|
|
// autoall.h
//
// A plethora of smart pointers / objects
//
// INDEX:
// auto_bstr - BSTR
// auto_tm - CoTaskFreeMemory
// auto_sid - FreeSid
// auto_sa - SafeArray
// auto_rel - COM
// auto_reg - HKEY
// auto_pv - PROPVARIANT
// auto_prg - [] delete (pointer to range)
// pointer - delete
// auto_hr - throw HRESULT
// auto_os - throw DWORD
// auto_imp - Impersonation / Rever
// auto_handle - HANDLE
// auto_cs - CriticalSection
// auto_leave - LeaveCriticalSection
// auto_var - VARIANT
// auto_virt - VirtualFree
// RCObject - Reference counting
// RCPtr<T>
// auto_menu - DestroyMenu
//
// History:
// 1/25/99 anbrad Unified from many differnt files created over the ages
// 2/8/99 anbrad added auto_menu
// auto_bstr ******************************************************************
//
// Smart Pointers for BSTR
#pragma once
#include <xstddef>
// Forward declarations
//
// If you get class not defined you may just need to include a file or two.
// These are listed below.
class auto_bstr; // (oleauto.h) __wtypes_h__
template<class _Ty> class auto_tm; //
class auto_sid; //
class auto_sa; // (ole2.h) __oaidl_h__
template<class T, class I = T> class auto_rel; //
class auto_reg; //
class auto_pv; // (propidl.h) __propidl_h__
template<class _Ty> class auto_prg; //
template<class _Ty> class pointer; //
class auto_hr; //
class auto_os; //
class auto_imp; // (atlconv.h) __ATLCONV_H__
template<class T> class auto_handle; //
class auto_cs; //
class auto_leave; //
class auto_var; // (oleauto.h) __wtypes_h__ && (comutil.h) _INC_COMUTIL
template<class _Ty> class auto_virt; // (winbase.h)
class auto_menu;
#if defined (__wtypes_h__)
class auto_bstr { public: auto_bstr( BSTR b= 0, bool o= true) : _bstr(b), _Owns(o) {} ~auto_bstr() { if(_bstr && _Owns) ::SysFreeString(_bstr); }
bool Ownership(bool fOwns) { return _Owns = fOwns; }
operator BSTR() { return _bstr; } operator const BSTR() const { return _bstr; } BSTR* operator &() {return &_bstr; } auto_bstr& operator=(auto_bstr& rhs) { if(_bstr == rhs._bstr) return *this;
clear(); _Owns= rhs._Owns; _bstr= rhs.release();
return *this; } auto_bstr& operator=(BSTR bstr) { clear(); _bstr= bstr; _Owns= true; return *this; } operator bool() { return NULL != _bstr; } operator !() { return NULL == _bstr; } WCHAR operator[] (int index) { return _bstr[index]; } void clear() { if(_bstr && _Owns) { ::SysFreeString(_bstr); } _bstr= NULL; }
BSTR release() { BSTR bstr= _bstr;
_bstr= NULL; return bstr; } protected: bool _Owns; BSTR _bstr; }; #endif // __wtypes_h__
// auto_tm ********************************************************************
//
// Smart Pointers for memory freed with CoTaskFreeMem
template<class _Ty> class auto_tm { public: typedef _Ty element_type;
explicit auto_tm(_Ty *_P = 0) _THROW0() : _Owns(_P != 0), _Ptr(_P) {} auto_tm(const auto_tm<_Ty>& _Y) _THROW0() : _Owns(_Y._Owns), _Ptr(_Y.release()) {} auto_tm<_Ty>& operator=(const auto_tm<_Ty>& _Y) _THROW0() {if (_Ptr != _Y.get()) {if (_Owns && _Ptr) CoTaskMemFree(_Ptr); _Owns = _Y._Owns; _Ptr = _Y.release(); } else if (_Y._Owns) _Owns = true; return (*this); } auto_tm<_Ty>& operator=(_Ty* _Y) _THROW0() { {if (_Owns && _Ptr) CoTaskMemFree(_Ptr); _Owns = _Y != 0; _Ptr = _Y; } return (*this); }
~auto_tm() {if (_Owns && _Ptr) CoTaskMemFree(_Ptr);} _Ty** operator&() _THROW0() {if (_Owns && _Ptr) CoTaskMemFree(_Ptr); _Owns = true; _Ptr = 0; return &_Ptr; } operator _Ty* () const { return _Ptr; } _Ty& operator*() const _THROW0() {return (*get()); } _Ty *operator->() const _THROW0() {return (get()); } _Ty& operator[] (int ndx) const _THROW0() {return *(get() + ndx); } _Ty *get() const _THROW0() {return (_Ptr); } _Ty *release() const _THROW0() {((auto_tm<_Ty> *)this)->_Owns = false; return (_Ptr); } bool Ownership(bool fOwns) { return _Owns = fOwns; } protected: bool _Owns; _Ty *_Ptr; };
// auto_sid *******************************************************************
//
// Smart Pointers for SID's (Security ID's)
class auto_sid { public: explicit auto_sid(SID* p = 0) : m_psid(p) {}; auto_sid(auto_sid& rhs) : m_psid(rhs.release()) {};
~auto_sid() { reset(); };
auto_sid& operator= (auto_sid& rhs) { if (this != rhs.getThis()) reset (rhs.release() ); return *this; };
SID operator*() const { return *m_psid; }; void** operator& () { reset(); return (void**)&m_psid; }; operator SID* () { return m_psid; }; // Checks for NULL
BOOL operator== (LPVOID lpv) { return m_psid == lpv; }; BOOL operator!= (LPVOID lpv) { return m_psid != lpv; };
// return value of current dumb pointer
SID* get() const { return m_psid; };
// relinquish ownership
SID* release() { SID* oldpsid = m_psid; m_psid = 0; return oldpsid; };
// delete owned pointer; assume ownership of p
void reset (SID* p = 0) { if (m_psid) FreeSid(m_psid); m_psid = p; };
private: // operator& throws off operator=
const auto_sid* getThis() const { return this; };
SID* m_psid; };
// auto_sa ********************************************************************
//
// Smart Pointers for SafeArray's (those VB arrays)
#ifdef __oaidl_h__
class auto_sa { public: auto_sa() : _psa(0), _Owns(true) {} ~auto_sa() { if(_psa && _Owns) { _psa->cLocks= 0; ::SafeArrayDestroy(_psa); } }
bool Ownership(bool fOwns) { return _Owns = fOwns; }
operator SAFEARRAY *() { return _psa; } operator const SAFEARRAY *() const { return _psa; } auto_sa& operator=(auto_sa& rhs) { if(_psa == rhs._psa) return *this;
clear(); _Owns= rhs._Owns; _psa= rhs.release();
return *this; }
auto_sa& operator=(SAFEARRAY* psa) { clear(); _psa= psa; _Owns= true; return *this; } operator bool() { return NULL != _psa; } operator !() { return NULL == _psa; }
void clear() { if(_psa && _Owns) { _psa->cLocks= 0; ::SafeArrayDestroy(_psa); } _psa= NULL; }
SAFEARRAY* release() { SAFEARRAY* psa= _psa;
_psa= NULL; return psa; }
protected: SAFEARRAY *_psa; bool _Owns; }; #endif
// auto_rel *******************************************************************
//
// Smart pointer for COM interfaces
//
// class I - Multi-Inheritance casting for ATL type classes
// ergo C2385 - T::Release() is ambiguous
template<class T, class I = T> class auto_rel { public: auto_rel() { p = 0; }
auto_rel(T* p2) { assign(p2); }
auto_rel(const auto_rel<T, I>& p2) { assign(p2.p); }
auto_rel(void* p2) { if(p2) { auto_hr hr = ((IUnknown*)p2)->QueryInterface(__uuidof(T), (void**)&p); } else { p = 0; } }
~auto_rel() { clear(p); }
// for the NULL case - have to have int explicitly or it won't compile
// due to an ambiguous conversion (can't decide between T* and void*).
auto_rel<T, I>& operator =(int p2) { clear(p); p = 0; return(*this); }
// normal case is nice and fast - do the assign before the clear in case
// p2 == p (so we don't accidentally delete it if we hold the only ref).
auto_rel<T, I>& operator =(T* p2) { T* p3 = p; assign(p2); clear(p3); return(*this); }
// copy is also fast - must have copy otherwise compiler generates it
// and it doesn't correctly addref.
auto_rel<T, I>& operator =(const auto_rel<T, I>& p2) { T* p3 = p; assign(p2.p); clear(p3); return(*this); }
// QI if its not a T* - has to be void* rather than IUnknown since if
// T happens to be IUnknown it produces a conflict and won't compile.
auto_rel<T, I>& operator =(void* p2) { if(p2) { T* p3 = p; auto_hr hr = ((IUnknown*)p2)->QueryInterface(__uuidof(T), (void**)&p); clear(p3); } else { clear(p); p = 0; } return(*this); }
T& operator *() const { if(!p) { throw(E_POINTER); } return(*p); }
T* operator ->() const { if(!p) { throw(E_POINTER); } return(p); }
// CComPtr doesn't clear like we do for this one
T** operator &() { clear(p); p = 0; return(&p); }
T** Address() { return(&p); }
operator T*() { return(p); }
operator void*() { return((IUnknown*)p); }
operator bool() { return(!!p); } operator bool() const { return(!!p); }
bool operator !() { return(!p); } bool operator !() const { return(!p); }
bool operator ==(void* p2) { return(p == p2); } bool operator !=(void* p2) { return(p != p2); } bool operator ==(const auto_rel<T, I>& p2) { return p == p2.p; } bool operator <(const auto_rel<T, I>& p2) { return p < p2.p; }
T* p;
private: void clear(T* p2) { if(p2) { #ifdef DEBUG
ULONG cRef = #endif
((I*)p2)->Release(); } }
void assign(T* p2) { if(p = p2) { ((I*)p)->AddRef(); } }
};
// auto_os ********************************************************************
//
// Smart pointer for OS system calls.
class auto_os { public: auto_os() : dw(0) {}
auto_os& operator= (LONG rhs) { dw = rhs;
#ifdef _DEBUG_AUTOHR
if (debug().CheckOsFail()) throw (int)debug().m_pInfo->m_os; #endif
if (rhs) { #ifdef _DEBUG_AUTOHR
if (debug().m_pInfo->m_bDebugBreakOnError) #ifdef _M_IX86
__asm int 3; #else
DebugBreak(); #endif
#endif
throw (int)rhs; } return *this; }; auto_os& operator= (BOOL rhs) { dw = rhs;
#ifdef _DEBUG_AUTOHR
if (debug().CheckOsFail()) throw (int)(debug().m_pInfo->m_os); #endif
if (!rhs) { #ifdef _DEBUG_AUTOHR
if (debug().m_pInfo->m_bDebugBreakOnError) #ifdef _M_IX86
__asm int 3; #else
DebugBreak(); #endif
#endif
throw (int)GetLastError(); } return *this; };
operator LONG () { return dw; }
friend void operator| (BOOL b, auto_os& rhs) { rhs = b; }
friend void operator| (LONG l, auto_os& rhs) { rhs = l; } protected: DWORD dw; };
// auto_reg *******************************************************************
//
// Smart pointer for HKEY's
class auto_reg { public: auto_reg(HKEY p = 0) : h(p) {}; auto_reg(auto_reg& rhs) : h(rhs.release()) {};
~auto_reg() { if (h) RegCloseKey(h); };
auto_reg& operator= (auto_reg& rhs) { if (this != rhs.getThis()) reset (rhs.release() ); return *this; }; auto_reg& operator= (HKEY rhs) { if ((NULL == rhs) || (INVALID_HANDLE_VALUE == rhs)) { // be sure and go through auto_os for dbg.lib
auto_os os; os = (BOOL)FALSE; } reset (rhs); return *this; };
HKEY* operator& () { reset(); return &h; }; operator HKEY () { return h; }; // Checks for NULL
bool operator== (LPVOID lpv) { return h == lpv; }; bool operator!= (LPVOID lpv) { return h != lpv; };
// return value of current dumb pointer
HKEY get() const { return h; };
// relinquish ownership
HKEY release() { HKEY oldh = h; h = 0; return oldh; };
// delete owned pointer; assume ownership of p
BOOL reset (HKEY p = 0) { BOOL rt = TRUE;
if (h) rt = RegCloseKey(h); h = p; return rt; };
private: // operator& throws off operator=
const auto_reg* getThis() const { return this; };
HKEY h; };
// auto_pv ********************************************************************
//
// Smart pointer for PROPVARIANT's
//
// pretty minimal functionality, designed to provide auto release only
//
#ifdef __propidl_h__
class auto_pv : public ::tagPROPVARIANT { public: // Constructors
//
auto_pv() throw();
// Destructor
//
~auto_pv() throw();
// Low-level operations
//
void Clear() throw();
void Attach(PROPVARIANT& varSrc) throw(); PROPVARIANT Detach() throw();
bool Ownership(bool fOwns) { return _Owns = fOwns; }
protected: bool _Owns; };
// Default constructor
//
inline auto_pv::auto_pv() throw() : _Owns(true) { ::PropVariantInit(this); }
// destructor
inline auto_pv::~auto_pv() throw() { if(_Owns) ::PropVariantClear(this); else ::PropVariantInit(this); }
// Clear the auto_var
//
inline void auto_pv::Clear() throw() { if(_Owns) ::PropVariantClear(this); else ::PropVariantInit(this); }
inline void auto_pv::Attach(PROPVARIANT& varSrc) throw() { //
// Free up previous VARIANT
//
Clear();
//
// Give control of data to auto_var
//
memcpy(this, &varSrc, sizeof(varSrc)); varSrc.vt = VT_EMPTY; }
inline PROPVARIANT auto_pv::Detach() throw() { PROPVARIANT varResult = *this; this->vt = VT_EMPTY;
return varResult; } #endif
// auto_prg *******************************************************************
//
// Same as auto_ptr/pointer but for an array
// auto pointer to range
template<class _Ty> class auto_prg { public: typedef _Ty element_type;
explicit auto_prg(_Ty *_P = 0) _THROW0() : _Owns(_P != 0), _Ptr(_P) {} auto_prg(const auto_prg<_Ty>& _Y) _THROW0() : _Owns(_Y._Owns), _Ptr(_Y.release()) {} auto_prg<_Ty>& operator=(const auto_prg<_Ty>& _Y) _THROW0() {if (_Ptr != _Y.get()) {if (_Owns) delete [] _Ptr; _Owns = _Y._Owns; _Ptr = _Y.release(); } else if (_Y._Owns) _Owns = true; return (*this); } auto_prg<_Ty>& operator=(_Ty* _Y) _THROW0() { {if (_Owns) delete [] _Ptr; _Owns = _Y != 0; _Ptr = _Y; } return (*this); }
~auto_prg() {if (_Owns) delete [] _Ptr; } _Ty** operator&() _THROW0() { return &_Ptr; } operator _Ty* () const { return _Ptr; } _Ty& operator*() const _THROW0() {return (*get()); } _Ty *operator->() const _THROW0() {return (get()); } _Ty& operator[] (unsigned long ndx) const _THROW0() {return *(get() + ndx); } _Ty& operator[] (int ndx) const _THROW0() {return *(get() + ndx); } _Ty *get() const _THROW0() {return (_Ptr); } _Ty *release() const _THROW0() {((auto_prg<_Ty> *)this)->_Owns = false; return (_Ptr); } bool Ownership(bool fOwns) { return _Owns = fOwns; } protected: bool _Owns; _Ty *_Ptr; };
// pointer ********************************************************************
//
// Same as auto_ptr (with the operator's you normally use)
//
template<class _Ty> class pointer { public: typedef _Ty element_type;
explicit pointer(_Ty *_P = 0) _THROW0() : _Owns(_P != 0), _Ptr(_P) {} pointer(const pointer<_Ty>& _Y) _THROW0() : _Owns(_Y._Owns), _Ptr(_Y.release()) {} pointer<_Ty>& operator=(const pointer<_Ty>& _Y) _THROW0() {if (_Ptr != _Y.get()) {if (_Owns) delete _Ptr; _Owns = _Y._Owns; _Ptr = _Y.release(); } else if (_Y._Owns) _Owns = true; return (*this); } pointer<_Ty>& operator=(_Ty* _Y) _THROW0() { {if (_Owns) delete _Ptr; _Owns = _Y != 0; _Ptr = _Y; } return (*this); }
~pointer() {if (_Owns) delete _Ptr; } _Ty** operator&() _THROW0() { return &_Ptr; } operator _Ty* () const { return _Ptr; } _Ty& operator*() const _THROW0() {return (*get()); } _Ty *operator->() const _THROW0() {return (get()); } _Ty& operator[] (int ndx) const _THROW0() {return *(get() + ndx); } _Ty *get() const _THROW0() {return (_Ptr); } _Ty *release() const _THROW0() {((pointer<_Ty> *)this)->_Owns = false; return (_Ptr); } bool Ownership(bool fOwns) { return _Owns = fOwns; } protected: bool _Owns; _Ty *_Ptr; };
// auto_hr ********************************************************************
//
// Throws and HRESULT to keep from writing a thousand if (hr) ....
//
class auto_hr { public: auto_hr() : hr(S_OK) {} auto_hr(HRESULT rhs) { (*this) = rhs; }
auto_hr& operator= (HRESULT rhs) { hr = rhs;
#ifdef _DEBUG_AUTOHR
if (debug().CheckHrFail()) throw HRESULT (debug().m_pInfo->m_hr); #endif
if (FAILED(rhs)) { #ifdef _DEBUG_AUTOHR
if (debug().m_pInfo->m_bDebugBreakOnError) #ifdef _M_IX86
__asm int 3; #else
DebugBreak(); #endif
#endif
throw HRESULT(rhs); } return *this; };
operator HRESULT () { return hr; }
HRESULT operator <<(HRESULT h) { hr = h; return hr; }
protected: auto_hr& operator= (bool rhs) { return *this; } auto_hr& operator= (int rhs) { return *this; } auto_hr& operator= (ULONG rhs) { return *this; }
HRESULT hr; };
// auto_handle ****************************************************************
//
// Smart pointer for any HANDLE that needs a CloseHandle()
//
template<class T> class auto_handle;
// CHandleProxy
//
// By Proxy I mean this is just a mux for return values. C++ won't let you
// differentiate calls with just a different return value.
//
// You can return an object and have that implicitly cast to different values.
// Sneaky but it works well.
//
// The class will just be inlined out, and doesn't really have anything but a
// pointer.
template<class T> class CHandleProxy { public: CHandleProxy (auto_handle<T>& ah) : m_ah(ah) {}; CHandleProxy (const auto_handle<T>& ah) : m_ah(const_cast<auto_handle<T>&> (ah)) {}; operator T* () { return &m_ah.h; } operator const T* () const { return &m_ah.h; } operator auto_handle<T>* () { return &m_ah; }
protected: mutable auto_handle<T>& m_ah; };
template<class T> class auto_handle { public: auto_handle(T p = 0) : h(p) {}; auto_handle(const auto_handle<T>& rhs) : h(rhs.release()) {};
~auto_handle() { if (h && INVALID_HANDLE_VALUE != h) CloseHandle(h); };
auto_handle<T>& operator= (const auto_handle<T>& rhs) { if (this != rhs.getThis()) reset (rhs.release() ); return *this; }; auto_handle<T>& operator= (T rhs) { if ((NULL == rhs) || (INVALID_HANDLE_VALUE == rhs)) { // be sure and go through auto_os for dbg.lib
auto_os os; os = (BOOL)FALSE; } reset (rhs); return *this; };
CHandleProxy<T> operator& () { reset(); return CHandleProxy<T> (*this); }; // &h;
const CHandleProxy<T> operator& () const { return CHandleProxy<T> (*this); }; // &h;
operator T () { return h; }; // Checks for NULL
bool operator! () { return h == NULL; } operator bool() { return h != NULL; } bool operator== (LPVOID lpv) const { return h == lpv; }; bool operator!= (LPVOID lpv) const { return h != lpv; }; bool operator== (const auto_handle<T>& rhs) const { return h == rhs.h; }; bool operator< (const auto_handle<T>& rhs) const { return h < rhs.h; };
// return value of current dumb pointer
T get() const { return h; };
// relinquish ownership
T release() const { T oldh = h; h = 0; return oldh; };
// delete owned pointer; assume ownership of p
BOOL reset (T p = 0) { BOOL rt = TRUE;
if (h && INVALID_HANDLE_VALUE != h) rt = CloseHandle(h); h = p; return rt; };
private: friend class CHandleProxy<T>;
// operator& throws off operator=
const auto_handle<T> * getThis() const { return this; };
// mutable is needed for release call in ctor and copy ctor
mutable T h; };
// auto_imp *******************************************************************
//
// Impersonate a user and revert
//
#ifdef __ATLCONV_H__
class auto_imp { public: auto_imp() : m_hUser(0) { }
~auto_imp() { if(m_hUser) { RevertToSelf(); CloseHandle(m_hUser); } }
HRESULT Impersonate(LPOLESTR pszDomain, LPOLESTR pszName, LPOLESTR pszPassword) { HRESULT hr = S_OK; try { USES_CONVERSION; auto_os os; auto_handle<HANDLE> hUser;
os = LogonUser(OLE2T(pszName), OLE2T(pszDomain), pszPassword ? OLE2T(pszPassword) : _T(""), LOGON32_LOGON_INTERACTIVE, LOGON32_PROVIDER_DEFAULT, &hUser); os = ImpersonateLoggedOnUser(hUser); m_hUser = hUser.release(); } catch(HRESULT hrException) { hr = hrException; }
return(hr); } HRESULT Impersonate(LPOLESTR pszDomainName, LPOLESTR pszPassword) { LPOLESTR pszSeperator; _bstr_t sName; _bstr_t sDomain; pszSeperator = wcschr(pszDomainName, '\\'); if(pszSeperator) { *pszSeperator = 0; sDomain = pszDomainName; *pszSeperator = '\\'; sName = pszSeperator + 1; } else { sName = pszDomainName; }
return Impersonate(sDomain, sName, pszPassword); } protected: HANDLE m_hUser; }; #endif // __ATLCONV_H__
// auto_cs ********************************************************************
//
// Smart object for CriticalSections
#ifdef TRYENTRYCS
typedef BOOL (WINAPI *LPTRYENTERCRITICALSECTION)(LPCRITICAL_SECTION lpCriticalSection); static LPTRYENTERCRITICALSECTION g_pfnTryEnter = NULL; #endif
class auto_leave;
class auto_cs { public: auto_cs() { InitializeCriticalSection(&m_cs); #ifdef TRYENTRYCS
if (!g_pfnTryEnter) { HINSTANCE hinst = GetModuleHandleA("kernel32.dll"); if (INVALID_HANDLE_VALUE != hinst) { // note: GetProcAddress is ANSI only, there is no A flavor
g_pfnTryEnter = (LPTRYENTERCRITICALSECTION)GetProcAddress( hinst, "TryEnterCriticalSection"); } } #endif
}
~auto_cs() { DeleteCriticalSection(&m_cs); };
// return value of current dumb pointer
LPCRITICAL_SECTION get() { return &m_cs; };
LPCRITICAL_SECTION get() const { return (LPCRITICAL_SECTION)&m_cs; };
protected: CRITICAL_SECTION m_cs; };
// auto_leave *****************************************************************
//
// Smart LeaveCriticalSections
class auto_leave { public: auto_leave(auto_cs& cs) : m_ulCount(0), m_pcs(cs.get()) {} auto_leave(const auto_cs& cs) { m_ulCount =0; m_pcs = cs.get(); } ~auto_leave() { reset(); } auto_leave& operator=(auto_cs& cs) { reset(); m_pcs = cs.get(); return *this; }
void EnterCriticalSection() { ::EnterCriticalSection(m_pcs); m_ulCount++; } void LeaveCriticalSection() { if (m_ulCount) { m_ulCount--; ::LeaveCriticalSection(m_pcs); } } #ifdef TRYENTRYCS
BOOL TryEnterCriticalSection() { if (g_pfnTryEnter) { if ((*g_pfnTryEnter)(m_pcs)) { m_ulCount++; return TRUE; } return FALSE; } else { ::EnterCriticalSection(m_pcs); m_ulCount++; return TRUE; } } #endif
protected: void reset() { while (m_ulCount) { LeaveCriticalSection(); } m_pcs = 0; } ULONG m_ulCount; LPCRITICAL_SECTION m_pcs; };
class _bstr_t; class auto_var;
// auto_var *******************************************************************
//
// Wrapper class for VARIANT
//
// NOTE : the one included w/ C++ has mem leaks in op= and op&. Otherwise this
// is a direct copy
/*
* VARENUM usage key, * * * [V] - may appear in a VARIANT * * [T] - may appear in a TYPEDESC * * [P] - may appear in an OLE property set * * [S] - may appear in a Safe Array * * [C] - supported by class auto_var * * * VT_EMPTY [V] [P] nothing * VT_NULL [V] [P] SQL style Null * VT_I2 [V][T][P][S][C] 2 byte signed int * VT_I4 [V][T][P][S][C] 4 byte signed int * VT_R4 [V][T][P][S][C] 4 byte real * VT_R8 [V][T][P][S][C] 8 byte real * VT_CY [V][T][P][S][C] currency * VT_DATE [V][T][P][S][C] date * VT_BSTR [V][T][P][S][C] OLE Automation string * VT_DISPATCH [V][T][P][S][C] IDispatch * * VT_ERROR [V][T] [S][C] SCODE * VT_BOOL [V][T][P][S][C] True=-1, False=0 * VT_VARIANT [V][T][P][S] VARIANT * * VT_UNKNOWN [V][T] [S][C] IUnknown * * VT_DECIMAL [V][T] [S][C] 16 byte fixed point * VT_I1 [T] signed char * VT_UI1 [V][T][P][S][C] unsigned char * VT_UI2 [T][P] unsigned short * VT_UI4 [T][P] unsigned short * VT_I8 [T][P] signed 64-bit int * VT_UI8 [T][P] unsigned 64-bit int * VT_INT [T] signed machine int * VT_UINT [T] unsigned machine int * VT_VOID [T] C style void * VT_HRESULT [T] Standard return type * VT_PTR [T] pointer type * VT_SAFEARRAY [T] (use VT_ARRAY in VARIANT) * VT_CARRAY [T] C style array * VT_USERDEFINED [T] user defined type * VT_LPSTR [T][P] null terminated string * VT_LPWSTR [T][P] wide null terminated string * VT_FILETIME [P] FILETIME * VT_BLOB [P] Length prefixed bytes * VT_STREAM [P] Name of the stream follows * VT_STORAGE [P] Name of the storage follows * VT_STREAMED_OBJECT [P] Stream contains an object * VT_STORED_OBJECT [P] Storage contains an object * VT_BLOB_OBJECT [P] Blob contains an object * VT_CF [P] Clipboard format * VT_CLSID [P] A Class ID * VT_VECTOR [P] simple counted array * VT_ARRAY [V] SAFEARRAY* * VT_BYREF [V] void* for local use */
#if defined (__wtypes_h__) && defined(_INC_COMUTIL) // where VARIANT/_com_error is defined
class auto_var : public ::tagVARIANT { public: // Constructors
//
auto_var() throw();
auto_var(const VARIANT& varSrc) throw(_com_error); auto_var(const VARIANT* pSrc) throw(_com_error); auto_var(const auto_var& varSrc) throw(_com_error);
auto_var(VARIANT& varSrc, bool fCopy) throw(_com_error); // Attach VARIANT if !fCopy
auto_var(short sSrc, VARTYPE vtSrc = VT_I2) throw(_com_error); // Creates a VT_I2, or a VT_BOOL
auto_var(long lSrc, VARTYPE vtSrc = VT_I4) throw(_com_error); // Creates a VT_I4, a VT_ERROR, or a VT_BOOL
auto_var(float fltSrc) throw(); // Creates a VT_R4
auto_var(double dblSrc, VARTYPE vtSrc = VT_R8) throw(_com_error); // Creates a VT_R8, or a VT_DATE
auto_var(const CY& cySrc) throw(); // Creates a VT_CY
auto_var(const _bstr_t& bstrSrc) throw(_com_error); // Creates a VT_BSTR
auto_var(const wchar_t *pSrc) throw(_com_error); // Creates a VT_BSTR
auto_var(const char* pSrc) throw(_com_error); // Creates a VT_BSTR
auto_var(IDispatch* pSrc, bool fAddRef = true) throw(); // Creates a VT_DISPATCH
auto_var(bool bSrc) throw(); // Creates a VT_BOOL
auto_var(IUnknown* pSrc, bool fAddRef = true) throw(); // Creates a VT_UNKNOWN
auto_var(const DECIMAL& decSrc) throw(); // Creates a VT_DECIMAL
auto_var(BYTE bSrc) throw(); // Creates a VT_UI1
// Destructor
//
~auto_var() throw(_com_error);
// Extractors
//
operator short() const throw(_com_error); // Extracts a short from a VT_I2
operator long() const throw(_com_error); // Extracts a long from a VT_I4
operator float() const throw(_com_error); // Extracts a float from a VT_R4
operator double() const throw(_com_error); // Extracts a double from a VT_R8
operator CY() const throw(_com_error); // Extracts a CY from a VT_CY
operator _bstr_t() const throw(_com_error); // Extracts a _bstr_t from a VT_BSTR
operator IDispatch*() const throw(_com_error); // Extracts a IDispatch* from a VT_DISPATCH
operator bool() const throw(_com_error); // Extracts a bool from a VT_BOOL
operator IUnknown*() const throw(_com_error); // Extracts a IUnknown* from a VT_UNKNOWN
operator DECIMAL() const throw(_com_error); // Extracts a DECIMAL from a VT_DECIMAL
operator BYTE() const throw(_com_error); // Extracts a BTYE (unsigned char) from a VT_UI1
// Assignment operations
//
auto_var& operator=(const VARIANT& varSrc) throw(_com_error); auto_var& operator=(const VARIANT* pSrc) throw(_com_error); auto_var& operator=(const auto_var& varSrc) throw(_com_error);
auto_var& operator=(short sSrc) throw(_com_error); // Assign a VT_I2, or a VT_BOOL
auto_var& operator=(long lSrc) throw(_com_error); // Assign a VT_I4, a VT_ERROR or a VT_BOOL
auto_var& operator=(float fltSrc) throw(_com_error); // Assign a VT_R4
auto_var& operator=(double dblSrc) throw(_com_error); // Assign a VT_R8, or a VT_DATE
auto_var& operator=(const CY& cySrc) throw(_com_error); // Assign a VT_CY
auto_var& operator=(const _bstr_t& bstrSrc) throw(_com_error); // Assign a VT_BSTR
auto_var& operator=(const wchar_t* pSrc) throw(_com_error); // Assign a VT_BSTR
auto_var& operator=(const char* pSrc) throw(_com_error); // Assign a VT_BSTR
auto_var& operator=(IDispatch* pSrc) throw(_com_error); // Assign a VT_DISPATCH
auto_var& operator=(bool bSrc) throw(_com_error); // Assign a VT_BOOL
auto_var& operator=(IUnknown* pSrc) throw(_com_error); // Assign a VT_UNKNOWN
auto_var& operator=(const DECIMAL& decSrc) throw(_com_error); // Assign a VT_DECIMAL
auto_var& operator=(BYTE bSrc) throw(_com_error); // Assign a VT_UI1
// Comparison operations
//
bool operator==(const VARIANT& varSrc) const throw(_com_error); bool operator==(const VARIANT* pSrc) const throw(_com_error);
bool operator!=(const VARIANT& varSrc) const throw(_com_error); bool operator!=(const VARIANT* pSrc) const throw(_com_error);
// Low-level operations
//
void Clear() throw(_com_error);
void Attach(VARIANT& varSrc) throw(_com_error); VARIANT Detach() throw(_com_error);
void ChangeType(VARTYPE vartype, const auto_var* pSrc = NULL) throw(_com_error);
void SetString(const char* pSrc) throw(_com_error); // used to set ANSI string
};
//////////////////////////////////////////////////////////////////////////////////////////
//
// Constructors
//
//////////////////////////////////////////////////////////////////////////////////////////
// Default constructor
//
inline auto_var::auto_var() throw() { ::VariantInit(this); }
// Construct a auto_var from a const VARIANT&
//
inline auto_var::auto_var(const VARIANT& varSrc) throw(_com_error) { ::VariantInit(this); _com_util::CheckError(::VariantCopy(this, const_cast<VARIANT*>(&varSrc))); }
// Construct a auto_var from a const VARIANT*
//
inline auto_var::auto_var(const VARIANT* pSrc) throw(_com_error) { ::VariantInit(this); _com_util::CheckError(::VariantCopy(this, const_cast<VARIANT*>(pSrc))); }
// Construct a auto_var from a const auto_var&
//
inline auto_var::auto_var(const auto_var& varSrc) throw(_com_error) { ::VariantInit(this); _com_util::CheckError(::VariantCopy(this, const_cast<VARIANT*>(static_cast<const VARIANT*>(&varSrc)))); }
// Construct a auto_var from a VARIANT&. If fCopy is FALSE, give control of
// data to the auto_var without doing a VariantCopy.
//
inline auto_var::auto_var(VARIANT& varSrc, bool fCopy) throw(_com_error) { if (fCopy) { ::VariantInit(this); _com_util::CheckError(::VariantCopy(this, &varSrc)); } else { memcpy(this, &varSrc, sizeof(varSrc)); V_VT(&varSrc) = VT_EMPTY; } }
// Construct either a VT_I2 VARIANT or a VT_BOOL VARIANT from
// a short (the default is VT_I2)
//
inline auto_var::auto_var(short sSrc, VARTYPE vtSrc) throw(_com_error) { if ((vtSrc != VT_I2) && (vtSrc != VT_BOOL)) { _com_issue_error(E_INVALIDARG); }
if (vtSrc == VT_BOOL) { V_VT(this) = VT_BOOL; V_BOOL(this) = (sSrc ? VARIANT_TRUE : VARIANT_FALSE); } else { V_VT(this) = VT_I2; V_I2(this) = sSrc; } }
// Construct either a VT_I4 VARIANT, a VT_BOOL VARIANT, or a
// VT_ERROR VARIANT from a long (the default is VT_I4)
//
inline auto_var::auto_var(long lSrc, VARTYPE vtSrc) throw(_com_error) { if ((vtSrc != VT_I4) && (vtSrc != VT_ERROR) && (vtSrc != VT_BOOL)) { _com_issue_error(E_INVALIDARG); }
if (vtSrc == VT_ERROR) { V_VT(this) = VT_ERROR; V_ERROR(this) = lSrc; } else if (vtSrc == VT_BOOL) { V_VT(this) = VT_BOOL; V_BOOL(this) = (lSrc ? VARIANT_TRUE : VARIANT_FALSE); } else { V_VT(this) = VT_I4; V_I4(this) = lSrc; } }
// Construct a VT_R4 VARIANT from a float
//
inline auto_var::auto_var(float fltSrc) throw() { V_VT(this) = VT_R4; V_R4(this) = fltSrc; }
// Construct either a VT_R8 VARIANT, or a VT_DATE VARIANT from
// a double (the default is VT_R8)
//
inline auto_var::auto_var(double dblSrc, VARTYPE vtSrc) throw(_com_error) { if ((vtSrc != VT_R8) && (vtSrc != VT_DATE)) { _com_issue_error(E_INVALIDARG); }
if (vtSrc == VT_DATE) { V_VT(this) = VT_DATE; V_DATE(this) = dblSrc; } else { V_VT(this) = VT_R8; V_R8(this) = dblSrc; } }
// Construct a VT_CY from a CY
//
inline auto_var::auto_var(const CY& cySrc) throw() { V_VT(this) = VT_CY; V_CY(this) = cySrc; }
// Construct a VT_BSTR VARIANT from a const _bstr_t&
//
inline auto_var::auto_var(const _bstr_t& bstrSrc) throw(_com_error) { V_VT(this) = VT_BSTR;
BSTR bstr = static_cast<wchar_t*>(bstrSrc); V_BSTR(this) = ::SysAllocStringByteLen(reinterpret_cast<char*>(bstr), ::SysStringByteLen(bstr));
if (V_BSTR(this) == NULL) { _com_issue_error(E_OUTOFMEMORY); } }
// Construct a VT_BSTR VARIANT from a const wchar_t*
//
inline auto_var::auto_var(const wchar_t* pSrc) throw(_com_error) { V_VT(this) = VT_BSTR; V_BSTR(this) = ::SysAllocString(pSrc);
if (V_BSTR(this) == NULL && pSrc != NULL) { _com_issue_error(E_OUTOFMEMORY); } }
// Construct a VT_BSTR VARIANT from a const char*
//
inline auto_var::auto_var(const char* pSrc) throw(_com_error) { V_VT(this) = VT_BSTR; V_BSTR(this) = _com_util::ConvertStringToBSTR(pSrc);
if (V_BSTR(this) == NULL && pSrc != NULL) { _com_issue_error(E_OUTOFMEMORY); } }
// Construct a VT_DISPATCH VARIANT from an IDispatch*
//
inline auto_var::auto_var(IDispatch* pSrc, bool fAddRef) throw() { V_VT(this) = VT_DISPATCH; V_DISPATCH(this) = pSrc;
// Need the AddRef() as VariantClear() calls Release(), unless fAddRef
// false indicates we're taking ownership
//
if (fAddRef) { V_DISPATCH(this)->AddRef(); } }
// Construct a VT_BOOL VARIANT from a bool
//
inline auto_var::auto_var(bool bSrc) throw() { V_VT(this) = VT_BOOL; V_BOOL(this) = (bSrc ? VARIANT_TRUE : VARIANT_FALSE); }
// Construct a VT_UNKNOWN VARIANT from an IUnknown*
//
inline auto_var::auto_var(IUnknown* pSrc, bool fAddRef) throw() { V_VT(this) = VT_UNKNOWN; V_UNKNOWN(this) = pSrc;
// Need the AddRef() as VariantClear() calls Release(), unless fAddRef
// false indicates we're taking ownership
//
if (fAddRef) { V_UNKNOWN(this)->AddRef(); } }
// Construct a VT_DECIMAL VARIANT from a DECIMAL
//
inline auto_var::auto_var(const DECIMAL& decSrc) throw() { // Order is important here! Setting V_DECIMAL wipes out the entire VARIANT
//
V_DECIMAL(this) = decSrc; V_VT(this) = VT_DECIMAL; }
// Construct a VT_UI1 VARIANT from a BYTE (unsigned char)
//
inline auto_var::auto_var(BYTE bSrc) throw() { V_VT(this) = VT_UI1; V_UI1(this) = bSrc; }
//////////////////////////////////////////////////////////////////////////////////////////
//
// Extractors
//
//////////////////////////////////////////////////////////////////////////////////////////
// Extracts a VT_I2 into a short
//
inline auto_var::operator short() const throw(_com_error) { if (V_VT(this) == VT_I2) { return V_I2(this); }
auto_var varDest;
varDest.ChangeType(VT_I2, this);
return V_I2(&varDest); }
// Extracts a VT_I4 into a long
//
inline auto_var::operator long() const throw(_com_error) { if (V_VT(this) == VT_I4) { return V_I4(this); }
auto_var varDest;
varDest.ChangeType(VT_I4, this);
return V_I4(&varDest); }
// Extracts a VT_R4 into a float
//
inline auto_var::operator float() const throw(_com_error) { if (V_VT(this) == VT_R4) { return V_R4(this); }
auto_var varDest;
varDest.ChangeType(VT_R4, this);
return V_R4(&varDest); }
// Extracts a VT_R8 into a double
//
inline auto_var::operator double() const throw(_com_error) { if (V_VT(this) == VT_R8) { return V_R8(this); }
auto_var varDest;
varDest.ChangeType(VT_R8, this);
return V_R8(&varDest); }
// Extracts a VT_CY into a CY
//
inline auto_var::operator CY() const throw(_com_error) { if (V_VT(this) == VT_CY) { return V_CY(this); }
auto_var varDest;
varDest.ChangeType(VT_CY, this);
return V_CY(&varDest); }
// Extracts a VT_BSTR into a _bstr_t
//
inline auto_var::operator _bstr_t() const throw(_com_error) { if (V_VT(this) == VT_BSTR) { return V_BSTR(this); }
auto_var varDest;
varDest.ChangeType(VT_BSTR, this);
return V_BSTR(&varDest); }
// Extracts a VT_DISPATCH into an IDispatch*
//
inline auto_var::operator IDispatch*() const throw(_com_error) { if (V_VT(this) == VT_DISPATCH) { V_DISPATCH(this)->AddRef(); return V_DISPATCH(this); }
auto_var varDest;
varDest.ChangeType(VT_DISPATCH, this);
V_DISPATCH(&varDest)->AddRef(); return V_DISPATCH(&varDest); }
// Extract a VT_BOOL into a bool
//
inline auto_var::operator bool() const throw(_com_error) { if (V_VT(this) == VT_BOOL) { return V_BOOL(this) ? true : false; }
auto_var varDest;
varDest.ChangeType(VT_BOOL, this);
return V_BOOL(&varDest) ? true : false; }
// Extracts a VT_UNKNOWN into an IUnknown*
//
inline auto_var::operator IUnknown*() const throw(_com_error) { if (V_VT(this) == VT_UNKNOWN) { return V_UNKNOWN(this); }
auto_var varDest;
varDest.ChangeType(VT_UNKNOWN, this);
return V_UNKNOWN(&varDest); }
// Extracts a VT_DECIMAL into a DECIMAL
//
inline auto_var::operator DECIMAL() const throw(_com_error) { if (V_VT(this) == VT_DECIMAL) { return V_DECIMAL(this); }
auto_var varDest;
varDest.ChangeType(VT_DECIMAL, this);
return V_DECIMAL(&varDest); }
// Extracts a VT_UI1 into a BYTE (unsigned char)
//
inline auto_var::operator BYTE() const throw(_com_error) { if (V_VT(this) == VT_UI1) { return V_UI1(this); }
auto_var varDest;
varDest.ChangeType(VT_UI1, this);
return V_UI1(&varDest); }
//////////////////////////////////////////////////////////////////////////////////////////
//
// Assignment operations
//
//////////////////////////////////////////////////////////////////////////////////////////
// Assign a const VARIANT& (::VariantCopy handles everything)
//
inline auto_var& auto_var::operator=(const VARIANT& varSrc) throw(_com_error) { Clear(); _com_util::CheckError(::VariantCopy(this, const_cast<VARIANT*>(&varSrc)));
return *this; }
// Assign a const VARIANT* (::VariantCopy handles everything)
//
inline auto_var& auto_var::operator=(const VARIANT* pSrc) throw(_com_error) { Clear(); _com_util::CheckError(::VariantCopy(this, const_cast<VARIANT*>(pSrc)));
return *this; }
// Assign a const auto_var& (::VariantCopy handles everything)
//
inline auto_var& auto_var::operator=(const auto_var& varSrc) throw(_com_error) { Clear(); _com_util::CheckError(::VariantCopy(this, const_cast<VARIANT*>(static_cast<const VARIANT*>(&varSrc))));
return *this; }
// Assign a short creating either VT_I2 VARIANT or a
// VT_BOOL VARIANT (VT_I2 is the default)
//
inline auto_var& auto_var::operator=(short sSrc) throw(_com_error) { if (V_VT(this) == VT_I2) { V_I2(this) = sSrc; } else if (V_VT(this) == VT_BOOL) { V_BOOL(this) = (sSrc ? VARIANT_TRUE : VARIANT_FALSE); } else { // Clear the VARIANT and create a VT_I2
//
Clear();
V_VT(this) = VT_I2; V_I2(this) = sSrc; }
return *this; }
// Assign a long creating either VT_I4 VARIANT, a VT_ERROR VARIANT
// or a VT_BOOL VARIANT (VT_I4 is the default)
//
inline auto_var& auto_var::operator=(long lSrc) throw(_com_error) { if (V_VT(this) == VT_I4) { V_I4(this) = lSrc; } else if (V_VT(this) == VT_ERROR) { V_ERROR(this) = lSrc; } else if (V_VT(this) == VT_BOOL) { V_BOOL(this) = (lSrc ? VARIANT_TRUE : VARIANT_FALSE); } else { // Clear the VARIANT and create a VT_I4
//
Clear();
V_VT(this) = VT_I4; V_I4(this) = lSrc; }
return *this; }
// Assign a float creating a VT_R4 VARIANT
//
inline auto_var& auto_var::operator=(float fltSrc) throw(_com_error) { if (V_VT(this) != VT_R4) { // Clear the VARIANT and create a VT_R4
//
Clear();
V_VT(this) = VT_R4; }
V_R4(this) = fltSrc;
return *this; }
// Assign a double creating either a VT_R8 VARIANT, or a VT_DATE
// VARIANT (VT_R8 is the default)
//
inline auto_var& auto_var::operator=(double dblSrc) throw(_com_error) { if (V_VT(this) == VT_R8) { V_R8(this) = dblSrc; } else if(V_VT(this) == VT_DATE) { V_DATE(this) = dblSrc; } else { // Clear the VARIANT and create a VT_R8
//
Clear();
V_VT(this) = VT_R8; V_R8(this) = dblSrc; }
return *this; }
// Assign a CY creating a VT_CY VARIANT
//
inline auto_var& auto_var::operator=(const CY& cySrc) throw(_com_error) { if (V_VT(this) != VT_CY) { // Clear the VARIANT and create a VT_CY
//
Clear();
V_VT(this) = VT_CY; }
V_CY(this) = cySrc;
return *this; }
// Assign a const _bstr_t& creating a VT_BSTR VARIANT
//
inline auto_var& auto_var::operator=(const _bstr_t& bstrSrc) throw(_com_error) { // Clear the VARIANT (This will SysFreeString() any previous occupant)
//
Clear();
V_VT(this) = VT_BSTR;
if (!bstrSrc) { V_BSTR(this) = NULL; } else { BSTR bstr = static_cast<wchar_t*>(bstrSrc); V_BSTR(this) = ::SysAllocStringByteLen(reinterpret_cast<char*>(bstr), ::SysStringByteLen(bstr));
if (V_BSTR(this) == NULL) { _com_issue_error(E_OUTOFMEMORY); } }
return *this; }
// Assign a const wchar_t* creating a VT_BSTR VARIANT
//
inline auto_var& auto_var::operator=(const wchar_t* pSrc) throw(_com_error) { // Clear the VARIANT (This will SysFreeString() any previous occupant)
//
Clear();
V_VT(this) = VT_BSTR;
if (pSrc == NULL) { V_BSTR(this) = NULL; } else { V_BSTR(this) = ::SysAllocString(pSrc);
if (V_BSTR(this) == NULL) { _com_issue_error(E_OUTOFMEMORY); } }
return *this; }
// Assign a const char* creating a VT_BSTR VARIANT
//
inline auto_var& auto_var::operator=(const char* pSrc) throw(_com_error) { // Clear the VARIANT (This will SysFreeString() any previous occupant)
//
Clear();
V_VT(this) = VT_BSTR; V_BSTR(this) = _com_util::ConvertStringToBSTR(pSrc);
if (V_BSTR(this) == NULL && pSrc != NULL) { _com_issue_error(E_OUTOFMEMORY); }
return *this; }
// Assign an IDispatch* creating a VT_DISPATCH VARIANT
//
inline auto_var& auto_var::operator=(IDispatch* pSrc) throw(_com_error) { // Clear the VARIANT (This will Release() any previous occupant)
//
Clear();
V_VT(this) = VT_DISPATCH; V_DISPATCH(this) = pSrc;
// Need the AddRef() as VariantClear() calls Release()
//
V_DISPATCH(this)->AddRef();
return *this; }
// Assign a bool creating a VT_BOOL VARIANT
//
inline auto_var& auto_var::operator=(bool bSrc) throw(_com_error) { if (V_VT(this) != VT_BOOL) { // Clear the VARIANT and create a VT_BOOL
//
Clear();
V_VT(this) = VT_BOOL; }
V_BOOL(this) = (bSrc ? VARIANT_TRUE : VARIANT_FALSE);
return *this; }
// Assign an IUnknown* creating a VT_UNKNOWN VARIANT
//
inline auto_var& auto_var::operator=(IUnknown* pSrc) throw(_com_error) { // Clear VARIANT (This will Release() any previous occupant)
//
Clear();
V_VT(this) = VT_UNKNOWN; V_UNKNOWN(this) = pSrc;
// Need the AddRef() as VariantClear() calls Release()
//
V_UNKNOWN(this)->AddRef();
return *this; }
// Assign a DECIMAL creating a VT_DECIMAL VARIANT
//
inline auto_var& auto_var::operator=(const DECIMAL& decSrc) throw(_com_error) { if (V_VT(this) != VT_DECIMAL) { // Clear the VARIANT
//
Clear(); }
// Order is important here! Setting V_DECIMAL wipes out the entire VARIANT
V_DECIMAL(this) = decSrc; V_VT(this) = VT_DECIMAL;
return *this; }
// Assign a BTYE (unsigned char) creating a VT_UI1 VARIANT
//
inline auto_var& auto_var::operator=(BYTE bSrc) throw(_com_error) { if (V_VT(this) != VT_UI1) { // Clear the VARIANT and create a VT_UI1
//
Clear();
V_VT(this) = VT_UI1; }
V_UI1(this) = bSrc;
return *this; }
//////////////////////////////////////////////////////////////////////////////////////////
//
// Comparison operations
//
//////////////////////////////////////////////////////////////////////////////////////////
// Compare a auto_var against a const VARIANT& for equality
//
inline bool auto_var::operator==(const VARIANT& varSrc) const throw() { return *this == &varSrc; }
// Compare a auto_var against a const VARIANT* for equality
//
inline bool auto_var::operator==(const VARIANT* pSrc) const throw() { if (this == pSrc) { return true; }
//
// Variants not equal if types don't match
//
if (V_VT(this) != V_VT(pSrc)) { return false; }
//
// Check type specific values
//
switch (V_VT(this)) { case VT_EMPTY: case VT_NULL: return true;
case VT_I2: return V_I2(this) == V_I2(pSrc);
case VT_I4: return V_I4(this) == V_I4(pSrc);
case VT_R4: return V_R4(this) == V_R4(pSrc);
case VT_R8: return V_R8(this) == V_R8(pSrc);
case VT_CY: return memcmp(&(V_CY(this)), &(V_CY(pSrc)), sizeof(CY)) == 0;
case VT_DATE: return V_DATE(this) == V_DATE(pSrc);
case VT_BSTR: return (::SysStringByteLen(V_BSTR(this)) == ::SysStringByteLen(V_BSTR(pSrc))) && (memcmp(V_BSTR(this), V_BSTR(pSrc), ::SysStringByteLen(V_BSTR(this))) == 0);
case VT_DISPATCH: return V_DISPATCH(this) == V_DISPATCH(pSrc);
case VT_ERROR: return V_ERROR(this) == V_ERROR(pSrc);
case VT_BOOL: return V_BOOL(this) == V_BOOL(pSrc);
case VT_UNKNOWN: return V_UNKNOWN(this) == V_UNKNOWN(pSrc);
case VT_DECIMAL: return memcmp(&(V_DECIMAL(this)), &(V_DECIMAL(pSrc)), sizeof(DECIMAL)) == 0;
case VT_UI1: return V_UI1(this) == V_UI1(pSrc);
default: _com_issue_error(E_INVALIDARG); // fall through
}
return false; }
// Compare a auto_var against a const VARIANT& for in-equality
//
inline bool auto_var::operator!=(const VARIANT& varSrc) const throw() { return !(*this == &varSrc); }
// Compare a auto_var against a const VARIANT* for in-equality
//
inline bool auto_var::operator!=(const VARIANT* pSrc) const throw() { return !(*this == pSrc); }
//////////////////////////////////////////////////////////////////////////////////////////
//
// Low-level operations
//
//////////////////////////////////////////////////////////////////////////////////////////
// Clear the auto_var
//
inline void auto_var::Clear() throw(_com_error) { _com_util::CheckError(::VariantClear(this)); }
inline void auto_var::Attach(VARIANT& varSrc) throw(_com_error) { //
// Free up previous VARIANT
//
Clear();
//
// Give control of data to auto_var
//
memcpy(this, &varSrc, sizeof(varSrc)); V_VT(&varSrc) = VT_EMPTY; }
inline VARIANT auto_var::Detach() throw(_com_error) { VARIANT varResult = *this; V_VT(this) = VT_EMPTY;
return varResult; }
// Change the type and contents of this auto_var to the type vartype and
// contents of pSrc
//
inline void auto_var::ChangeType(VARTYPE vartype, const auto_var* pSrc) throw(_com_error) { //
// If pDest is NULL, convert type in place
//
if (pSrc == NULL) { pSrc = this; }
if ((this != pSrc) || (vartype != V_VT(this))) { _com_util::CheckError(::VariantChangeType(static_cast<VARIANT*>(this), const_cast<VARIANT*>(static_cast<const VARIANT*>(pSrc)), 0, vartype)); } }
inline void auto_var::SetString(const char* pSrc) throw(_com_error) { //
// Free up previous VARIANT
//
Clear();
V_VT(this) = VT_BSTR; V_BSTR(this) = _com_util::ConvertStringToBSTR(pSrc);
if (V_BSTR(this) == NULL && pSrc != NULL) { _com_issue_error(E_OUTOFMEMORY); } }
inline auto_var::~auto_var() throw(_com_error) { _com_util::CheckError(::VariantClear(this)); } #endif // __wtypes_h__
// auto_internet **************************************************************
//
// Smart Pointers for HINTERNET
#ifdef _WININET_
class auto_internet { public: explicit auto_internet(HINTERNET p = 0) : m_p(p) {}; auto_internet(auto_internet& rhs) : m_p(rhs.release()) {};
~auto_internet() { reset(); };
auto_internet& operator= (auto_internet& rhs) { if (this != rhs.getThis()) reset (rhs.release() ); return *this; };
auto_internet& operator= (HINTERNET rhs) { reset (rhs); return *this; }; // HINTERNET operator*() const
// { return m_p; };
// void** operator& ()
// { reset(); return (void**)&m_p; };
operator HINTERNET () { return m_p; }; // Checks for NULL
BOOL operator== (LPVOID lpv) { return m_p == lpv; }; BOOL operator!= (LPVOID lpv) { return m_p != lpv; };
// return value of current dumb pointer
HINTERNET get() const { return m_p; };
// relinquish ownership
HINTERNET release() { HINTERNET oldp = m_p; m_p = 0; return oldp; };
// delete owned pointer; assume ownership of p
void reset (HINTERNET p = 0) { if (m_p) InternetCloseHandle(m_p); m_p = p; };
private: // operator& throws off operator=
const auto_internet* getThis() const { return this; };
HINTERNET m_p; }; #endif // _WININET_
// auto_virt ******************************************************************
//
// Smart Pointers for memory freed with VirtualFree
#ifdef _WINBASE_
template<class _Ty> class auto_virt { public: typedef _Ty element_type;
explicit auto_virt(_Ty *_P = 0) _THROW0() : _Owns(_P != 0), _Ptr(_P) {} auto_virt(const auto_virt<_Ty>& _Y) _THROW0() : _Owns(_Y._Owns), _Ptr(_Y.release()) {} auto_virt<_Ty>& operator=(const auto_virt<_Ty>& _Y) _THROW0() {if (_Ptr != _Y.get()) {if (_Owns && _Ptr) VirtualFree(_Ptr); _Owns = _Y._Owns; _Ptr = _Y.release(); } else if (_Y._Owns) _Owns = true; return (*this); } auto_virt<_Ty>& operator=(_Ty* _Y) _THROW0() { {if (_Owns && _Ptr) VirtualFree(_Ptr,0,MEM_RELEASE); _Owns = _Y != 0; _Ptr = _Y; } return (*this); }
~auto_virt() {if (_Owns && _Ptr) VirtualFree(_Ptr,0,MEM_RELEASE);} _Ty** operator&() _THROW0() {if (_Owns && _Ptr) VirtualFree(_Ptr,0,MEM_RELEASE); _Owns = true; _Ptr = 0; return &_Ptr; } operator _Ty* () const { return _Ptr; } _Ty& operator*() const _THROW0() {return (*get()); } _Ty *operator->() const _THROW0() {return (get()); } _Ty& operator[] (int ndx) const _THROW0() {return *(get() + ndx); } _Ty *get() const _THROW0() {return (_Ptr); } _Ty *release() const _THROW0() {((auto_virt<_Ty> *)this)->_Owns = false; return (_Ptr); } bool Ownership(bool fOwns) { return _Owns = fOwns; } protected: bool _Owns; _Ty *_Ptr; }; #endif // _WINBASE_
// RCObject *******************************************************************
//
// Smart objects for reference counting
class RCObject { public: void addReference() { ++refCount; } void removeReference() { if (--refCount == 0) delete this; }
void markUnshareable() { shareable = FALSE; }
BOOL isShareable() const { return shareable; }
BOOL isShared() const { return refCount > 1; }
protected: RCObject() : refCount(0), shareable(TRUE) {};
RCObject(const RCObject& rhs) : refCount(0), shareable(TRUE) {}; RCObject& operator= (const RCObject& rhs) { return *this; } virtual ~RCObject() {};
private: int refCount; BOOL shareable; };
// RCPtr **********************************************************************
//
// Smart Pointers for reference counting, use w/ RCObject
template<class T> class RCPtr { public: RCPtr(T* realPtr = 0); RCPtr(const RCPtr&rhs); ~RCPtr();
RCPtr& operator=(const RCPtr& rhs);
BOOL operator==(const RCPtr&rhs) const; BOOL operator< (const RCPtr&rhs) const; BOOL operator> (const RCPtr&rhs) const; operator bool(void) const;
T* operator->() const; T& operator*() const; T* get(void) const;
protected: T* pointee;
void init(); };
template<class T> void RCPtr<T>::init () { if (pointee == 0) return;
if (pointee->isShareable() == FALSE) { pointee = new T(*pointee); }
pointee->addReference(); }
template<class T> RCPtr<T>::RCPtr (T* realPtr) : pointee(realPtr) { init(); }
template<class T> RCPtr<T>::RCPtr (const RCPtr& rhs) : pointee(rhs.pointee) { init(); }
template<class T> RCPtr<T>::~RCPtr() { if (pointee) pointee->removeReference(); }
template<class T> RCPtr<T>& RCPtr<T>::operator= (const RCPtr<T>& rhs) { if (pointee != rhs.pointee) { if (pointee) pointee->removeReference();
pointee = rhs.pointee;
init(); }
return *this; }
template<class T> BOOL RCPtr<T>::operator==(const RCPtr&rhs) const { return pointee == rhs.pointee; }
template<class T> BOOL RCPtr<T>::operator< (const RCPtr&rhs) const { return pointee < rhs.pointee; }
template<class T> BOOL RCPtr<T>::operator> (const RCPtr&rhs) const { return pointee > rhs.pointee; }
template<class T> T* RCPtr<T>::operator->() const { return pointee; }
template<class T> T& RCPtr<T>::operator*() const { return *pointee; }
template<class T> RCPtr<T>::operator bool(void) const { return pointee != NULL; }
template<class T> T* RCPtr<T>::get(void) const { return pointee; }
// auto_menu ******************************************************************
//
// Smart Pointers for DestroyMenu
// auto_reg *******************************************************************
//
// Smart pointer for HKEY's
class auto_menu { public: auto_menu(HMENU p = 0) : h(p) {}; auto_menu(auto_menu& rhs) : h(rhs.release()) {};
~auto_menu() { if (h) DestroyMenu(h); };
auto_menu& operator= (auto_menu& rhs) { if (this != rhs.getThis()) reset (rhs.release() ); return *this; }; auto_menu& operator= (HMENU rhs) { if ((NULL == rhs) || (INVALID_HANDLE_VALUE == rhs)) { // be sure and go through auto_os for dbg.lib
auto_os os; os = (BOOL)FALSE; } reset (rhs); return *this; };
HMENU* operator& () { reset(); return &h; }; operator HMENU () { return h; }; // Checks for NULL
bool operator== (LPVOID lpv) { return h == lpv; }; bool operator!= (LPVOID lpv) { return h != lpv; };
// return value of current dumb pointer
HMENU get() const { return h; };
// relinquish ownership
HMENU release() { HMENU oldh = h; h = 0; return oldh; };
// delete owned pointer; assume ownership of p
BOOL reset (HMENU p = 0) { BOOL rt = TRUE;
if (h) rt = DestroyMenu(h); h = p; return rt; };
private: // operator& throws off operator=
const auto_menu* getThis() const { return this; };
HMENU h; };
|