we have already completed a close call
//
if ( VC_ACTIVE (pChannelVc) == FALSE || ADAPTER_ACTIVE(pAdapter) == FALSE)
{
fVcActive = FALSE;
}
if (VC_TEST_FLAG( pChannelVc, VCBF_GenerationWorkItem) == TRUE)
{
TRACE( TL_N, TM_Send, ( "AsyncStreamSendPacketHandler, Getting a new Gen, Fail send ") );
fVcActive = FALSE;
}
if (fVcActive == TRUE)
{
nicReferenceCall (pVc, "AsyncStreamSendPacketsHandler");
}
VC_RELEASE_LOCK (pVc);
if (fVcActive == FALSE)
{
TRACE( TL_N, TM_Send, ( "AsyncStreamSendPacketHandler, VC Not Active VC %x , Flag %x", pVc, pVc->Hdr.ulFlags ) );
NdisStatus = NDIS_STATUS_FAILURE;
break;
}
//
// Copy NdisBuffer in Packet to Local Memory and get an Mdl that points
// to this memory (we get 1 Mdl only)
NdisQueryPacket( pPacket,
NULL,
NULL,
NULL,
&PacketLength);
ASSERT (pPacket->Private.Head != NULL);
pStartNdisBuffer = pPacket->Private.Head;
pStartPacketData = nicNdisBufferVirtualAddress (pStartNdisBuffer);
if (pStartPacketData == NULL)
{
NdisStatus = NDIS_STATUS_RESOURCES;
TRACE( TL_N, TM_Send, ( "AsyncStreamSendPacketHandler, pStartPacketData ") );
break;
}
TRACE( TL_V, TM_Send, ( "PacketLength %x", PacketLength) );
NumFragmentsNeeded = nicNumFragmentsNeeded (PacketLength,
pChannelVc->Hdr.MaxPayload,
sizeof (NDIS1394_FRAGMENT_HEADER) + ISOCH_PREFIX_LENGTH );
TRACE( TL_V, TM_Send, ( "NumFragments %x, pVc->MaxSendSize",
NumFragmentsNeeded,pVc->Hdr.MaxPayload) );
//
// first choose the lookaside list
//
//
if (PacketLength < PAYLOAD_100)
{
pLookasideList = &pAdapter->SendLookasideList100;
TRACE( TL_V, TM_Send, ( " PAYLOAD_100 Lookaside List %x",
&pAdapter->SendLookasideList100) );
}
else
if (PacketLength < PAYLOAD_2K)
{
pLookasideList = &pAdapter->SendLookasideList2K;
TRACE( TL_V, TM_Send, ( " PAYLOAD_2K Lookaside List %x",
&pAdapter->SendLookasideList2K) );
} else
if (PacketLength < PAYLOAD_8K)
{
pLookasideList = &pAdapter->SendLookasideList8K;
TRACE( TL_V, TM_Send, ( " PAYLOAD_8K Lookaside List %x",
&pAdapter->SendLookasideList8K) );
}else
{
//
// Add code for local allocation
//
ASSERT (0);
}
//
// are we going to fragment
//
ASSERT (pLookasideList != NULL)
//
// We are not going to fragment. Optimize this path
//
pLookasideListBuffer = nicGetLookasideBuffer (pLookasideList);
if (pLookasideListBuffer == NULL )
{
NdisStatus = NDIS_STATUS_FAILURE;
BREAK (TM_Send, ("nicGetLookasideBuffer FAILED") );
}
//
// Initialize the header with relevant information that the send complete
// will need
//
pLookasideHeader = (PLOOKASIDE_BUFFER_HEADER)pLookasideListBuffer;
pLookasideHeader->IsFragmented = FALSE; // Default
pLookasideHeader->FragmentsGenerated = 0;
pLookasideHeader->pLookasideList = pLookasideList;
pLookasideHeader->pNdisPacket = pPacket;
pLookasideHeader->pVc =(PVCCB)pVc;
pLookasideHeader->AsyncOp = AsyncStream;
pLookasideHeader->OutstandingFragments = NumFragmentsNeeded ;
//
// Initialize the Fragment structure
//
//
// Do we fragment or not. Base it on the MaxPayload field
//
TRACE( TL_V, TM_Send, ( " Fragment PacketLength %x, pVc->MaxPayload %x ",
PacketLength ,pVc->Hdr.MaxPayload) );
//
// Do we need to fragment. Use the number of fragments generated to figure it out
//
if (NumFragmentsNeeded == 1)
{
//
// No need to fragment here. We will use the UNFRAGMENTED Layout
//
// First Get a local buffer from our lookaside list
//
PUNFRAGMENTED_BUFFER pUnfragmentedBuffer = (PUNFRAGMENTED_BUFFER )pLookasideHeader;
PPACKET_FORMAT pDestination = (PPACKET_FORMAT)&pUnfragmentedBuffer->Data[0];
//
// Add the gasp header
//
NdisMoveMemory ((PVOID)&pDestination->AsyncStreamNonFragmented.GaspHeader,
&pAdapter->GaspHeader,
sizeof (GASP_HEADER) );
//
// copy the data over, to the location just after the Gasp Header
// In the unfragmented case, the packet already has the correct header
//
NdisStatus = nicCopyNdisBufferChainToBuffer (pStartNdisBuffer,
(PVOID)&pDestination->AsyncStreamNonFragmented.NonFragmentedHeader,
pLookasideList->MaxSendSize);
if (NdisStatus != NDIS_STATUS_SUCCESS)
{
BREAK ( TM_Send, ( " AsyncStreamSendPacketHandler, nicCopyNdisPacketToUnfragmentedBuffer Failed ") );
}
ASSERT (pLookasideListBuffer != NULL);
//
// Initialize all the variable needed by the Next section of the code.
// This deals with setting up the Mdl and the IRB
//
pStartNdisBuffer = NULL;
Fragment.pStartFragment = (PVOID)pDestination;
Fragment.FragmentLength = PacketLength + sizeof (GASP_HEADER);
Fragment.pCurrNdisBuffer = NULL;
pLookasideHeader->FragmentsGenerated = 1;
pLookasideHeader->IsFragmented = FALSE;
}
else
{
//
// We need to fragment
//
ULONG Dgl = NdisInterlockedIncrement(&pAdapter->dgl);
//
// Initialize the fragment header. The unfragmented code path
// does not care about these fields
//
Fragment.TxHeaderSize = sizeof (NDIS1394_FRAGMENT_HEADER) + sizeof (GASP_HEADER);
Fragment.AsyncOp = AsyncStream;
Fragment.pLookasideList = pLookasideList;
Fragment.pAdapter = pAdapter;
Fragment.pLookasideListBuffer = pLookasideListBuffer;
Fragment.IPDatagramLength = (USHORT)PacketLength - sizeof (NDIS1394_UNFRAGMENTED_HEADER);
Fragment.MaxFragmentLength = pChannelVc->Hdr.MaxPayload;
Fragment.NumFragmentsNeeded = NumFragmentsNeeded;
//
// Allocate from the fragmented pool and initialize the fragment header structure
//
NdisStatus = nicFirstFragmentInitialization (pPacket->Private.Head,
Dgl,
&Fragment);
if (pLookasideListBuffer == NULL || NdisStatus != NDIS_STATUS_SUCCESS)
{
BREAK (TM_Send, (" AsyncStreamSendPacketsHandler: nicFirstFragmentInitialization : FAILED" )) ;
}
ASSERT (pLookasideListBuffer != NULL);
pLookasideHeader->IsFragmented = TRUE;
}
//
// Now begin the loop which will send n fragments
//
do
{
//
// Do we need to fragment. If so , extract one fragment out of the NdisPacket
//
if (pLookasideHeader->IsFragmented == TRUE )
{
//
// We copy one fragment over and this will allocate the lookaside list
//
NdisStatus = nicCopyOneFragment (&Fragment);
if (NDIS_STATUS_SUCCESS != NdisStatus)
{
BREAK ( TM_Send, ( " AsyncStreamSendPacketHandler, nicCopyOneFragment Failed ") );
}
//
// Get the pointer to the Irb here. and set it up for the next time
//
//
pMyIrb = Fragment.pCurrentIrb;
Fragment.pCurrentIrb = (PIRB)((ULONG_PTR)Fragment.pCurrentIrb + sizeof (IRB) );
}
else
{
//
// No Curr NdisBuffer as this packet was never fragmented.
//
ASSERT (pLookasideHeader->IsFragmented == FALSE);
pMyIrb = &((PUNFRAGMENTED_BUFFER )pLookasideHeader)->Irb;
}
//
// At this point we have one fragment that needs to be transmitted.
// Data structures have been updated to set up the MDL and the IRB
//
NdisStatus = nicGetMdl (Fragment.FragmentLength ,
Fragment.pStartFragment ,
&pMyMdl);
if (NdisStatus != NDIS_STATUS_SUCCESS)
{
BREAK ( TM_Send, ( " AsyncStreamSendPacketHandler, nicCopyNdisBufferChainToBuffer Failed ") );
}
nicIncChannelSendMdl()
//
// Fill in the Irb with the correct values from the VC
// Stuff we need to add to the send VC - BlockSize,Generation
//
nicInitAsyncStreamIrb((PCHANNEL_VCCB)pVc, pMyMdl, pMyIrb);
//
// Get a free Irp
//
NdisStatus = nicGetIrp (pAdapter->pNdisDeviceObject, &pMyIrp);
if (NdisStatus != NDIS_STATUS_SUCCESS)
{
break;
}
//
// At this point, we have a guarantee that the Completion routine will be called
//
ASSERT (NdisStatus == NDIS_STATUS_SUCCESS);
//
// Dump the Fragment
//
nicDumpMdl (pMyMdl , 0, "AsyncStream Fragment");
NIC1394_LOG_PKT(
pAdapter,
NIC1394_LOGFLAGS_SEND_CHANNEL,
pAdapter->BCRData.LocalNodeNumber, // SourceID
pChannelVc->Channel,
Fragment.pStartFragment,
Fragment.FragmentLength
);
//
// This function implements the common functionality to be implemented by
// all other send/recv cals to IoCallDriver
//
//
// We IGNORE the NtStatus as the completion handler will be called
//
nicIncrementBusSends(pVc);
NtStatus = nicSubmitIrp(pAdapter->pNdisDeviceObject,
pMyIrp,
pMyIrb,
AsyncWriteStreamSendComplete,
(PVOID)pLookasideListBuffer);
TRACE( TL_V, TM_Send, ( " pCurrNdisBuffer %x, NdisStatus %x ", Fragment.pCurrNdisBuffer , NdisStatus ) );
} while (Fragment.pCurrNdisBuffer != NULL && NdisStatus == NDIS_STATUS_SUCCESS);
} while (FALSE);
//
// DO NOT touch the packet if status == NDIS_STATUS_SUCCESS.
//
//
// CleanUp if any of the allocations failed. We do not have a pointer
// to the LocalBuffer (it is embedded in the Mdl) so it remains NULL
//
// NdisStatus != Success means that we never got to nicSubmitIrp
//
if (NdisStatus != NDIS_STATUS_SUCCESS)
{
ASSERT (pMyIrp == NULL);
//
// fVc Active makes sure that we actually got around to allocating
// and referencing structures
//
if (fVcActive == TRUE)
{
if (pLookasideListBuffer != NULL)
{
//
// Complete this fragment, as we never submit'd the IRP to
// the 1394 bus driver
//
AsyncWriteStreamSendComplete(NULL, // PDO
NULL,
pLookasideListBuffer);
NdisStatus =NDIS_STATUS_SUCCESS;
}
else
{
//
// This thread needs to decrement the refcounts as
// AsyncWriteStreamSendComplete was not called
//
nicDereferenceCall ((PVCCB) pVc, "AsyncStreamSendPacketsHandler");
}
}
}
TRACE( TL_T, TM_Send, ( "<==AsyncStreamSendPacketHandler, NdisStatus %x", NdisStatus ) );
MATCH_IRQL;
//
// Make sure this is NDIS_STATUS_PENDING if the Irp was sent down or
// AsyncWriteStreamSendCOmplete was called.
//
return NdisStatus;
}
NDIS_STATUS
nicEthernetVcSend(
IN PVCCB pVc,
IN PNDIS_PACKET pPacket
)
/*++
Routine Description:
reroutes all sends as an CL receive
Arguments:
Return Value:
--*/
{
PETHERNET_VCCB pEthernetVc = (PETHERNET_VCCB)pVc;
PADAPTERCB pAdapter = pVc->Hdr.pAF->pAdapter;
BOOLEAN fVcActive = FALSE;
NDIS_STATUS NdisStatus = NDIS_STATUS_FAILURE;
PNDIS_PACKET pMyPacket = NULL;
NDIS_STATUS IndicatedStatus= NDIS_STATUS_FAILURE;
PPKT_CONTEXT pPktContext = NULL;
TRACE( TL_T, TM_Send, ( "==>nicEthernetVcSend, pVc %x, pPacket %x",
pVc , pPacket ) );
do
{
ADAPTER_ACQUIRE_LOCK (pAdapter);
if (VC_ACTIVE (pEthernetVc)==TRUE)
{
fVcActive = TRUE;
nicReferenceCall (pVc, "nicEthernetVcSend" ) ;
}
ADAPTER_RELEASE_LOCK (pAdapter);
if (fVcActive == FALSE)
{
NdisStatus = NDIS_STATUS_FAILURE;
break;
}
nicAllocatePacket (&NdisStatus,
&pMyPacket ,
&pEthernetVc->PacketPool );
if (NdisStatus != NDIS_STATUS_SUCCESS || pMyPacket == NULL)
{
pMyPacket = NULL;
BREAK (TM_Send, "Ethernet VC - AllocatePacket failed" ) ;
}
pMyPacket->Private.Head = pPacket->Private.Head;
pMyPacket->Private.Tail = pPacket->Private.Tail;
IndicatedStatus = NDIS_STATUS_RESOURCES;
NDIS_SET_PACKET_STATUS(pMyPacket, IndicatedStatus);
//
// Set up the context
//
pPktContext = (PPKT_CONTEXT)&pMyPacket->MiniportReservedEx;
pPktContext->EthernetSend.pOrigPacket = pPacket;
//
// Dump the packet
//
{
nicDumpPkt (pMyPacket, "Conn Less Rcv ");
nicCheckForEthArps (pMyPacket);
}
//
// Now indicate the packet
//
//
// Bluff the OOB Size. To get past an assert on debug Ndis
//
NDIS_SET_PACKET_HEADER_SIZE (pMyPacket, 14);
NdisMIndicateReceivePacket (pAdapter->MiniportAdapterHandle,
&pMyPacket,
1);
pPktContext = (PPKT_CONTEXT)&pMyPacket->MiniportReservedEx;
ASSERT ( pPacket == pPktContext->EthernetSend.pOrigPacket );
nicMpCoSendComplete (NDIS_STATUS_SUCCESS,
pVc,
pPacket);
//
// We have successfully pended the Io/
// Now the completion routine will be called
//
NdisStatus = NDIS_STATUS_SUCCESS;
} while (FALSE);
if (pMyPacket != NULL)
{
//
// Free the locally allcoate packet
//
nicFreePacket(pMyPacket, &pEthernetVc->PacketPool);
}
if (fVcActive == TRUE)
{
nicDereferenceCall (pVc, "nicEthernetVcSend" ) ;
}
TRACE( TL_T, TM_Send, ( "<==nicEthernetVcSend, ") );
return NdisStatus;
}
VOID
nicGetGenerationWorkItem(
NDIS_WORK_ITEM* pGetGenerationWorkItem,
IN PVOID Context
)
// Function Description:
// Work Item used to submit a Get Generation IRP at Passive Level
//
// Arguments
//
// Return Value:
// Generation -
{
PVCCB pVc = (PVCCB) Context;
PADAPTERCB pAdapter = pVc->Hdr.pAF->pAdapter;
NDIS_STATUS NdisStatus = NDIS_STATUS_FAILURE;
UINT Generation = 0;
TRACE( TL_T, TM_Mp, ( "==>nicGetGenerationWorkItem, pVc", Context ) );
NdisStatus = nicGetGenerationCount (pAdapter , &Generation);
//
// Update the generation
//
VC_ACQUIRE_LOCK (pVc);
if (NdisStatus == NDIS_STATUS_SUCCESS && Generation > *pVc->Hdr.pGeneration )
{
pAdapter->Generation = Generation;
}
VC_CLEAR_FLAGS(pVc, VCBF_GenerationWorkItem);
VC_RELEASE_LOCK (pVc);
// Dereference the call, this will allow the close call to complete. Do not touch VC after this.
//
nicDereferenceCall(pVc, "nicSendFailureInvalidGeneration");
TRACE( TL_T, TM_Mp, ( "<==nicGetGenerationWorkItem, Gen %x", Generation) );
FREE_NONPAGED (pGetGenerationWorkItem);
NdisInterlockedDecrement(&pAdapter->OutstandingWorkItems);
}
VOID
nicUpdatePacketState (
IN PNDIS_PACKET pPacket,
IN ULONG Tag
)
/*++
Routine Description:
Validates and then updates that packet tag. So we can heep track of the packet
Arguments:
Return Value:
--*/
{
switch (Tag)
{
case NIC1394_TAG_COMPLETED:
{
*(PULONG)(&pPacket->MiniportReserved[0]) = NIC1394_TAG_COMPLETED;
break;
}
case NIC1394_TAG_IN_SEND:
{
*(PULONG)(&pPacket->MiniportReserved[0]) = NIC1394_TAG_IN_SEND;
break;
}
default:
{
ASSERT (!"Invalid Tag on NdisPacket");
}
}
}
NDIS_STATUS
nicQueueSendPacket(
PNDIS_PACKET pPacket,
PVCCB pVc
)
/*++
Routine Description:
This function inserts a packet into the send queue. If there is no timer servicing the queue
then it queues a timer to dequeue the packet in Global Event's context
Arguments:
Self explanatory
Return Value:
Success - if inserted into the the queue
--*/
{
NDIS_STATUS Status = NDIS_STATUS_FAILURE;
BOOLEAN fSetTimer = FALSE;
PADAPTERCB pAdapter = pVc->Hdr.pAF->pAdapter;
PNDIS_SEND_CONTEXT pSendContext = (PNDIS_SEND_CONTEXT)(pPacket->MiniportReservedEx) ;
do
{
extern ULONG TotSends;
TotSends++;
//
// Store the pvc in the Miniport Reserved
//
pSendContext->pVc = pVc;
ADAPTER_ACQUIRE_LOCK (pAdapter);
//
// Find out if this thread needs to fire the timer
//
if (pAdapter->SerSend.bTimerAlreadySet == FALSE)
{
fSetTimer = TRUE;
pAdapter->SerSend.bTimerAlreadySet = TRUE;
}
InsertTailList(
&pAdapter->SerSend.Queue,
&pSendContext->Link
);
pAdapter->SerSend.PktsInQueue++;
nicReferenceCall (pVc, "nicQueueSendPacket ");
ADAPTER_RELEASE_LOCK (pAdapter);
//
// Now queue the timer
//
if (fSetTimer == TRUE)
{
PNDIS_MINIPORT_TIMER pSendTimer;
//
// Initialize the timer
//
pSendTimer = &pAdapter->SerSend.Timer;
TRACE( TL_V, TM_Recv, ( " Set Timer "));
NdisMSetTimer ( pSendTimer, 0);
}
Status = NDIS_STATUS_SUCCESS;
} while (FALSE);
ASSERT (Status == NDIS_STATUS_SUCCESS);
return Status;
}
NDIS_STATUS
nicInitSerializedSendStruct(
PADAPTERCB pAdapter
)
/*++
Routine Description:
Used to initialize the Send Serialization Struct
Arguments:
Return Value:
--*/
{
NdisZeroMemory (&pAdapter->SerSend, sizeof(pAdapter->SerSend));
InitializeListHead(&pAdapter->SerSend.Queue);
NdisMInitializeTimer (&pAdapter->SerSend.Timer,
pAdapter->MiniportAdapterHandle,
nicSendTimer ,
pAdapter);
return NDIS_STATUS_SUCCESS;
}
VOID
nicDeInitSerializedSendStruct(
PADAPTERCB pAdapter
)
/*++
Routine Description:
Deinit's the Serialize send struct. Does nothing for now
Arguments:
Return Value:
--*/
{
}
VOID
nicSendTimer (
IN PVOID SystemSpecific1,
IN PVOID FunctionContext,
IN PVOID SystemSpecific2,
IN PVOID SystemSpecific3
)
/*++
Routine Description:
This function dequeues a packet and invokes the appropriate send handler
to fire this packet off to the 1394 bus driver
Arguments:
Function context - Adapter structure, which has the Packet queue.
Each packet has the VC embedded in it.
Return Value:
--*/
{
PADAPTERCB pAdapter = (PADAPTERCB) FunctionContext;
BOOLEAN fVcCorrupted = FALSE;
TRACE( TL_T, TM_Recv, ( "==>nicSendTimer Context %x", FunctionContext));
nicIncrementSendTimerCount();
ADAPTER_ACQUIRE_LOCK (pAdapter);
//
// Get the stats out
//
nicSetCountInHistogram(pAdapter->SerSend.PktsInQueue, SendStats);
nicSetMax(nicMaxSend, pAdapter->SerSend.PktsInQueue);
//
// Empty the Queue indicating as many packets as possible
//
while (IsListEmpty(&pAdapter->SerSend.Queue)==FALSE)
{
PNDIS_SEND_CONTEXT pSendContext;
PNDIS_PACKET pPacket;
PVCCB pVc;
PLIST_ENTRY pLink;
NDIS_STATUS NdisStatus;
pAdapter->SerSend.PktsInQueue--;
pLink = RemoveHeadList(&pAdapter->SerSend.Queue);
ADAPTER_RELEASE_LOCK (pAdapter);
//
// Extract the send context
//
pSendContext = CONTAINING_RECORD(
pLink,
NDIS_SEND_CONTEXT,
Link);
pVc = pSendContext->pVc;
if (pVc->Hdr.ulTag != MTAG_VCCB)
{
ASSERT (pVc->Hdr.ulTag == MTAG_VCCB);
fVcCorrupted = TRUE;
break;
}
//
// Now get the packet
//
pPacket = CONTAINING_RECORD ( pSendContext,
NDIS_PACKET,
MiniportReservedEx);
//
// Call the send handler for the Vc, packet
//
nicUpdatePacketState (pPacket, NIC1394_TAG_IN_SEND);
NdisStatus = pVc->Hdr.VcHandlers.SendPackets(pVc, pPacket);
//
// Reference was made before queueing the packet
//
nicDereferenceCall (pVc, "nicSendTimer ");
//
// Complete the packet , if the send was synchronous
//
if (NT_SUCCESS(NdisStatus) == FALSE) // can pend
{
nicMpCoSendComplete( NdisStatus,pVc,pPacket);
}
ADAPTER_ACQUIRE_LOCK (pAdapter);
}
//
// clear the flag
//
ASSERT (pAdapter->SerSend.PktsInQueue==0);
ASSERT (IsListEmpty(&pAdapter->SerSend.Queue));
pAdapter->SerSend.bTimerAlreadySet = FALSE;
ADAPTER_RELEASE_LOCK (pAdapter);
TRACE( TL_T, TM_Recv, ( "<==nicSendTimer "));
}
VOID
nicMpCoSendComplete (
NDIS_STATUS NdisStatus,
PVCCB pVc,
PNDIS_PACKET pPacket
)
/*++
Routine Description:
Wrapper function around NdisMCoSendComplete
Arguments:
Return Value:
--*/
{
nicIncrementSendCompletes (pVc);
if (NdisStatus == NDIS_STATUS_SUCCESS)
{
nicIncrementVcSendPktCount(pVc, pPacket);
}
else
{
nicIncrementVcSendFailures (pVc, pPacket);
}
nicUpdatePacketState (pPacket, NIC1394_TAG_COMPLETED);
NdisMCoSendComplete(NdisStatus,
pVc->Hdr.NdisVcHandle,
pPacket);
}
UINT
nicNumFragmentsNeeded (
UINT PacketLength ,
UINT MaxPayload,
UINT FragmentOverhead
)
/*++
Routine Description:
Now account for the Fragment headers as well. A fragment header will be added
at the head of each fragment. The Unfragmented header at the head of the data
will be removed
Arguments:
FragmentOverhead - the size of the fragment header, in the asyncstream it includes the gasp header+fragment header.
for asyncwrite it is just the fragmentation header
Return Value:
--*/
{
UINT NewPacketSize;
UINT TotalCapacitySoFar;
UINT NumFragmentsNeeded ;
ASSERT (PacketLength != 0 );
ASSERT (MaxPayload != 0) ;
ASSERT (FragmentOverhead != 0);
//
// This division takes care of the case where PacketLength
// is an integral multiple of the MaxPayload. Since we add 1 to the fragment
// it takes care of the overhead added by the fragment headers
//
NumFragmentsNeeded = (PacketLength / MaxPayload) + 1;
//
// If we add the fragment and gasp header to our fragments, we
// might need another fragment due to an overflow
//
//
// Calculate the new packet size after fragmentation
//
{
//
// Add the length of the fragment headers
//
NewPacketSize = PacketLength + (NumFragmentsNeeded * FragmentOverhead);
//
// Now remove the default non-fragment header
//
NewPacketSize -= sizeof (NDIS1394_UNFRAGMENTED_HEADER) ;
}
//
//
//
TotalCapacitySoFar = NumFragmentsNeeded * MaxPayload;
if ( NewPacketSize > TotalCapacitySoFar)
{
//
// We'll need one more fragment
//
NumFragmentsNeeded ++;
}
return NumFragmentsNeeded ;
}
VOID
nicCheckForEthArps (
IN PNDIS_PACKET pPkt
)
/*++
Routine Description:
It will print the pkt if an eth arp or arp response goes
through nic1394
Arguments:
Return Value:
--*/
{
PNDIS_BUFFER pBuffer;
ULONG Len;
ENetHeader* pENetHeader = NULL;
PETH_ARP_PKT pArp = NULL;
USHORT PacketType;
USHORT opcode;
extern ULONG g_ulDumpEthPacket ;
do
{
if (g_ulDumpEthPacket == 0)
{
break;
}
pBuffer = pPkt->Private.Head;
Len = NdisBufferLength (pBuffer);
if (Len < sizeof (ENetHeader) )
{
ASSERT (Len >= sizeof (ENetHeader) );
break;
}
pENetHeader = (ENetHeader*) NdisBufferVirtualAddress (pBuffer);
if (pENetHeader == NULL)
{
ASSERT ( pENetHeader != NULL);
break;
}
PacketType = ntohs (pENetHeader->eh_type);
if (PacketType == ARP_ETH_ETYPE_IP)
{
break;
}
if (PacketType == ARP_ETH_ETYPE_ARP)
{
DbgPrint ("Arp Pkt - ");
}
pArp = (ETH_ARP_PKT*)pENetHeader;
opcode = ntohs(pArp->opcode);
if (opcode == ARP_ETH_REQUEST )
{
DbgPrint ("Request ");
}
else if (opcode == ARP_ETH_RESPONSE )
{
DbgPrint ("Response ");
}
else
{
break;
}
// Print the packet
DbgPrint("\n");
{
ENetAddr Addr;
Addr = pArp->sender_hw_address;
DbgPrint ("Sender Hw Addr %x %x %x %x %x %x \n",
Addr.addr[0],
Addr.addr[1],
Addr.addr[2],
Addr.addr[3],
Addr.addr[4],
Addr.addr[5]);
DbgPrint ("Ip Addr %x\n",pArp->sender_IP_address);
Addr = pArp->target_hw_address;
DbgPrint ("Target Hw Addr %x %x %x %x %x %x \n",
Addr.addr[0],
Addr.addr[1],
Addr.addr[2],
Addr.addr[3],
Addr.addr[4],
Addr.addr[5]);
DbgPrint ("Ip Addr %x\n",pArp->target_IP_address);
}
} while (FALSE);
}