Source code of Windows XP (NT5)
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

752 lines
18 KiB

/*++
Copyright (c) 2000 Microsoft Corporation
Module Name:
usb2lib.c
Abstract:
interface to usb2lib, usb2 low/full speed scheduling algorithms
Environment:
kernel or user mode only
Notes:
Revision History:
10-31-00 : created
--*/
#include "common.h"
USB2LIB_DATA LibData;
VOID
USB2LIB_InitializeLib(
PULONG HcContextSize,
PULONG EndpointContextSize,
PULONG TtContextSize,
PUSB2LIB_DBGPRINT Usb2LibDbgPrint,
PUSB2LIB_DBGBREAK Usb2LibDbgBreak
)
/*++
Routine Description:
Arguments:
Return Value:
--*/
{
*HcContextSize = sizeof(USB2LIB_HC_CONTEXT);
*TtContextSize = sizeof(USB2LIB_TT_CONTEXT);
*EndpointContextSize = sizeof(USB2LIB_ENDPOINT_CONTEXT);
LibData.DbgPrint = Usb2LibDbgPrint;
LibData.DbgBreak = Usb2LibDbgBreak;
}
VOID
USB2LIB_InitController(
PUSB2LIB_HC_CONTEXT HcContext
)
/*++
Routine Description:
Called at init time for an instance of the USB 2
controller
Arguments:
Return Value:
--*/
{
DBGPRINT(("USB2LIB_InitController %x\n", HcContext));
HcContext->Sig = SIG_LIB_HC;
init_hc(&HcContext->Hc);
init_tt(&HcContext->Hc, &HcContext->DummyTt); // set up dummy TT for use by HS endpoints
}
VOID
USB2LIB_InitTt(
PUSB2LIB_HC_CONTEXT HcContext,
PUSB2LIB_TT_CONTEXT TtContext
)
/*++
Routine Description:
Arguments:
Return Value:
--*/
{
DBGPRINT(("USB2LIB_InitTt %x %x\n", HcContext, TtContext));
TtContext->Sig = SIG_LIB_TT;
init_tt(&HcContext->Hc, &TtContext->Tt);
}
#if 1
void Shift_to_list_end(
int move_ep,
PEndpoint RebalanceList[]
)
{
// int i;
PEndpoint ep = RebalanceList[move_ep];
move_ep++;
while (RebalanceList[move_ep])
{
RebalanceList[move_ep-1] = RebalanceList[move_ep];
move_ep++;
}
RebalanceList[move_ep-1] = ep;
}
#endif
BOOLEAN
Promote_endpoint_periods(
PEndpoint ep,
PEndpoint RebalanceList[],
PULONG RebalanceListEntries
)
{
int unwind = 0, check_ep;
unsigned result;
if ((ep->actual_period != 1) && (ep->ep_type == interrupt) && (ep->start_microframe > 2))
{
DBGPRINT((">Period Promotion of allocated endpoint\n"));
// To promote an endpoint period:
// 0) unwind = false
// 1) deallocate original endpoint
// 2) change new ep period to 1
// 3) (re)allocate new endpoint (with new period 1)
// 4) if successful
// 5) check endpoints in change list for need of period promotion
// 6) deallocate endpoint, move to end of change list, change period to 1, reallocate
// 7) if unsuccessful
// 8) unwind = true; break
// 9) next ep
//10) if unwind
//11) deallocate orginal ep
//12) check change list for promotion endpoint(s)
//13) if promoted ep
//14) deallocate ep, change back to original period, allocate
//15) next ep
//16) return false
//17) else return true
//18) else return false
/*
// On return, change list will have promoted endpoints in order of reallocation, but it is possible
// to have other endpoints interspersed with the promoted endpoints. The corresponding schedule of endpoints
// must be adjusted to match the order of the promoted endpoints (since they are reinserted into the budget).
// The promoted endpoints (except the original endpoint) are moved to the end of the change list as the
// promotion reallocations are done to ensure that they are in the change list in the order of insertion
// into the budget. This allows the scheduler to derive the new schedule/budget order from the order the
// promoted endpoints appear in the change list.
//
// This algorithm (critically) depends on the Allocate/Deallocate "appending"/reusing an existing change list
// as the "final" change list is composed during the period promotion processing is performed.
*/
Deallocate_time_for_endpoint(ep,
RebalanceList,
RebalanceListEntries);
ep->saved_period = ep->period;
ep->period = 1;
// 3) (re)allocate new endpoint (with new period 1)
result = Allocate_time_for_endpoint(ep,
RebalanceList,
RebalanceListEntries);
if (!result) {
ep->period = ep->saved_period;
ep->saved_period = 0;
ep->promoted_this_time = 0;
return 0; // failed period promotion of original endpoint
}
}
check_ep = 0;
while (RebalanceList[check_ep])
{
RebalanceList[check_ep]->promoted_this_time = 0;
check_ep++;
}
check_ep = 0;
while (RebalanceList[check_ep])
{
if ((RebalanceList[check_ep]->actual_period != 1) &&
(RebalanceList[check_ep]->ep_type == interrupt) &&
(RebalanceList[check_ep]->start_microframe > 2))
{
// 6) deallocate endpoint, move to end of change list, change period to 1, reallocate
DBGPRINT((">Period Promoting endpoint\n"));
Deallocate_time_for_endpoint(
RebalanceList[check_ep],
RebalanceList,
RebalanceListEntries);
// Shift_to_list_end(check_ep, RebalanceList);
RebalanceList[check_ep]->promoted_this_time = 1;
RebalanceList[check_ep]->saved_period = RebalanceList[check_ep]->period;
RebalanceList[check_ep]->period = 1;
result = Allocate_time_for_endpoint(
RebalanceList[check_ep],
RebalanceList,
RebalanceListEntries);
if (!result)
{
unwind = 1;
break;
}
}
check_ep++;
}
if (unwind)
{
DBGPRINT((">Unwinding Promoted endpoints\n"));
//11) deallocate orginal ep
Deallocate_time_for_endpoint(
ep,
RebalanceList,
RebalanceListEntries);
ep->period = ep->saved_period;
ep->saved_period = 0;
//12) check change list for promotion endpoint(s)
check_ep = 0;
while (RebalanceList[check_ep])
{
//13) if promoted ep
if (RebalanceList[check_ep]->promoted_this_time)
{
//14) deallocate ep, change back to original period, allocate
DBGPRINT((">Reallocating Unpromoted endpoint\n"));
if(RebalanceList[check_ep]->calc_bus_time != 0)
Deallocate_time_for_endpoint(
RebalanceList[check_ep],
RebalanceList,
RebalanceListEntries);
RebalanceList[check_ep]->period = RebalanceList[check_ep]->saved_period;
RebalanceList[check_ep]->saved_period = 0;
// Leave the promoted flag set since order could have changed.
// schedule must be reconciled accordingly by the HC code.
//RebalanceList[check_ep]->promoted_this_time = 0;
result = Allocate_time_for_endpoint(
RebalanceList[check_ep],
RebalanceList,
RebalanceListEntries);
}
check_ep++;
}
return 0;
} else {
return 1;
}
}
BOOLEAN
USB2LIB_AllocUsb2BusTime(
PUSB2LIB_HC_CONTEXT HcContext,
PUSB2LIB_TT_CONTEXT TtContext,
PUSB2LIB_ENDPOINT_CONTEXT EndpointContext,
PUSB2LIB_BUDGET_PARAMETERS Budget,
PVOID RebalanceContext,
PVOID RebalanceList,
PULONG RebalanceListEntries
)
/*++
Routine Description:
Arguments:
Return Value:
--*/
{
eptype endpointType;
unsigned direction, speed;
//PEndpoint changed_ep_list[];
unsigned result;
//unsigned changed_eps;
PEndpoint ep;
BOOLEAN alloced;
ULONG ilop;
PREBALANCE_LIST rbl;
PTT tt;
ep = &EndpointContext->Ep;
EndpointContext->Sig = SIG_LIB_EP;
EndpointContext->RebalanceContext = RebalanceContext;
//changed_ep_list = RebalanceList;
switch (Budget->TransferType) {
case Budget_Iso:
DBGPRINT((">Iso \n"));
endpointType = isoch;
break;
case Budget_Interrupt:
DBGPRINT((">Interrupt \n"));
endpointType = interrupt;
break;
default:
TEST_TRAP();
}
if (Budget->Direction == Budget_In) {
DBGPRINT((">In \n"));
direction = INDIR;
} else {
DBGPRINT((">Out \n"));
direction = OUTDIR;
}
switch (Budget->Speed) {
case Budget_FullSpeed:
DBGPRINT((">FullSpeed \n"));
speed = FSSPEED;
tt = &TtContext->Tt;
break;
case Budget_HighSpeed:
DBGPRINT((">HighSpeed \n"));
speed = HSSPEED;
tt = &HcContext->DummyTt; // set endpoint to dummy TT so HC can be reached
break;
case Budget_LowSpeed:
DBGPRINT((">LowSpeed \n"));
speed = LSSPEED;
tt = &TtContext->Tt;
break;
default:
DBGPRINT(("BAD SPEED\n"));
}
DBGPRINT((">Period %d\n", Budget->Period));
if(Budget->Speed == Budget_HighSpeed) {
// This value should be a power of 2, so we don't have to check
// but limit its value to MAXFRAMES * 8
if(Budget->Period > MAXMICROFRAMES) {
Budget->Period = MAXMICROFRAMES;
}
} else {
// We are full / low speed endpoint
//
// Round down the period to the nearest power of two (if it isn't already)
//
for(ilop = MAXFRAMES; ilop >= 1; ilop = ilop >> 1) {
if(Budget->Period >= ilop) {
break;
}
}
Budget->Period = ilop;
}
DBGPRINT((">MaxPacket %d\n", Budget->MaxPacket));
DBGPRINT((">Converted Period %d\n", Budget->Period));
DBGPRINT((">RebalanceListEntries %d\n", *RebalanceListEntries));
Set_endpoint(
ep,
endpointType,
direction,
speed,
Budget->Period,
Budget->MaxPacket,
tt);
// ask John Garney to do the math
DBGPRINT((">alloc (ep) %x \n", ep));
result = Allocate_time_for_endpoint(ep,
RebalanceList,
RebalanceListEntries);
// check if successful, period != 1, interrupt, and "late" in frame,
// then need to promote period to 1
// DBGPRINT((">Executing Promote_endpoint_periods (ep) %x \n", ep));
if (result)
{
result = Promote_endpoint_periods(ep,
RebalanceList,
RebalanceListEntries);
}
// nonzero indicates success
if (result) {
// set return parameters
DBGPRINT((">Results\n"));
DBGPRINT((">num_starts %d \n", ep->num_starts));
DBGPRINT((">num_completes %d \n", ep->num_completes));
DBGPRINT((">start_microframe %d \n", ep->start_microframe));
// this is the schedule offset
DBGPRINT((">start_frame %d \n", ep->start_frame));
// period awarded, may be less than requested
DBGPRINT((">actual_period %d \n", ep->actual_period));
DBGPRINT((">start_time %d \n", ep->start_time));
DBGPRINT((">calc_bus_time %d \n", ep->calc_bus_time));
DBGPRINT((">promoted_this_time %d \n", ep->promoted_this_time));
alloced = TRUE;
} else {
alloced = FALSE;
}
// fix up rebalance list
rbl = RebalanceList;
ilop = 0;
while (rbl->RebalanceContext[ilop]) {
PUSB2LIB_ENDPOINT_CONTEXT endpointContext;
DBGPRINT((">rb[%d] %x\n", ilop, rbl->RebalanceContext[ilop]));
endpointContext = CONTAINING_RECORD(rbl->RebalanceContext[ilop],
struct _USB2LIB_ENDPOINT_CONTEXT,
Ep);
rbl->RebalanceContext[ilop] = endpointContext->RebalanceContext;
ilop++;
}
DBGPRINT((">Change List Size = %d RBE = %d\n", ilop, *RebalanceListEntries));
*RebalanceListEntries = ilop;
return alloced;
}
VOID
USB2LIB_FreeUsb2BusTime(
PUSB2LIB_HC_CONTEXT HcContext,
PUSB2LIB_TT_CONTEXT TtContext,
PUSB2LIB_ENDPOINT_CONTEXT EndpointContext,
PVOID RebalanceList,
PULONG RebalanceListEntries
)
/*++
Routine Description:
Arguments:
Return Value:
--*/
{
unsigned result;
PEndpoint ep;
PREBALANCE_LIST rbl;
ULONG i;
// ASSERT(EndpointContext->Sig == SIG_LIB_EP);
ep = &EndpointContext->Ep;
DBGPRINT((">dealloc ep Context = 0x%x (ep) %x \n", EndpointContext, ep));
DBGPRINT((">RebalanceListEntries %d \n", *RebalanceListEntries));
Deallocate_time_for_endpoint(ep,
RebalanceList,
RebalanceListEntries);
// fix up rebalance list
rbl = RebalanceList;
i = 0;
while (rbl->RebalanceContext[i]) {
PUSB2LIB_ENDPOINT_CONTEXT endpointContext;
DBGPRINT((">rb[%d] %x\n", i, rbl->RebalanceContext[i]));
endpointContext = CONTAINING_RECORD(rbl->RebalanceContext[i],
struct _USB2LIB_ENDPOINT_CONTEXT,
Ep);
rbl->RebalanceContext[i] = endpointContext->RebalanceContext;
i++;
}
DBGPRINT((">Change List Size = %d RBE = %d\n", i, *RebalanceListEntries));
*RebalanceListEntries = i;
}
VOID
ConvertBtoHFrame(UCHAR BFrame, UCHAR BUFrame, PUCHAR HFrame, PUCHAR HUFrame)
{
// The budgeter returns funky values that we have to convert to something
// that the host controller understands.
// If bus micro frame is -1, that means that the start split is scheduled
// in the last microframe of the previous bus frame.
// to convert to hframes, you simply change the microframe to 0 and
// keep the bus frame (see one of the tables in the host controller spec
// eg 4-17.
if(BUFrame == 0xFF) {
*HUFrame = 0;
*HFrame = BFrame;
}
// if the budgeter returns a value in the range from 0-6
// we simply add one to the bus micro frame to get the host
// microframe
if(BUFrame >= 0 && BUFrame <= 6) {
*HUFrame = BUFrame + 1;
*HFrame = BFrame;
}
// if the budgeter returns a value of 7 for the bframe
// then the HUframe = 0 and the HUframe = buframe +1
if(BUFrame == 7) {
*HUFrame = 0;
*HFrame = BFrame + 1;
}
}
UCHAR
USB2LIB_GetSMASK(PUSB2LIB_ENDPOINT_CONTEXT EndpointContext)
{
PEndpoint Ep;
UCHAR tmp = 0;
Ep = &EndpointContext->Ep;
// ASSERT(EndpointContext->Sig == SIG_LIB_EP);
if(Ep->speed == HSSPEED) {
//DBGPRINT(("in GetSMASK StartUFrame on High Speed Endpoint = 0x%x\n", Ep->start_microframe));
tmp |= 1 << Ep->start_microframe;
} else {
ULONG ilop;
UCHAR HFrame; // H (Host) frame for endpoint
UCHAR HUFrame; // H (Host) micro frame for endpoint
// For Full and Low Speed Endpoints
// the budgeter returns a bframe. Convert to HUFrame to get SMASK
ConvertBtoHFrame((UCHAR)Ep->start_frame, (UCHAR)Ep->start_microframe, &HFrame, &HUFrame);
for(ilop = 0; ilop < Ep->num_starts; ilop++) {
tmp |= 1 << HUFrame++;
}
}
return tmp;
}
//
// I'm too brain dead to calculate this so just do table lookup
//
// Calculated by 1 << Start H Frame + 2. If Start H Frame + 2 > 7 wrap the bits
// to the lower part of the word
// eg. hframe 0 +2 means cmask in frames 2,3,4 ==> cmask 0x1c
// eg. hframe 5 + 2 means cmasks in frames 7, 8, 9 which means cmask 0x83
#define SIZE_OF_CMASK 8
static UCHAR CMASKS [SIZE_OF_CMASK] =
{ 0x1c, // Start HUFRAME 0
0x38, // Start HUFRAME 1
0x70, // Start HUFRAME 2
0xE0, // Start HUFRAME 3
0xC1, // Start HUFRAME 4
0x83, // Start HUFRAME 5
0x07, // Start HUFRAME 6
0x0E, // Start HUFRAME 7
};
UCHAR
USB2LIB_GetCMASK(PUSB2LIB_ENDPOINT_CONTEXT EndpointContext)
{
PEndpoint Ep;
Ep = &EndpointContext->Ep;
// ASSERT(EndpointContext->Sig == SIG_LIB_EP);
if(Ep->speed == HSSPEED) {
return 0;
} else if(Ep->ep_type == interrupt) {
UCHAR HFrame; // H (Host) frame for endpoint
UCHAR HUFrame; // H (Host) micro frame for endpoint
ConvertBtoHFrame((UCHAR)Ep->start_frame, (UCHAR)Ep->start_microframe,
&HFrame, &HUFrame);
return CMASKS[HUFrame];
} else {
// Split ISO!
UCHAR HFrame; // H (Host) frame for endpoint
UCHAR HUFrame; // H (Host) micro frame for endpoint
UCHAR tmp;
ULONG NumCompletes;
if(Ep->direction == OUTDIR) {
// Split iso out -- NO complete splits
return 0;
}
ConvertBtoHFrame((UCHAR)Ep->start_frame, (UCHAR)Ep->start_microframe,
&HFrame, &HUFrame);
HUFrame += 2;
NumCompletes = Ep->num_completes;
// ASSERT(NumCompletes > 0);
//
// Set all CMASKS bits to be set at the end of the frame
//
for(; HUFrame < 8; HUFrame++) {
tmp |= 1 << HUFrame;
NumCompletes--;
if(!NumCompletes){
break;
}
}
//
// Now set all CMASKS bits to be set at the end of the
// frame I.E. for the next frame wrap condition
//
while(NumCompletes) {
tmp |= 1 << (HUFrame - 8);
NumCompletes--;
}
//DBGPRINT(("in GetCMASK HFRAME = 0x%x HUFRAME 0x%x\n", HFrame, HUFrame));
return tmp;
}
}
UCHAR
USB2LIB_GetStartMicroFrame(PUSB2LIB_ENDPOINT_CONTEXT EndpointContext)
{
PEndpoint Ep;
UCHAR HFrame; // H (Host) frame for endpoint
UCHAR HUFrame; // H (Host) micro frame for endpoint
Ep = &EndpointContext->Ep;
// ASSERT(EndpointContext->Sig == SIG_LIB_EP);
ConvertBtoHFrame((UCHAR)Ep->start_frame, (UCHAR)Ep->start_microframe,
&HFrame, &HUFrame);
return HUFrame;
}
UCHAR
USB2LIB_GetPromotedThisTime(PUSB2LIB_ENDPOINT_CONTEXT EndpointContext)
{
PEndpoint Ep;
UCHAR Promoted = 0;
Ep = &EndpointContext->Ep;
// ASSERT(EndpointContext->Sig == SIG_LIB_EP);
Promoted = (UCHAR) Ep->promoted_this_time;
Ep->promoted_this_time = 0;
return Promoted;
}
UCHAR
USB2LIB_GetNewPeriod(PUSB2LIB_ENDPOINT_CONTEXT EndpointContext)
{
PEndpoint Ep;
Ep = &EndpointContext->Ep;
// ASSERT(EndpointContext->Sig == SIG_LIB_EP);
return (UCHAR) Ep->actual_period;
}
ULONG
USB2LIB_GetScheduleOffset(PUSB2LIB_ENDPOINT_CONTEXT EndpointContext)
{
PEndpoint Ep;
Ep = &EndpointContext->Ep;
// assert(EndpointContext->Sig == SIG_LIB_EP);
return Ep->start_frame;
}
PVOID
USB2LIB_GetEndpoint(PUSB2LIB_ENDPOINT_CONTEXT EndpointContext)
{
return &(EndpointContext->Ep);
}
ULONG
USB2LIB_GetAllocedBusTime(PUSB2LIB_ENDPOINT_CONTEXT EndpointContext)
{
PEndpoint Ep;
Ep = &EndpointContext->Ep;
// assert(EndpointContext->Sig == SIG_LIB_EP);
return Ep->calc_bus_time;
}
PVOID
USB2LIB_GetNextEndpoint(PUSB2LIB_ENDPOINT_CONTEXT EndpointContext)
{
PEndpoint Ep, nextEp;
PUSB2LIB_ENDPOINT_CONTEXT nextContext;
Ep = &EndpointContext->Ep;
nextEp = Ep->next_ep;
if (nextEp) {
nextContext = CONTAINING_RECORD(nextEp,
struct _USB2LIB_ENDPOINT_CONTEXT,
Ep);
// assert(EndpointContext->Sig == SIG_LIB_EP);
return nextContext->RebalanceContext;
} else {
return NULL;
}
}