Source code of Windows XP (NT5)
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

2621 lines
55 KiB

// autoall.h
//
// A plethora of smart pointers / objects
//
// INDEX:
// auto_bstr - BSTR
// auto_tm - CoTaskFreeMemory
// auto_sid - FreeSid
// auto_sa - SafeArray
// auto_rel - COM
// auto_reg - HKEY
// auto_pv - PROPVARIANT
// auto_prg - [] delete (pointer to range)
// pointer - delete
// auto_hr - throw HRESULT
// auto_os - throw DWORD
// auto_imp - Impersonation / Rever
// auto_handle - HANDLE
// auto_cs - CriticalSection
// auto_leave - LeaveCriticalSection
// auto_var - VARIANT
// auto_virt - VirtualFree
// RCObject - Reference counting
// RCPtr<T>
// auto_menu - DestroyMenu
//
// History:
// 1/25/99 anbrad Unified from many differnt files created over the ages
// 2/8/99 anbrad added auto_menu
// auto_bstr ******************************************************************
//
// Smart Pointers for BSTR
#pragma once
#include <xstddef>
// Forward declarations
//
// If you get class not defined you may just need to include a file or two.
// These are listed below.
class auto_bstr; // (oleauto.h) __wtypes_h__
template<class _Ty>
class auto_tm; //
class auto_sid; //
class auto_sa; // (ole2.h) __oaidl_h__
template<class T, class I = T>
class auto_rel; //
class auto_reg; //
class auto_pv; // (propidl.h) __propidl_h__
template<class _Ty>
class auto_prg; //
template<class _Ty>
class pointer; //
class auto_hr; //
class auto_os; //
class auto_imp; // (atlconv.h) __ATLCONV_H__
template<class T>
class auto_handle; //
class auto_cs; //
class auto_leave; //
class auto_var; // (oleauto.h) __wtypes_h__ && (comutil.h) _INC_COMUTIL
template<class _Ty>
class auto_virt; // (winbase.h)
class auto_menu;
#if defined (__wtypes_h__)
class auto_bstr
{
public:
auto_bstr( BSTR b= 0, bool o= true)
: _bstr(b), _Owns(o)
{}
~auto_bstr()
{
if(_bstr && _Owns)
::SysFreeString(_bstr);
}
bool Ownership(bool fOwns)
{ return _Owns = fOwns; }
operator BSTR() { return _bstr; }
operator const BSTR() const { return _bstr; }
BSTR* operator &() {return &_bstr; }
auto_bstr& operator=(auto_bstr& rhs)
{
if(_bstr == rhs._bstr)
return *this;
clear();
_Owns= rhs._Owns;
_bstr= rhs.release();
return *this;
}
auto_bstr& operator=(BSTR bstr)
{
clear();
_bstr= bstr;
_Owns= true;
return *this;
}
operator bool()
{ return NULL != _bstr; }
operator !()
{ return NULL == _bstr; }
WCHAR operator[] (int index)
{ return _bstr[index]; }
void clear()
{
if(_bstr && _Owns)
{
::SysFreeString(_bstr);
}
_bstr= NULL;
}
BSTR release()
{
BSTR bstr= _bstr;
_bstr= NULL;
return bstr;
}
protected:
bool _Owns;
BSTR _bstr;
};
#endif // __wtypes_h__
// auto_tm ********************************************************************
//
// Smart Pointers for memory freed with CoTaskFreeMem
template<class _Ty>
class auto_tm
{
public:
typedef _Ty element_type;
explicit auto_tm(_Ty *_P = 0) _THROW0()
: _Owns(_P != 0), _Ptr(_P) {}
auto_tm(const auto_tm<_Ty>& _Y) _THROW0()
: _Owns(_Y._Owns), _Ptr(_Y.release()) {}
auto_tm<_Ty>& operator=(const auto_tm<_Ty>& _Y) _THROW0()
{if (_Ptr != _Y.get())
{if (_Owns && _Ptr)
CoTaskMemFree(_Ptr);
_Owns = _Y._Owns;
_Ptr = _Y.release(); }
else if (_Y._Owns)
_Owns = true;
return (*this); }
auto_tm<_Ty>& operator=(_Ty* _Y) _THROW0()
{ {if (_Owns && _Ptr)
CoTaskMemFree(_Ptr);
_Owns = _Y != 0;
_Ptr = _Y; }
return (*this); }
~auto_tm()
{if (_Owns && _Ptr)
CoTaskMemFree(_Ptr);}
_Ty** operator&() _THROW0()
{if (_Owns && _Ptr)
CoTaskMemFree(_Ptr);
_Owns = true;
_Ptr = 0;
return &_Ptr;
}
operator _Ty* () const
{ return _Ptr; }
_Ty& operator*() const _THROW0()
{return (*get()); }
_Ty *operator->() const _THROW0()
{return (get()); }
_Ty& operator[] (int ndx) const _THROW0()
{return *(get() + ndx); }
_Ty *get() const _THROW0()
{return (_Ptr); }
_Ty *release() const _THROW0()
{((auto_tm<_Ty> *)this)->_Owns = false;
return (_Ptr); }
bool Ownership(bool fOwns)
{ return _Owns = fOwns; }
protected:
bool _Owns;
_Ty *_Ptr;
};
// auto_sid *******************************************************************
//
// Smart Pointers for SID's (Security ID's)
class auto_sid
{
public:
explicit auto_sid(SID* p = 0)
: m_psid(p) {};
auto_sid(auto_sid& rhs)
: m_psid(rhs.release()) {};
~auto_sid()
{ reset(); };
auto_sid& operator= (auto_sid& rhs)
{ if (this != rhs.getThis())
reset (rhs.release() );
return *this;
};
SID operator*() const
{ return *m_psid; };
void** operator& ()
{ reset(); return (void**)&m_psid; };
operator SID* ()
{ return m_psid; };
// Checks for NULL
BOOL operator== (LPVOID lpv)
{ return m_psid == lpv; };
BOOL operator!= (LPVOID lpv)
{ return m_psid != lpv; };
// return value of current dumb pointer
SID* get() const
{ return m_psid; };
// relinquish ownership
SID* release()
{ SID* oldpsid = m_psid;
m_psid = 0;
return oldpsid;
};
// delete owned pointer; assume ownership of p
void reset (SID* p = 0)
{
if (m_psid)
FreeSid(m_psid);
m_psid = p;
};
private:
// operator& throws off operator=
const auto_sid* getThis() const
{ return this; };
SID* m_psid;
};
// auto_sa ********************************************************************
//
// Smart Pointers for SafeArray's (those VB arrays)
#ifdef __oaidl_h__
class auto_sa
{
public:
auto_sa()
: _psa(0),
_Owns(true)
{}
~auto_sa()
{
if(_psa && _Owns)
{
_psa->cLocks= 0;
::SafeArrayDestroy(_psa);
}
}
bool Ownership(bool fOwns)
{ return _Owns = fOwns; }
operator SAFEARRAY *() { return _psa; }
operator const SAFEARRAY *() const { return _psa; }
auto_sa& operator=(auto_sa& rhs)
{
if(_psa == rhs._psa)
return *this;
clear();
_Owns= rhs._Owns;
_psa= rhs.release();
return *this;
}
auto_sa& operator=(SAFEARRAY* psa)
{
clear();
_psa= psa;
_Owns= true;
return *this;
}
operator bool()
{ return NULL != _psa; }
operator !()
{ return NULL == _psa; }
void clear()
{
if(_psa && _Owns)
{
_psa->cLocks= 0;
::SafeArrayDestroy(_psa);
}
_psa= NULL;
}
SAFEARRAY* release()
{
SAFEARRAY* psa= _psa;
_psa= NULL;
return psa;
}
protected:
SAFEARRAY *_psa;
bool _Owns;
};
#endif
// auto_rel *******************************************************************
//
// Smart pointer for COM interfaces
//
// class I - Multi-Inheritance casting for ATL type classes
// ergo C2385 - T::Release() is ambiguous
template<class T, class I = T>
class auto_rel
{
public:
auto_rel()
{
p = 0;
}
auto_rel(T* p2)
{
assign(p2);
}
auto_rel(const auto_rel<T, I>& p2)
{
assign(p2.p);
}
auto_rel(void* p2)
{
if(p2)
{
auto_hr hr = ((IUnknown*)p2)->QueryInterface(__uuidof(T), (void**)&p);
}
else
{
p = 0;
}
}
~auto_rel()
{
clear(p);
}
// for the NULL case - have to have int explicitly or it won't compile
// due to an ambiguous conversion (can't decide between T* and void*).
auto_rel<T, I>& operator =(int p2)
{
clear(p);
p = 0;
return(*this);
}
// normal case is nice and fast - do the assign before the clear in case
// p2 == p (so we don't accidentally delete it if we hold the only ref).
auto_rel<T, I>& operator =(T* p2)
{
T* p3 = p;
assign(p2);
clear(p3);
return(*this);
}
// copy is also fast - must have copy otherwise compiler generates it
// and it doesn't correctly addref.
auto_rel<T, I>& operator =(const auto_rel<T, I>& p2)
{
T* p3 = p;
assign(p2.p);
clear(p3);
return(*this);
}
// QI if its not a T* - has to be void* rather than IUnknown since if
// T happens to be IUnknown it produces a conflict and won't compile.
auto_rel<T, I>& operator =(void* p2)
{
if(p2)
{
T* p3 = p;
auto_hr hr = ((IUnknown*)p2)->QueryInterface(__uuidof(T), (void**)&p);
clear(p3);
}
else
{
clear(p);
p = 0;
}
return(*this);
}
T& operator *() const
{
if(!p)
{
throw(E_POINTER);
}
return(*p);
}
T* operator ->() const
{
if(!p)
{
throw(E_POINTER);
}
return(p);
}
// CComPtr doesn't clear like we do for this one
T** operator &()
{
clear(p);
p = 0;
return(&p);
}
T** Address()
{
return(&p);
}
operator T*()
{
return(p);
}
operator void*()
{
return((IUnknown*)p);
}
operator bool()
{
return(!!p);
}
operator bool() const
{
return(!!p);
}
bool operator !()
{
return(!p);
}
bool operator !() const
{
return(!p);
}
bool operator ==(void* p2)
{
return(p == p2);
}
bool operator !=(void* p2)
{
return(p != p2);
}
bool operator ==(const auto_rel<T, I>& p2)
{
return p == p2.p;
}
bool operator <(const auto_rel<T, I>& p2)
{
return p < p2.p;
}
T* p;
private:
void clear(T* p2)
{
if(p2)
{
#ifdef DEBUG
ULONG cRef =
#endif
((I*)p2)->Release();
}
}
void assign(T* p2)
{
if(p = p2)
{
((I*)p)->AddRef();
}
}
};
// auto_os ********************************************************************
//
// Smart pointer for OS system calls.
class auto_os
{
public:
auto_os() : dw(0) {}
auto_os& operator= (LONG rhs)
{
dw = rhs;
#ifdef _DEBUG_AUTOHR
if (debug().CheckOsFail())
throw (int)debug().m_pInfo->m_os;
#endif
if (rhs)
{
#ifdef _DEBUG_AUTOHR
if (debug().m_pInfo->m_bDebugBreakOnError)
#ifdef _M_IX86
__asm int 3;
#else
DebugBreak();
#endif
#endif
throw (int)rhs;
}
return *this;
};
auto_os& operator= (BOOL rhs)
{
dw = rhs;
#ifdef _DEBUG_AUTOHR
if (debug().CheckOsFail())
throw (int)(debug().m_pInfo->m_os);
#endif
if (!rhs)
{
#ifdef _DEBUG_AUTOHR
if (debug().m_pInfo->m_bDebugBreakOnError)
#ifdef _M_IX86
__asm int 3;
#else
DebugBreak();
#endif
#endif
throw (int)GetLastError();
}
return *this;
};
operator LONG ()
{ return dw; }
friend void operator| (BOOL b, auto_os& rhs)
{
rhs = b;
}
friend void operator| (LONG l, auto_os& rhs)
{
rhs = l;
}
protected:
DWORD dw;
};
// auto_reg *******************************************************************
//
// Smart pointer for HKEY's
class auto_reg
{
public:
auto_reg(HKEY p = 0)
: h(p) {};
auto_reg(auto_reg& rhs)
: h(rhs.release()) {};
~auto_reg()
{ if (h) RegCloseKey(h); };
auto_reg& operator= (auto_reg& rhs)
{ if (this != rhs.getThis())
reset (rhs.release() );
return *this;
};
auto_reg& operator= (HKEY rhs)
{ if ((NULL == rhs) || (INVALID_HANDLE_VALUE == rhs))
{ // be sure and go through auto_os for dbg.lib
auto_os os;
os = (BOOL)FALSE;
}
reset (rhs);
return *this;
};
HKEY* operator& ()
{ reset(); return &h; };
operator HKEY ()
{ return h; };
// Checks for NULL
bool operator== (LPVOID lpv)
{ return h == lpv; };
bool operator!= (LPVOID lpv)
{ return h != lpv; };
// return value of current dumb pointer
HKEY get() const
{ return h; };
// relinquish ownership
HKEY release()
{ HKEY oldh = h;
h = 0;
return oldh;
};
// delete owned pointer; assume ownership of p
BOOL reset (HKEY p = 0)
{
BOOL rt = TRUE;
if (h)
rt = RegCloseKey(h);
h = p;
return rt;
};
private:
// operator& throws off operator=
const auto_reg* getThis() const
{ return this; };
HKEY h;
};
// auto_pv ********************************************************************
//
// Smart pointer for PROPVARIANT's
//
// pretty minimal functionality, designed to provide auto release only
//
#ifdef __propidl_h__
class auto_pv : public ::tagPROPVARIANT {
public:
// Constructors
//
auto_pv() throw();
// Destructor
//
~auto_pv() throw();
// Low-level operations
//
void Clear() throw();
void Attach(PROPVARIANT& varSrc) throw();
PROPVARIANT Detach() throw();
bool Ownership(bool fOwns)
{ return _Owns = fOwns; }
protected:
bool _Owns;
};
// Default constructor
//
inline auto_pv::auto_pv() throw()
: _Owns(true)
{
::PropVariantInit(this);
}
// destructor
inline auto_pv::~auto_pv() throw()
{
if(_Owns)
::PropVariantClear(this);
else
::PropVariantInit(this);
}
// Clear the auto_var
//
inline void auto_pv::Clear() throw()
{
if(_Owns)
::PropVariantClear(this);
else
::PropVariantInit(this);
}
inline void auto_pv::Attach(PROPVARIANT& varSrc) throw()
{
//
// Free up previous VARIANT
//
Clear();
//
// Give control of data to auto_var
//
memcpy(this, &varSrc, sizeof(varSrc));
varSrc.vt = VT_EMPTY;
}
inline PROPVARIANT auto_pv::Detach() throw()
{
PROPVARIANT varResult = *this;
this->vt = VT_EMPTY;
return varResult;
}
#endif
// auto_prg *******************************************************************
//
// Same as auto_ptr/pointer but for an array
// auto pointer to range
template<class _Ty>
class auto_prg
{
public:
typedef _Ty element_type;
explicit auto_prg(_Ty *_P = 0) _THROW0()
: _Owns(_P != 0), _Ptr(_P) {}
auto_prg(const auto_prg<_Ty>& _Y) _THROW0()
: _Owns(_Y._Owns), _Ptr(_Y.release()) {}
auto_prg<_Ty>& operator=(const auto_prg<_Ty>& _Y) _THROW0()
{if (_Ptr != _Y.get())
{if (_Owns)
delete [] _Ptr;
_Owns = _Y._Owns;
_Ptr = _Y.release(); }
else if (_Y._Owns)
_Owns = true;
return (*this); }
auto_prg<_Ty>& operator=(_Ty* _Y) _THROW0()
{ {if (_Owns)
delete [] _Ptr;
_Owns = _Y != 0;
_Ptr = _Y; }
return (*this); }
~auto_prg()
{if (_Owns)
delete [] _Ptr; }
_Ty** operator&() _THROW0()
{ return &_Ptr; }
operator _Ty* () const
{ return _Ptr; }
_Ty& operator*() const _THROW0()
{return (*get()); }
_Ty *operator->() const _THROW0()
{return (get()); }
_Ty& operator[] (unsigned long ndx) const _THROW0()
{return *(get() + ndx); }
_Ty& operator[] (int ndx) const _THROW0()
{return *(get() + ndx); }
_Ty *get() const _THROW0()
{return (_Ptr); }
_Ty *release() const _THROW0()
{((auto_prg<_Ty> *)this)->_Owns = false;
return (_Ptr); }
bool Ownership(bool fOwns)
{ return _Owns = fOwns; }
protected:
bool _Owns;
_Ty *_Ptr;
};
// pointer ********************************************************************
//
// Same as auto_ptr (with the operator's you normally use)
//
template<class _Ty>
class pointer
{
public:
typedef _Ty element_type;
explicit pointer(_Ty *_P = 0) _THROW0()
: _Owns(_P != 0), _Ptr(_P) {}
pointer(const pointer<_Ty>& _Y) _THROW0()
: _Owns(_Y._Owns), _Ptr(_Y.release()) {}
pointer<_Ty>& operator=(const pointer<_Ty>& _Y) _THROW0()
{if (_Ptr != _Y.get())
{if (_Owns)
delete _Ptr;
_Owns = _Y._Owns;
_Ptr = _Y.release(); }
else if (_Y._Owns)
_Owns = true;
return (*this); }
pointer<_Ty>& operator=(_Ty* _Y) _THROW0()
{ {if (_Owns)
delete _Ptr;
_Owns = _Y != 0;
_Ptr = _Y; }
return (*this); }
~pointer()
{if (_Owns)
delete _Ptr; }
_Ty** operator&() _THROW0()
{ return &_Ptr; }
operator _Ty* () const
{ return _Ptr; }
_Ty& operator*() const _THROW0()
{return (*get()); }
_Ty *operator->() const _THROW0()
{return (get()); }
_Ty& operator[] (int ndx) const _THROW0()
{return *(get() + ndx); }
_Ty *get() const _THROW0()
{return (_Ptr); }
_Ty *release() const _THROW0()
{((pointer<_Ty> *)this)->_Owns = false;
return (_Ptr); }
bool Ownership(bool fOwns)
{ return _Owns = fOwns; }
protected:
bool _Owns;
_Ty *_Ptr;
};
// auto_hr ********************************************************************
//
// Throws and HRESULT to keep from writing a thousand if (hr) ....
//
class auto_hr
{
public:
auto_hr() : hr(S_OK) {}
auto_hr(HRESULT rhs)
{
(*this) = rhs;
}
auto_hr& operator= (HRESULT rhs)
{
hr = rhs;
#ifdef _DEBUG_AUTOHR
if (debug().CheckHrFail())
throw HRESULT (debug().m_pInfo->m_hr);
#endif
if (FAILED(rhs))
{
#ifdef _DEBUG_AUTOHR
if (debug().m_pInfo->m_bDebugBreakOnError)
#ifdef _M_IX86
__asm int 3;
#else
DebugBreak();
#endif
#endif
throw HRESULT(rhs);
}
return *this;
};
operator HRESULT ()
{ return hr; }
HRESULT operator <<(HRESULT h)
{
hr = h;
return hr;
}
protected:
auto_hr& operator= (bool rhs) { return *this; }
auto_hr& operator= (int rhs) { return *this; }
auto_hr& operator= (ULONG rhs) { return *this; }
HRESULT hr;
};
// auto_handle ****************************************************************
//
// Smart pointer for any HANDLE that needs a CloseHandle()
//
template<class T> class auto_handle;
// CHandleProxy
//
// By Proxy I mean this is just a mux for return values. C++ won't let you
// differentiate calls with just a different return value.
//
// You can return an object and have that implicitly cast to different values.
// Sneaky but it works well.
//
// The class will just be inlined out, and doesn't really have anything but a
// pointer.
template<class T>
class CHandleProxy
{
public:
CHandleProxy (auto_handle<T>& ah) :
m_ah(ah) {};
CHandleProxy (const auto_handle<T>& ah) :
m_ah(const_cast<auto_handle<T>&> (ah)) {};
operator T* () { return &m_ah.h; }
operator const T* () const { return &m_ah.h; }
operator auto_handle<T>* () { return &m_ah; }
protected:
mutable auto_handle<T>& m_ah;
};
template<class T>
class auto_handle
{
public:
auto_handle(T p = 0)
: h(p) {};
auto_handle(const auto_handle<T>& rhs)
: h(rhs.release()) {};
~auto_handle()
{ if (h && INVALID_HANDLE_VALUE != h) CloseHandle(h); };
auto_handle<T>& operator= (const auto_handle<T>& rhs)
{ if (this != rhs.getThis())
reset (rhs.release() );
return *this;
};
auto_handle<T>& operator= (T rhs)
{ if ((NULL == rhs) || (INVALID_HANDLE_VALUE == rhs))
{
// be sure and go through auto_os for dbg.lib
auto_os os;
os = (BOOL)FALSE;
}
reset (rhs);
return *this;
};
CHandleProxy<T> operator& ()
{ reset(); return CHandleProxy<T> (*this); }; // &h;
const CHandleProxy<T> operator& () const
{ return CHandleProxy<T> (*this); }; // &h;
operator T ()
{ return h; };
// Checks for NULL
bool operator! ()
{ return h == NULL; }
operator bool()
{ return h != NULL; }
bool operator== (LPVOID lpv) const
{ return h == lpv; };
bool operator!= (LPVOID lpv) const
{ return h != lpv; };
bool operator== (const auto_handle<T>& rhs) const
{ return h == rhs.h; };
bool operator< (const auto_handle<T>& rhs) const
{ return h < rhs.h; };
// return value of current dumb pointer
T get() const
{ return h; };
// relinquish ownership
T release() const
{ T oldh = h;
h = 0;
return oldh;
};
// delete owned pointer; assume ownership of p
BOOL reset (T p = 0)
{
BOOL rt = TRUE;
if (h && INVALID_HANDLE_VALUE != h)
rt = CloseHandle(h);
h = p;
return rt;
};
private:
friend class CHandleProxy<T>;
// operator& throws off operator=
const auto_handle<T> * getThis() const
{ return this; };
// mutable is needed for release call in ctor and copy ctor
mutable T h;
};
// auto_imp *******************************************************************
//
// Impersonate a user and revert
//
#ifdef __ATLCONV_H__
class auto_imp
{
public:
auto_imp() :
m_hUser(0)
{
}
~auto_imp()
{
if(m_hUser)
{
RevertToSelf();
CloseHandle(m_hUser);
}
}
HRESULT Impersonate(LPOLESTR pszDomain, LPOLESTR pszName, LPOLESTR pszPassword)
{
HRESULT hr = S_OK;
try
{
USES_CONVERSION;
auto_os os;
auto_handle<HANDLE> hUser;
os = LogonUser(OLE2T(pszName), OLE2T(pszDomain), pszPassword ? OLE2T(pszPassword) : _T(""), LOGON32_LOGON_INTERACTIVE, LOGON32_PROVIDER_DEFAULT, &hUser);
os = ImpersonateLoggedOnUser(hUser);
m_hUser = hUser.release();
}
catch(HRESULT hrException)
{
hr = hrException;
}
return(hr);
}
HRESULT Impersonate(LPOLESTR pszDomainName, LPOLESTR pszPassword)
{
LPOLESTR pszSeperator;
_bstr_t sName;
_bstr_t sDomain;
pszSeperator = wcschr(pszDomainName, '\\');
if(pszSeperator)
{
*pszSeperator = 0;
sDomain = pszDomainName;
*pszSeperator = '\\';
sName = pszSeperator + 1;
}
else
{
sName = pszDomainName;
}
return Impersonate(sDomain, sName, pszPassword);
}
protected:
HANDLE m_hUser;
};
#endif // __ATLCONV_H__
// auto_cs ********************************************************************
//
// Smart object for CriticalSections
#ifdef TRYENTRYCS
typedef BOOL (WINAPI *LPTRYENTERCRITICALSECTION)(LPCRITICAL_SECTION lpCriticalSection);
static LPTRYENTERCRITICALSECTION g_pfnTryEnter = NULL;
#endif
class auto_leave;
class auto_cs
{
public:
auto_cs()
{
InitializeCriticalSection(&m_cs);
#ifdef TRYENTRYCS
if (!g_pfnTryEnter)
{
HINSTANCE hinst = GetModuleHandleA("kernel32.dll");
if (INVALID_HANDLE_VALUE != hinst)
{
// note: GetProcAddress is ANSI only, there is no A flavor
g_pfnTryEnter = (LPTRYENTERCRITICALSECTION)GetProcAddress(
hinst, "TryEnterCriticalSection");
}
}
#endif
}
~auto_cs()
{
DeleteCriticalSection(&m_cs);
};
// return value of current dumb pointer
LPCRITICAL_SECTION get()
{ return &m_cs; };
LPCRITICAL_SECTION get() const
{ return (LPCRITICAL_SECTION)&m_cs; };
protected:
CRITICAL_SECTION m_cs;
};
// auto_leave *****************************************************************
//
// Smart LeaveCriticalSections
class auto_leave
{
public:
auto_leave(auto_cs& cs)
: m_ulCount(0), m_pcs(cs.get()) {}
auto_leave(const auto_cs& cs)
{
m_ulCount =0;
m_pcs = cs.get();
}
~auto_leave()
{
reset();
}
auto_leave& operator=(auto_cs& cs)
{
reset();
m_pcs = cs.get();
return *this;
}
void EnterCriticalSection()
{ ::EnterCriticalSection(m_pcs); m_ulCount++; }
void LeaveCriticalSection()
{
if (m_ulCount)
{
m_ulCount--;
::LeaveCriticalSection(m_pcs);
}
}
#ifdef TRYENTRYCS
BOOL TryEnterCriticalSection()
{
if (g_pfnTryEnter)
{
if ((*g_pfnTryEnter)(m_pcs))
{
m_ulCount++;
return TRUE;
}
return FALSE;
}
else
{
::EnterCriticalSection(m_pcs);
m_ulCount++;
return TRUE;
}
}
#endif
protected:
void reset()
{
while (m_ulCount)
{
LeaveCriticalSection();
}
m_pcs = 0;
}
ULONG m_ulCount;
LPCRITICAL_SECTION m_pcs;
};
class _bstr_t;
class auto_var;
// auto_var *******************************************************************
//
// Wrapper class for VARIANT
//
// NOTE : the one included w/ C++ has mem leaks in op= and op&. Otherwise this
// is a direct copy
/*
* VARENUM usage key,
*
* * [V] - may appear in a VARIANT
* * [T] - may appear in a TYPEDESC
* * [P] - may appear in an OLE property set
* * [S] - may appear in a Safe Array
* * [C] - supported by class auto_var
*
*
* VT_EMPTY [V] [P] nothing
* VT_NULL [V] [P] SQL style Null
* VT_I2 [V][T][P][S][C] 2 byte signed int
* VT_I4 [V][T][P][S][C] 4 byte signed int
* VT_R4 [V][T][P][S][C] 4 byte real
* VT_R8 [V][T][P][S][C] 8 byte real
* VT_CY [V][T][P][S][C] currency
* VT_DATE [V][T][P][S][C] date
* VT_BSTR [V][T][P][S][C] OLE Automation string
* VT_DISPATCH [V][T][P][S][C] IDispatch *
* VT_ERROR [V][T] [S][C] SCODE
* VT_BOOL [V][T][P][S][C] True=-1, False=0
* VT_VARIANT [V][T][P][S] VARIANT *
* VT_UNKNOWN [V][T] [S][C] IUnknown *
* VT_DECIMAL [V][T] [S][C] 16 byte fixed point
* VT_I1 [T] signed char
* VT_UI1 [V][T][P][S][C] unsigned char
* VT_UI2 [T][P] unsigned short
* VT_UI4 [T][P] unsigned short
* VT_I8 [T][P] signed 64-bit int
* VT_UI8 [T][P] unsigned 64-bit int
* VT_INT [T] signed machine int
* VT_UINT [T] unsigned machine int
* VT_VOID [T] C style void
* VT_HRESULT [T] Standard return type
* VT_PTR [T] pointer type
* VT_SAFEARRAY [T] (use VT_ARRAY in VARIANT)
* VT_CARRAY [T] C style array
* VT_USERDEFINED [T] user defined type
* VT_LPSTR [T][P] null terminated string
* VT_LPWSTR [T][P] wide null terminated string
* VT_FILETIME [P] FILETIME
* VT_BLOB [P] Length prefixed bytes
* VT_STREAM [P] Name of the stream follows
* VT_STORAGE [P] Name of the storage follows
* VT_STREAMED_OBJECT [P] Stream contains an object
* VT_STORED_OBJECT [P] Storage contains an object
* VT_BLOB_OBJECT [P] Blob contains an object
* VT_CF [P] Clipboard format
* VT_CLSID [P] A Class ID
* VT_VECTOR [P] simple counted array
* VT_ARRAY [V] SAFEARRAY*
* VT_BYREF [V] void* for local use
*/
#if defined (__wtypes_h__) && defined(_INC_COMUTIL) // where VARIANT/_com_error is defined
class auto_var : public ::tagVARIANT {
public:
// Constructors
//
auto_var() throw();
auto_var(const VARIANT& varSrc) throw(_com_error);
auto_var(const VARIANT* pSrc) throw(_com_error);
auto_var(const auto_var& varSrc) throw(_com_error);
auto_var(VARIANT& varSrc, bool fCopy) throw(_com_error); // Attach VARIANT if !fCopy
auto_var(short sSrc, VARTYPE vtSrc = VT_I2) throw(_com_error); // Creates a VT_I2, or a VT_BOOL
auto_var(long lSrc, VARTYPE vtSrc = VT_I4) throw(_com_error); // Creates a VT_I4, a VT_ERROR, or a VT_BOOL
auto_var(float fltSrc) throw(); // Creates a VT_R4
auto_var(double dblSrc, VARTYPE vtSrc = VT_R8) throw(_com_error); // Creates a VT_R8, or a VT_DATE
auto_var(const CY& cySrc) throw(); // Creates a VT_CY
auto_var(const _bstr_t& bstrSrc) throw(_com_error); // Creates a VT_BSTR
auto_var(const wchar_t *pSrc) throw(_com_error); // Creates a VT_BSTR
auto_var(const char* pSrc) throw(_com_error); // Creates a VT_BSTR
auto_var(IDispatch* pSrc, bool fAddRef = true) throw(); // Creates a VT_DISPATCH
auto_var(bool bSrc) throw(); // Creates a VT_BOOL
auto_var(IUnknown* pSrc, bool fAddRef = true) throw(); // Creates a VT_UNKNOWN
auto_var(const DECIMAL& decSrc) throw(); // Creates a VT_DECIMAL
auto_var(BYTE bSrc) throw(); // Creates a VT_UI1
// Destructor
//
~auto_var() throw(_com_error);
// Extractors
//
operator short() const throw(_com_error); // Extracts a short from a VT_I2
operator long() const throw(_com_error); // Extracts a long from a VT_I4
operator float() const throw(_com_error); // Extracts a float from a VT_R4
operator double() const throw(_com_error); // Extracts a double from a VT_R8
operator CY() const throw(_com_error); // Extracts a CY from a VT_CY
operator _bstr_t() const throw(_com_error); // Extracts a _bstr_t from a VT_BSTR
operator IDispatch*() const throw(_com_error); // Extracts a IDispatch* from a VT_DISPATCH
operator bool() const throw(_com_error); // Extracts a bool from a VT_BOOL
operator IUnknown*() const throw(_com_error); // Extracts a IUnknown* from a VT_UNKNOWN
operator DECIMAL() const throw(_com_error); // Extracts a DECIMAL from a VT_DECIMAL
operator BYTE() const throw(_com_error); // Extracts a BTYE (unsigned char) from a VT_UI1
// Assignment operations
//
auto_var& operator=(const VARIANT& varSrc) throw(_com_error);
auto_var& operator=(const VARIANT* pSrc) throw(_com_error);
auto_var& operator=(const auto_var& varSrc) throw(_com_error);
auto_var& operator=(short sSrc) throw(_com_error); // Assign a VT_I2, or a VT_BOOL
auto_var& operator=(long lSrc) throw(_com_error); // Assign a VT_I4, a VT_ERROR or a VT_BOOL
auto_var& operator=(float fltSrc) throw(_com_error); // Assign a VT_R4
auto_var& operator=(double dblSrc) throw(_com_error); // Assign a VT_R8, or a VT_DATE
auto_var& operator=(const CY& cySrc) throw(_com_error); // Assign a VT_CY
auto_var& operator=(const _bstr_t& bstrSrc) throw(_com_error); // Assign a VT_BSTR
auto_var& operator=(const wchar_t* pSrc) throw(_com_error); // Assign a VT_BSTR
auto_var& operator=(const char* pSrc) throw(_com_error); // Assign a VT_BSTR
auto_var& operator=(IDispatch* pSrc) throw(_com_error); // Assign a VT_DISPATCH
auto_var& operator=(bool bSrc) throw(_com_error); // Assign a VT_BOOL
auto_var& operator=(IUnknown* pSrc) throw(_com_error); // Assign a VT_UNKNOWN
auto_var& operator=(const DECIMAL& decSrc) throw(_com_error); // Assign a VT_DECIMAL
auto_var& operator=(BYTE bSrc) throw(_com_error); // Assign a VT_UI1
// Comparison operations
//
bool operator==(const VARIANT& varSrc) const throw(_com_error);
bool operator==(const VARIANT* pSrc) const throw(_com_error);
bool operator!=(const VARIANT& varSrc) const throw(_com_error);
bool operator!=(const VARIANT* pSrc) const throw(_com_error);
// Low-level operations
//
void Clear() throw(_com_error);
void Attach(VARIANT& varSrc) throw(_com_error);
VARIANT Detach() throw(_com_error);
void ChangeType(VARTYPE vartype, const auto_var* pSrc = NULL) throw(_com_error);
void SetString(const char* pSrc) throw(_com_error); // used to set ANSI string
};
//////////////////////////////////////////////////////////////////////////////////////////
//
// Constructors
//
//////////////////////////////////////////////////////////////////////////////////////////
// Default constructor
//
inline auto_var::auto_var() throw()
{
::VariantInit(this);
}
// Construct a auto_var from a const VARIANT&
//
inline auto_var::auto_var(const VARIANT& varSrc) throw(_com_error)
{
::VariantInit(this);
_com_util::CheckError(::VariantCopy(this, const_cast<VARIANT*>(&varSrc)));
}
// Construct a auto_var from a const VARIANT*
//
inline auto_var::auto_var(const VARIANT* pSrc) throw(_com_error)
{
::VariantInit(this);
_com_util::CheckError(::VariantCopy(this, const_cast<VARIANT*>(pSrc)));
}
// Construct a auto_var from a const auto_var&
//
inline auto_var::auto_var(const auto_var& varSrc) throw(_com_error)
{
::VariantInit(this);
_com_util::CheckError(::VariantCopy(this, const_cast<VARIANT*>(static_cast<const VARIANT*>(&varSrc))));
}
// Construct a auto_var from a VARIANT&. If fCopy is FALSE, give control of
// data to the auto_var without doing a VariantCopy.
//
inline auto_var::auto_var(VARIANT& varSrc, bool fCopy) throw(_com_error)
{
if (fCopy) {
::VariantInit(this);
_com_util::CheckError(::VariantCopy(this, &varSrc));
} else {
memcpy(this, &varSrc, sizeof(varSrc));
V_VT(&varSrc) = VT_EMPTY;
}
}
// Construct either a VT_I2 VARIANT or a VT_BOOL VARIANT from
// a short (the default is VT_I2)
//
inline auto_var::auto_var(short sSrc, VARTYPE vtSrc) throw(_com_error)
{
if ((vtSrc != VT_I2) && (vtSrc != VT_BOOL)) {
_com_issue_error(E_INVALIDARG);
}
if (vtSrc == VT_BOOL) {
V_VT(this) = VT_BOOL;
V_BOOL(this) = (sSrc ? VARIANT_TRUE : VARIANT_FALSE);
}
else {
V_VT(this) = VT_I2;
V_I2(this) = sSrc;
}
}
// Construct either a VT_I4 VARIANT, a VT_BOOL VARIANT, or a
// VT_ERROR VARIANT from a long (the default is VT_I4)
//
inline auto_var::auto_var(long lSrc, VARTYPE vtSrc) throw(_com_error)
{
if ((vtSrc != VT_I4) && (vtSrc != VT_ERROR) && (vtSrc != VT_BOOL)) {
_com_issue_error(E_INVALIDARG);
}
if (vtSrc == VT_ERROR) {
V_VT(this) = VT_ERROR;
V_ERROR(this) = lSrc;
}
else if (vtSrc == VT_BOOL) {
V_VT(this) = VT_BOOL;
V_BOOL(this) = (lSrc ? VARIANT_TRUE : VARIANT_FALSE);
}
else {
V_VT(this) = VT_I4;
V_I4(this) = lSrc;
}
}
// Construct a VT_R4 VARIANT from a float
//
inline auto_var::auto_var(float fltSrc) throw()
{
V_VT(this) = VT_R4;
V_R4(this) = fltSrc;
}
// Construct either a VT_R8 VARIANT, or a VT_DATE VARIANT from
// a double (the default is VT_R8)
//
inline auto_var::auto_var(double dblSrc, VARTYPE vtSrc) throw(_com_error)
{
if ((vtSrc != VT_R8) && (vtSrc != VT_DATE)) {
_com_issue_error(E_INVALIDARG);
}
if (vtSrc == VT_DATE) {
V_VT(this) = VT_DATE;
V_DATE(this) = dblSrc;
}
else {
V_VT(this) = VT_R8;
V_R8(this) = dblSrc;
}
}
// Construct a VT_CY from a CY
//
inline auto_var::auto_var(const CY& cySrc) throw()
{
V_VT(this) = VT_CY;
V_CY(this) = cySrc;
}
// Construct a VT_BSTR VARIANT from a const _bstr_t&
//
inline auto_var::auto_var(const _bstr_t& bstrSrc) throw(_com_error)
{
V_VT(this) = VT_BSTR;
BSTR bstr = static_cast<wchar_t*>(bstrSrc);
V_BSTR(this) = ::SysAllocStringByteLen(reinterpret_cast<char*>(bstr),
::SysStringByteLen(bstr));
if (V_BSTR(this) == NULL) {
_com_issue_error(E_OUTOFMEMORY);
}
}
// Construct a VT_BSTR VARIANT from a const wchar_t*
//
inline auto_var::auto_var(const wchar_t* pSrc) throw(_com_error)
{
V_VT(this) = VT_BSTR;
V_BSTR(this) = ::SysAllocString(pSrc);
if (V_BSTR(this) == NULL && pSrc != NULL) {
_com_issue_error(E_OUTOFMEMORY);
}
}
// Construct a VT_BSTR VARIANT from a const char*
//
inline auto_var::auto_var(const char* pSrc) throw(_com_error)
{
V_VT(this) = VT_BSTR;
V_BSTR(this) = _com_util::ConvertStringToBSTR(pSrc);
if (V_BSTR(this) == NULL && pSrc != NULL) {
_com_issue_error(E_OUTOFMEMORY);
}
}
// Construct a VT_DISPATCH VARIANT from an IDispatch*
//
inline auto_var::auto_var(IDispatch* pSrc, bool fAddRef) throw()
{
V_VT(this) = VT_DISPATCH;
V_DISPATCH(this) = pSrc;
// Need the AddRef() as VariantClear() calls Release(), unless fAddRef
// false indicates we're taking ownership
//
if (fAddRef) {
V_DISPATCH(this)->AddRef();
}
}
// Construct a VT_BOOL VARIANT from a bool
//
inline auto_var::auto_var(bool bSrc) throw()
{
V_VT(this) = VT_BOOL;
V_BOOL(this) = (bSrc ? VARIANT_TRUE : VARIANT_FALSE);
}
// Construct a VT_UNKNOWN VARIANT from an IUnknown*
//
inline auto_var::auto_var(IUnknown* pSrc, bool fAddRef) throw()
{
V_VT(this) = VT_UNKNOWN;
V_UNKNOWN(this) = pSrc;
// Need the AddRef() as VariantClear() calls Release(), unless fAddRef
// false indicates we're taking ownership
//
if (fAddRef) {
V_UNKNOWN(this)->AddRef();
}
}
// Construct a VT_DECIMAL VARIANT from a DECIMAL
//
inline auto_var::auto_var(const DECIMAL& decSrc) throw()
{
// Order is important here! Setting V_DECIMAL wipes out the entire VARIANT
//
V_DECIMAL(this) = decSrc;
V_VT(this) = VT_DECIMAL;
}
// Construct a VT_UI1 VARIANT from a BYTE (unsigned char)
//
inline auto_var::auto_var(BYTE bSrc) throw()
{
V_VT(this) = VT_UI1;
V_UI1(this) = bSrc;
}
//////////////////////////////////////////////////////////////////////////////////////////
//
// Extractors
//
//////////////////////////////////////////////////////////////////////////////////////////
// Extracts a VT_I2 into a short
//
inline auto_var::operator short() const throw(_com_error)
{
if (V_VT(this) == VT_I2) {
return V_I2(this);
}
auto_var varDest;
varDest.ChangeType(VT_I2, this);
return V_I2(&varDest);
}
// Extracts a VT_I4 into a long
//
inline auto_var::operator long() const throw(_com_error)
{
if (V_VT(this) == VT_I4) {
return V_I4(this);
}
auto_var varDest;
varDest.ChangeType(VT_I4, this);
return V_I4(&varDest);
}
// Extracts a VT_R4 into a float
//
inline auto_var::operator float() const throw(_com_error)
{
if (V_VT(this) == VT_R4) {
return V_R4(this);
}
auto_var varDest;
varDest.ChangeType(VT_R4, this);
return V_R4(&varDest);
}
// Extracts a VT_R8 into a double
//
inline auto_var::operator double() const throw(_com_error)
{
if (V_VT(this) == VT_R8) {
return V_R8(this);
}
auto_var varDest;
varDest.ChangeType(VT_R8, this);
return V_R8(&varDest);
}
// Extracts a VT_CY into a CY
//
inline auto_var::operator CY() const throw(_com_error)
{
if (V_VT(this) == VT_CY) {
return V_CY(this);
}
auto_var varDest;
varDest.ChangeType(VT_CY, this);
return V_CY(&varDest);
}
// Extracts a VT_BSTR into a _bstr_t
//
inline auto_var::operator _bstr_t() const throw(_com_error)
{
if (V_VT(this) == VT_BSTR) {
return V_BSTR(this);
}
auto_var varDest;
varDest.ChangeType(VT_BSTR, this);
return V_BSTR(&varDest);
}
// Extracts a VT_DISPATCH into an IDispatch*
//
inline auto_var::operator IDispatch*() const throw(_com_error)
{
if (V_VT(this) == VT_DISPATCH) {
V_DISPATCH(this)->AddRef();
return V_DISPATCH(this);
}
auto_var varDest;
varDest.ChangeType(VT_DISPATCH, this);
V_DISPATCH(&varDest)->AddRef();
return V_DISPATCH(&varDest);
}
// Extract a VT_BOOL into a bool
//
inline auto_var::operator bool() const throw(_com_error)
{
if (V_VT(this) == VT_BOOL) {
return V_BOOL(this) ? true : false;
}
auto_var varDest;
varDest.ChangeType(VT_BOOL, this);
return V_BOOL(&varDest) ? true : false;
}
// Extracts a VT_UNKNOWN into an IUnknown*
//
inline auto_var::operator IUnknown*() const throw(_com_error)
{
if (V_VT(this) == VT_UNKNOWN) {
return V_UNKNOWN(this);
}
auto_var varDest;
varDest.ChangeType(VT_UNKNOWN, this);
return V_UNKNOWN(&varDest);
}
// Extracts a VT_DECIMAL into a DECIMAL
//
inline auto_var::operator DECIMAL() const throw(_com_error)
{
if (V_VT(this) == VT_DECIMAL) {
return V_DECIMAL(this);
}
auto_var varDest;
varDest.ChangeType(VT_DECIMAL, this);
return V_DECIMAL(&varDest);
}
// Extracts a VT_UI1 into a BYTE (unsigned char)
//
inline auto_var::operator BYTE() const throw(_com_error)
{
if (V_VT(this) == VT_UI1) {
return V_UI1(this);
}
auto_var varDest;
varDest.ChangeType(VT_UI1, this);
return V_UI1(&varDest);
}
//////////////////////////////////////////////////////////////////////////////////////////
//
// Assignment operations
//
//////////////////////////////////////////////////////////////////////////////////////////
// Assign a const VARIANT& (::VariantCopy handles everything)
//
inline auto_var& auto_var::operator=(const VARIANT& varSrc) throw(_com_error)
{
Clear();
_com_util::CheckError(::VariantCopy(this, const_cast<VARIANT*>(&varSrc)));
return *this;
}
// Assign a const VARIANT* (::VariantCopy handles everything)
//
inline auto_var& auto_var::operator=(const VARIANT* pSrc) throw(_com_error)
{
Clear();
_com_util::CheckError(::VariantCopy(this, const_cast<VARIANT*>(pSrc)));
return *this;
}
// Assign a const auto_var& (::VariantCopy handles everything)
//
inline auto_var& auto_var::operator=(const auto_var& varSrc) throw(_com_error)
{
Clear();
_com_util::CheckError(::VariantCopy(this, const_cast<VARIANT*>(static_cast<const VARIANT*>(&varSrc))));
return *this;
}
// Assign a short creating either VT_I2 VARIANT or a
// VT_BOOL VARIANT (VT_I2 is the default)
//
inline auto_var& auto_var::operator=(short sSrc) throw(_com_error)
{
if (V_VT(this) == VT_I2) {
V_I2(this) = sSrc;
}
else if (V_VT(this) == VT_BOOL) {
V_BOOL(this) = (sSrc ? VARIANT_TRUE : VARIANT_FALSE);
}
else {
// Clear the VARIANT and create a VT_I2
//
Clear();
V_VT(this) = VT_I2;
V_I2(this) = sSrc;
}
return *this;
}
// Assign a long creating either VT_I4 VARIANT, a VT_ERROR VARIANT
// or a VT_BOOL VARIANT (VT_I4 is the default)
//
inline auto_var& auto_var::operator=(long lSrc) throw(_com_error)
{
if (V_VT(this) == VT_I4) {
V_I4(this) = lSrc;
}
else if (V_VT(this) == VT_ERROR) {
V_ERROR(this) = lSrc;
}
else if (V_VT(this) == VT_BOOL) {
V_BOOL(this) = (lSrc ? VARIANT_TRUE : VARIANT_FALSE);
}
else {
// Clear the VARIANT and create a VT_I4
//
Clear();
V_VT(this) = VT_I4;
V_I4(this) = lSrc;
}
return *this;
}
// Assign a float creating a VT_R4 VARIANT
//
inline auto_var& auto_var::operator=(float fltSrc) throw(_com_error)
{
if (V_VT(this) != VT_R4) {
// Clear the VARIANT and create a VT_R4
//
Clear();
V_VT(this) = VT_R4;
}
V_R4(this) = fltSrc;
return *this;
}
// Assign a double creating either a VT_R8 VARIANT, or a VT_DATE
// VARIANT (VT_R8 is the default)
//
inline auto_var& auto_var::operator=(double dblSrc) throw(_com_error)
{
if (V_VT(this) == VT_R8) {
V_R8(this) = dblSrc;
}
else if(V_VT(this) == VT_DATE) {
V_DATE(this) = dblSrc;
}
else {
// Clear the VARIANT and create a VT_R8
//
Clear();
V_VT(this) = VT_R8;
V_R8(this) = dblSrc;
}
return *this;
}
// Assign a CY creating a VT_CY VARIANT
//
inline auto_var& auto_var::operator=(const CY& cySrc) throw(_com_error)
{
if (V_VT(this) != VT_CY) {
// Clear the VARIANT and create a VT_CY
//
Clear();
V_VT(this) = VT_CY;
}
V_CY(this) = cySrc;
return *this;
}
// Assign a const _bstr_t& creating a VT_BSTR VARIANT
//
inline auto_var& auto_var::operator=(const _bstr_t& bstrSrc) throw(_com_error)
{
// Clear the VARIANT (This will SysFreeString() any previous occupant)
//
Clear();
V_VT(this) = VT_BSTR;
if (!bstrSrc) {
V_BSTR(this) = NULL;
}
else {
BSTR bstr = static_cast<wchar_t*>(bstrSrc);
V_BSTR(this) = ::SysAllocStringByteLen(reinterpret_cast<char*>(bstr),
::SysStringByteLen(bstr));
if (V_BSTR(this) == NULL) {
_com_issue_error(E_OUTOFMEMORY);
}
}
return *this;
}
// Assign a const wchar_t* creating a VT_BSTR VARIANT
//
inline auto_var& auto_var::operator=(const wchar_t* pSrc) throw(_com_error)
{
// Clear the VARIANT (This will SysFreeString() any previous occupant)
//
Clear();
V_VT(this) = VT_BSTR;
if (pSrc == NULL) {
V_BSTR(this) = NULL;
}
else {
V_BSTR(this) = ::SysAllocString(pSrc);
if (V_BSTR(this) == NULL) {
_com_issue_error(E_OUTOFMEMORY);
}
}
return *this;
}
// Assign a const char* creating a VT_BSTR VARIANT
//
inline auto_var& auto_var::operator=(const char* pSrc) throw(_com_error)
{
// Clear the VARIANT (This will SysFreeString() any previous occupant)
//
Clear();
V_VT(this) = VT_BSTR;
V_BSTR(this) = _com_util::ConvertStringToBSTR(pSrc);
if (V_BSTR(this) == NULL && pSrc != NULL) {
_com_issue_error(E_OUTOFMEMORY);
}
return *this;
}
// Assign an IDispatch* creating a VT_DISPATCH VARIANT
//
inline auto_var& auto_var::operator=(IDispatch* pSrc) throw(_com_error)
{
// Clear the VARIANT (This will Release() any previous occupant)
//
Clear();
V_VT(this) = VT_DISPATCH;
V_DISPATCH(this) = pSrc;
// Need the AddRef() as VariantClear() calls Release()
//
V_DISPATCH(this)->AddRef();
return *this;
}
// Assign a bool creating a VT_BOOL VARIANT
//
inline auto_var& auto_var::operator=(bool bSrc) throw(_com_error)
{
if (V_VT(this) != VT_BOOL) {
// Clear the VARIANT and create a VT_BOOL
//
Clear();
V_VT(this) = VT_BOOL;
}
V_BOOL(this) = (bSrc ? VARIANT_TRUE : VARIANT_FALSE);
return *this;
}
// Assign an IUnknown* creating a VT_UNKNOWN VARIANT
//
inline auto_var& auto_var::operator=(IUnknown* pSrc) throw(_com_error)
{
// Clear VARIANT (This will Release() any previous occupant)
//
Clear();
V_VT(this) = VT_UNKNOWN;
V_UNKNOWN(this) = pSrc;
// Need the AddRef() as VariantClear() calls Release()
//
V_UNKNOWN(this)->AddRef();
return *this;
}
// Assign a DECIMAL creating a VT_DECIMAL VARIANT
//
inline auto_var& auto_var::operator=(const DECIMAL& decSrc) throw(_com_error)
{
if (V_VT(this) != VT_DECIMAL) {
// Clear the VARIANT
//
Clear();
}
// Order is important here! Setting V_DECIMAL wipes out the entire VARIANT
V_DECIMAL(this) = decSrc;
V_VT(this) = VT_DECIMAL;
return *this;
}
// Assign a BTYE (unsigned char) creating a VT_UI1 VARIANT
//
inline auto_var& auto_var::operator=(BYTE bSrc) throw(_com_error)
{
if (V_VT(this) != VT_UI1) {
// Clear the VARIANT and create a VT_UI1
//
Clear();
V_VT(this) = VT_UI1;
}
V_UI1(this) = bSrc;
return *this;
}
//////////////////////////////////////////////////////////////////////////////////////////
//
// Comparison operations
//
//////////////////////////////////////////////////////////////////////////////////////////
// Compare a auto_var against a const VARIANT& for equality
//
inline bool auto_var::operator==(const VARIANT& varSrc) const throw()
{
return *this == &varSrc;
}
// Compare a auto_var against a const VARIANT* for equality
//
inline bool auto_var::operator==(const VARIANT* pSrc) const throw()
{
if (this == pSrc) {
return true;
}
//
// Variants not equal if types don't match
//
if (V_VT(this) != V_VT(pSrc)) {
return false;
}
//
// Check type specific values
//
switch (V_VT(this)) {
case VT_EMPTY:
case VT_NULL:
return true;
case VT_I2:
return V_I2(this) == V_I2(pSrc);
case VT_I4:
return V_I4(this) == V_I4(pSrc);
case VT_R4:
return V_R4(this) == V_R4(pSrc);
case VT_R8:
return V_R8(this) == V_R8(pSrc);
case VT_CY:
return memcmp(&(V_CY(this)), &(V_CY(pSrc)), sizeof(CY)) == 0;
case VT_DATE:
return V_DATE(this) == V_DATE(pSrc);
case VT_BSTR:
return (::SysStringByteLen(V_BSTR(this)) == ::SysStringByteLen(V_BSTR(pSrc))) &&
(memcmp(V_BSTR(this), V_BSTR(pSrc), ::SysStringByteLen(V_BSTR(this))) == 0);
case VT_DISPATCH:
return V_DISPATCH(this) == V_DISPATCH(pSrc);
case VT_ERROR:
return V_ERROR(this) == V_ERROR(pSrc);
case VT_BOOL:
return V_BOOL(this) == V_BOOL(pSrc);
case VT_UNKNOWN:
return V_UNKNOWN(this) == V_UNKNOWN(pSrc);
case VT_DECIMAL:
return memcmp(&(V_DECIMAL(this)), &(V_DECIMAL(pSrc)), sizeof(DECIMAL)) == 0;
case VT_UI1:
return V_UI1(this) == V_UI1(pSrc);
default:
_com_issue_error(E_INVALIDARG);
// fall through
}
return false;
}
// Compare a auto_var against a const VARIANT& for in-equality
//
inline bool auto_var::operator!=(const VARIANT& varSrc) const throw()
{
return !(*this == &varSrc);
}
// Compare a auto_var against a const VARIANT* for in-equality
//
inline bool auto_var::operator!=(const VARIANT* pSrc) const throw()
{
return !(*this == pSrc);
}
//////////////////////////////////////////////////////////////////////////////////////////
//
// Low-level operations
//
//////////////////////////////////////////////////////////////////////////////////////////
// Clear the auto_var
//
inline void auto_var::Clear() throw(_com_error)
{
_com_util::CheckError(::VariantClear(this));
}
inline void auto_var::Attach(VARIANT& varSrc) throw(_com_error)
{
//
// Free up previous VARIANT
//
Clear();
//
// Give control of data to auto_var
//
memcpy(this, &varSrc, sizeof(varSrc));
V_VT(&varSrc) = VT_EMPTY;
}
inline VARIANT auto_var::Detach() throw(_com_error)
{
VARIANT varResult = *this;
V_VT(this) = VT_EMPTY;
return varResult;
}
// Change the type and contents of this auto_var to the type vartype and
// contents of pSrc
//
inline void auto_var::ChangeType(VARTYPE vartype, const auto_var* pSrc) throw(_com_error)
{
//
// If pDest is NULL, convert type in place
//
if (pSrc == NULL) {
pSrc = this;
}
if ((this != pSrc) || (vartype != V_VT(this))) {
_com_util::CheckError(::VariantChangeType(static_cast<VARIANT*>(this),
const_cast<VARIANT*>(static_cast<const VARIANT*>(pSrc)),
0, vartype));
}
}
inline void auto_var::SetString(const char* pSrc) throw(_com_error)
{
//
// Free up previous VARIANT
//
Clear();
V_VT(this) = VT_BSTR;
V_BSTR(this) = _com_util::ConvertStringToBSTR(pSrc);
if (V_BSTR(this) == NULL && pSrc != NULL) {
_com_issue_error(E_OUTOFMEMORY);
}
}
inline auto_var::~auto_var() throw(_com_error)
{
_com_util::CheckError(::VariantClear(this));
}
#endif // __wtypes_h__
// auto_internet **************************************************************
//
// Smart Pointers for HINTERNET
#ifdef _WININET_
class auto_internet
{
public:
explicit auto_internet(HINTERNET p = 0)
: m_p(p) {};
auto_internet(auto_internet& rhs)
: m_p(rhs.release()) {};
~auto_internet()
{ reset(); };
auto_internet& operator= (auto_internet& rhs)
{ if (this != rhs.getThis())
reset (rhs.release() );
return *this;
};
auto_internet& operator= (HINTERNET rhs)
{
reset (rhs);
return *this;
};
// HINTERNET operator*() const
// { return m_p; };
// void** operator& ()
// { reset(); return (void**)&m_p; };
operator HINTERNET ()
{ return m_p; };
// Checks for NULL
BOOL operator== (LPVOID lpv)
{ return m_p == lpv; };
BOOL operator!= (LPVOID lpv)
{ return m_p != lpv; };
// return value of current dumb pointer
HINTERNET get() const
{ return m_p; };
// relinquish ownership
HINTERNET release()
{ HINTERNET oldp = m_p;
m_p = 0;
return oldp;
};
// delete owned pointer; assume ownership of p
void reset (HINTERNET p = 0)
{
if (m_p)
InternetCloseHandle(m_p);
m_p = p;
};
private:
// operator& throws off operator=
const auto_internet* getThis() const
{ return this; };
HINTERNET m_p;
};
#endif // _WININET_
// auto_virt ******************************************************************
//
// Smart Pointers for memory freed with VirtualFree
#ifdef _WINBASE_
template<class _Ty>
class auto_virt
{
public:
typedef _Ty element_type;
explicit auto_virt(_Ty *_P = 0) _THROW0()
: _Owns(_P != 0), _Ptr(_P) {}
auto_virt(const auto_virt<_Ty>& _Y) _THROW0()
: _Owns(_Y._Owns), _Ptr(_Y.release()) {}
auto_virt<_Ty>& operator=(const auto_virt<_Ty>& _Y) _THROW0()
{if (_Ptr != _Y.get())
{if (_Owns && _Ptr)
VirtualFree(_Ptr);
_Owns = _Y._Owns;
_Ptr = _Y.release(); }
else if (_Y._Owns)
_Owns = true;
return (*this); }
auto_virt<_Ty>& operator=(_Ty* _Y) _THROW0()
{ {if (_Owns && _Ptr)
VirtualFree(_Ptr,0,MEM_RELEASE);
_Owns = _Y != 0;
_Ptr = _Y; }
return (*this); }
~auto_virt()
{if (_Owns && _Ptr)
VirtualFree(_Ptr,0,MEM_RELEASE);}
_Ty** operator&() _THROW0()
{if (_Owns && _Ptr)
VirtualFree(_Ptr,0,MEM_RELEASE);
_Owns = true;
_Ptr = 0;
return &_Ptr;
}
operator _Ty* () const
{ return _Ptr; }
_Ty& operator*() const _THROW0()
{return (*get()); }
_Ty *operator->() const _THROW0()
{return (get()); }
_Ty& operator[] (int ndx) const _THROW0()
{return *(get() + ndx); }
_Ty *get() const _THROW0()
{return (_Ptr); }
_Ty *release() const _THROW0()
{((auto_virt<_Ty> *)this)->_Owns = false;
return (_Ptr); }
bool Ownership(bool fOwns)
{ return _Owns = fOwns; }
protected:
bool _Owns;
_Ty *_Ptr;
};
#endif // _WINBASE_
// RCObject *******************************************************************
//
// Smart objects for reference counting
class RCObject
{
public:
void addReference()
{
++refCount;
}
void removeReference()
{
if (--refCount == 0)
delete this;
}
void markUnshareable()
{
shareable = FALSE;
}
BOOL isShareable() const
{
return shareable;
}
BOOL isShared() const
{
return refCount > 1;
}
protected:
RCObject()
: refCount(0), shareable(TRUE) {};
RCObject(const RCObject& rhs)
: refCount(0), shareable(TRUE) {};
RCObject& operator= (const RCObject& rhs)
{
return *this;
}
virtual ~RCObject() {};
private:
int refCount;
BOOL shareable;
};
// RCPtr **********************************************************************
//
// Smart Pointers for reference counting, use w/ RCObject
template<class T>
class RCPtr
{
public:
RCPtr(T* realPtr = 0);
RCPtr(const RCPtr&rhs);
~RCPtr();
RCPtr& operator=(const RCPtr& rhs);
BOOL operator==(const RCPtr&rhs) const;
BOOL operator< (const RCPtr&rhs) const;
BOOL operator> (const RCPtr&rhs) const;
operator bool(void) const;
T* operator->() const;
T& operator*() const;
T* get(void) const;
protected:
T* pointee;
void init();
};
template<class T>
void RCPtr<T>::init ()
{
if (pointee == 0)
return;
if (pointee->isShareable() == FALSE)
{
pointee = new T(*pointee);
}
pointee->addReference();
}
template<class T>
RCPtr<T>::RCPtr (T* realPtr)
: pointee(realPtr)
{
init();
}
template<class T>
RCPtr<T>::RCPtr (const RCPtr& rhs)
: pointee(rhs.pointee)
{
init();
}
template<class T>
RCPtr<T>::~RCPtr()
{
if (pointee)
pointee->removeReference();
}
template<class T>
RCPtr<T>& RCPtr<T>::operator= (const RCPtr<T>& rhs)
{
if (pointee != rhs.pointee)
{
if (pointee)
pointee->removeReference();
pointee = rhs.pointee;
init();
}
return *this;
}
template<class T>
BOOL RCPtr<T>::operator==(const RCPtr&rhs) const
{ return pointee == rhs.pointee; }
template<class T>
BOOL RCPtr<T>::operator< (const RCPtr&rhs) const
{ return pointee < rhs.pointee; }
template<class T>
BOOL RCPtr<T>::operator> (const RCPtr&rhs) const
{ return pointee > rhs.pointee; }
template<class T>
T* RCPtr<T>::operator->() const
{
return pointee;
}
template<class T>
T& RCPtr<T>::operator*() const
{
return *pointee;
}
template<class T>
RCPtr<T>::operator bool(void) const
{
return pointee != NULL;
}
template<class T>
T* RCPtr<T>::get(void) const
{
return pointee;
}
// auto_menu ******************************************************************
//
// Smart Pointers for DestroyMenu
// auto_reg *******************************************************************
//
// Smart pointer for HKEY's
class auto_menu
{
public:
auto_menu(HMENU p = 0)
: h(p) {};
auto_menu(auto_menu& rhs)
: h(rhs.release()) {};
~auto_menu()
{ if (h) DestroyMenu(h); };
auto_menu& operator= (auto_menu& rhs)
{ if (this != rhs.getThis())
reset (rhs.release() );
return *this;
};
auto_menu& operator= (HMENU rhs)
{ if ((NULL == rhs) || (INVALID_HANDLE_VALUE == rhs))
{ // be sure and go through auto_os for dbg.lib
auto_os os;
os = (BOOL)FALSE;
}
reset (rhs);
return *this;
};
HMENU* operator& ()
{ reset(); return &h; };
operator HMENU ()
{ return h; };
// Checks for NULL
bool operator== (LPVOID lpv)
{ return h == lpv; };
bool operator!= (LPVOID lpv)
{ return h != lpv; };
// return value of current dumb pointer
HMENU get() const
{ return h; };
// relinquish ownership
HMENU release()
{ HMENU oldh = h;
h = 0;
return oldh;
};
// delete owned pointer; assume ownership of p
BOOL reset (HMENU p = 0)
{
BOOL rt = TRUE;
if (h)
rt = DestroyMenu(h);
h = p;
return rt;
};
private:
// operator& throws off operator=
const auto_menu* getThis() const
{ return this; };
HMENU h;
};