Source code of Windows XP (NT5)
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1806 lines
59 KiB

/******************************Module*Header*******************************\
* Module Name: ddraw.c
*
* Implements all the DirectDraw components for the driver.
*
* Copyright (c) 1995-1996 Microsoft Corporation
\**************************************************************************/
#include "precomp.h"
// FourCC formats are encoded in reverse because we're little endian:
#define FOURCC_YUY2 '2YUY'
// Worst-case possible number of FIFO entries we'll have to wait for in
// DdBlt for any operation:
#define DDBLT_FIFO_COUNT 7
// NT is kind enough to pre-calculate the 2-d surface offset as a 'hint' so
// that we don't have to do the following, which would be 6 DIVs per blt:
//
// y += (offset / pitch)
// x += (offset % pitch) / bytes_per_pixel
#define convertToGlobalCord(x, y, surf) \
{ \
y += surf->yHint; \
x += surf->xHint; \
}
/******************************Public*Routine******************************\
* VOID vYuvStretch
*
* Does an expanding stretch blt from a 16-bit YUV surface to video memory.
*
\**************************************************************************/
VOID vYuvStretch(
PDEV* ppdev,
RECTL* prclDst,
VOID* pvSrc,
LONG lDeltaSrc,
RECTL* prclSrc)
{
BYTE* pjBase;
BYTE* pjDma;
LONG cxMemory;
LONG cxDst;
LONG cxSrc;
LONG cyDst;
LONG cySrc;
LONG cyWholeDuplicate;
LONG lPartialDuplicate;
LONG lError;
LONG lErrorLimit;
LONG xDstLeft;
LONG xDstRight;
LONG xDstRightFast;
LONG yDstTop;
LONG xSrcAlign;
ULONG cd;
BYTE* pjSrc;
ULONG ulCmd;
LONG lDstAddress;
ULONG* pulSrc;
ULONG* pulDma;
ULONG i;
LONG cyDuplicate;
LONG cyBreak;
LONG iBreak;
pjBase = ppdev->pjBase;
cxMemory = ppdev->cxMemory;
pjDma = pjBase + DMAWND;
ppdev->HopeFlags = SIGN_CACHE; // Only register that's zero when done
cxDst = prclDst->right - prclDst->left;
cxSrc = prclSrc->right - prclSrc->left;
cyDst = prclDst->bottom - prclDst->top;
cySrc = prclSrc->bottom - prclSrc->top;
ASSERTDD((cySrc <= cyDst) && (cxSrc <= cxDst),
"Expanding stretches only may be allowed here");
// We'll be doing the vertical stretching in software, so calculate the
// DDA terms here. We have the luxury of not worrying about overflow
// because DirectDraw limits our coordinate space to 15 bits:
cyWholeDuplicate = (cyDst / cySrc) - 1;
lPartialDuplicate = (cyDst % cySrc);
lErrorLimit = cySrc;
lError = cySrc >> 1;
xDstLeft = prclDst->left;
xDstRight = prclDst->right - 1; // Note this is inclusive
yDstTop = prclDst->top;
cyDst = prclDst->bottom - prclDst->top;
// Fast WRAM-WRAM blts have a funky requirement for 'FXRIGHT':
switch (ppdev->cjPelSize)
{
case 1: xDstRightFast = xDstRight | 0x40; break;
case 2: xDstRightFast = xDstRight | 0x20; break;
case 4: xDstRightFast = xDstRight | 0x10; break;
case 3: xDstRightFast = (((xDstRight * 3) + 2) | 0x40) / 3;
break;
}
// Figure out how many scans we can duplicate before we hit the first
// WRAM boundary:
cyBreak = 0xffff;
for (iBreak = 0; iBreak < ppdev->cyBreak; iBreak++)
{
if (ppdev->ayBreak[iBreak] >= yDstTop)
{
cyBreak = ppdev->ayBreak[iBreak] - yDstTop;
break;
}
}
CHECK_FIFO_SPACE(pjBase, 8);
CP_WRITE(pjBase, DWG_YDST, yDstTop);
CP_WRITE(pjBase, DWG_CXBNDRY, (xDstRight << bfxright_SHIFT)
| (xDstLeft));
// Make sure we always read dword-aligned from the source:
xSrcAlign = prclSrc->left & 1;
if (xSrcAlign)
{
xDstLeft -= cxDst / cxSrc; // We guess that Millennium takes ceiling
}
CP_WRITE(pjBase, DWG_FXBNDRY, (xDstRight << bfxright_SHIFT)
| (xDstLeft & bfxleft_MASK));
lDstAddress = (yDstTop - 1) * cxMemory + xDstLeft + ppdev->ulYDstOrg;
CP_WRITE(pjBase, DWG_AR5, cxMemory);
CP_WRITE(pjBase, DWG_AR3, lDstAddress);
CP_WRITE(pjBase, DWG_AR0, lDstAddress + cxDst - 1);
cd = (cxSrc + xSrcAlign + 1) >> 1;
pjSrc = (BYTE*) pvSrc + (prclSrc->top * lDeltaSrc)
+ ((prclSrc->left - xSrcAlign) * 2);
ASSERTDD(((ULONG_PTR) pjSrc & 3) == 0, "Must dword align source");
if (cxDst >= 2 * cxSrc)
{
ulCmd = opcode_ILOAD_FILTER |
atype_RPL |
blockm_OFF |
bltmod_BUYUV |
pattern_OFF |
transc_BG_OPAQUE |
bop_SRCCOPY |
shftzero_ZERO |
sgnzero_ZERO;
CP_WRITE(pjBase, DWG_AR2, 2 * cxSrc - 1);
CP_WRITE(pjBase, DWG_AR6, 2 * cxSrc - cxDst - 1);
}
else
{
ulCmd = opcode_ILOAD_SCALE |
atype_RPL |
blockm_OFF |
bltmod_BUYUV |
pattern_OFF |
transc_BG_OPAQUE |
bop_SRCCOPY |
shftzero_ZERO |
sgnzero_ZERO;
CP_WRITE(pjBase, DWG_AR2, cxSrc);
CP_WRITE(pjBase, DWG_AR6, cxSrc - cxDst);
}
do {
CHECK_FIFO_SPACE(pjBase, 2);
CP_WRITE(pjBase, DWG_DWGCTL, ulCmd);
CP_START(pjBase, DWG_LEN, 1);
// Turn on pseudo-DMA so that we can use PCI burst mode:
CHECK_FIFO_SPACE(pjBase, FIFOSIZE);
BLT_WRITE_ON(ppdev, pjBase);
pulSrc = (ULONG*) pjSrc;
pulDma = (ULONG*) pjDma;
pjSrc += lDeltaSrc;
#if defined(_X86_)
__asm mov esi, pulSrc
__asm mov edi, pulDma
__asm mov ecx, cd
__asm rep movsd
#else
for (i = cd; i != 0; i--)
{
WRITE_REGISTER_ULONG(pulDma, *pulSrc);
pulSrc++;
pulDma++;
}
#endif
BLT_WRITE_OFF(ppdev, pjBase);
// Do an iteration of the DDA to determine how many lines we'll
// be duplicating. This biases
cyDuplicate = cyWholeDuplicate;
lError += lPartialDuplicate;
if (lError >= lErrorLimit)
{
cyDuplicate++;
lError -= lErrorLimit;
}
// Account for the line we just stretched:
cyDst--;
cyBreak--;
// Remember not to duplicate past where we're supposed to end:
if (cyDuplicate > cyDst)
cyDuplicate = cyDst;
if (cyDuplicate != 0)
{
cyDst -= cyDuplicate;
cyBreak -= cyDuplicate;
if (cyBreak >= 0)
{
// We haven't crossed a WRAM boundary, so we can use a
// WRAM-WRAM blt to duplicate the scan:
CHECK_FIFO_SPACE(pjBase, 4);
CP_WRITE(pjBase, DWG_DWGCTL, opcode_FBITBLT |
atype_RPL |
blockm_OFF |
bltmod_BFCOL |
pattern_OFF |
transc_BG_OPAQUE |
bop_NOP |
shftzero_ZERO |
sgnzero_ZERO);
CP_WRITE(pjBase, DWG_FXRIGHT, xDstRightFast);
CP_START(pjBase, DWG_LEN, cyDuplicate);
CP_WRITE(pjBase, DWG_FXRIGHT, xDstRight);
}
else
{
// We just crossed a WRAM boundary, so we have to use a
// regular blt to duplicate the scan:
CHECK_FIFO_SPACE(pjBase, 2);
CP_WRITE(pjBase, DWG_DWGCTL, opcode_BITBLT |
atype_RPL |
blockm_OFF |
bltmod_BFCOL |
pattern_OFF |
transc_BG_OPAQUE |
bop_SRCCOPY |
shftzero_ZERO |
sgnzero_ZERO);
CP_START(pjBase, DWG_LEN, cyDuplicate);
iBreak++;
if (iBreak >= ppdev->cyBreak)
{
// That was the last break we have to worry about:
cyBreak = 0xffff;
}
else
{
cyBreak += ppdev->ayBreak[iBreak]
- ppdev->ayBreak[iBreak - 1];
}
}
}
} while (cyDst != 0);
// Reset the clipping, and we're done!
CHECK_FIFO_SPACE(pjBase, 1);
CP_WRITE(pjBase, DWG_CXBNDRY, (cxMemory - 1) << bcxright_SHIFT);
}
/******************************Public*Routine******************************\
* VOID vYuvBlt
*
* Does a non-stretching blt from a 16-bit YUV surface to video memory.
*
\**************************************************************************/
VOID vYuvBlt(
PDEV* ppdev,
RECTL* prclDst,
VOID* pvSrc,
LONG lDeltaSrc,
POINTL* pptlSrc)
{
BYTE* pjBase;
BYTE* pjDma;
LONG cy;
LONG xLeft;
LONG xRight;
LONG xAlign;
ULONG cd;
BYTE* pjSrc;
ULONG* pulSrc;
ULONG* pulDma;
ULONG i;
pjBase = ppdev->pjBase;
pjDma = pjBase + DMAWND;
ppdev->HopeFlags = SIGN_CACHE; // Only register that's zero when done
CHECK_FIFO_SPACE(pjBase, 6);
CP_WRITE(pjBase, DWG_DWGCTL, opcode_ILOAD
| atype_RPL
| blockm_OFF
| pattern_OFF
| transc_BG_OPAQUE
| bop_SRCCOPY
| shftzero_ZERO
| sgnzero_ZERO
| bltmod_BUYUV);
xLeft = prclDst->left;
xRight = prclDst->right;
cy = prclDst->bottom - prclDst->top;
CP_WRITE(pjBase, DWG_AR3, 0);
CP_WRITE(pjBase, DWG_YDSTLEN, (prclDst->top << yval_SHIFT) | cy);
// Make sure we always read dword-aligned from the source:
xAlign = pptlSrc->x & 1;
if (xAlign)
{
CP_WRITE(pjBase, DWG_CXLEFT, xLeft);
xLeft--;
}
CP_WRITE(pjBase, DWG_FXBNDRY, ((xRight - 1) << bfxright_SHIFT) |
(xLeft & bfxleft_MASK));
CP_START(pjBase, DWG_AR0, xRight - xLeft - 1);
cd = (xRight - xLeft + 1) >> 1;
pjSrc = (BYTE*) pvSrc + (pptlSrc->y * lDeltaSrc)
+ ((pptlSrc->x - xAlign) * 2);
ASSERTDD(((ULONG_PTR) pjSrc & 3) == 0, "Must dword align source");
// Turn on pseudo-DMA so that we can use PCI burst mode:
CHECK_FIFO_SPACE(pjBase, FIFOSIZE);
BLT_WRITE_ON(ppdev, pjBase);
do {
pulSrc = (ULONG*) pjSrc;
pulDma = (ULONG*) pjDma;
pjSrc += lDeltaSrc;
#if defined(_X86_)
__asm mov esi, pulSrc
__asm mov edi, pulDma
__asm mov ecx, cd
__asm rep movsd
#else
for (i = cd; i != 0; i--)
{
WRITE_REGISTER_ULONG(pulDma, *pulSrc);
pulSrc++;
pulDma++;
}
#endif
} while (--cy != 0);
// Reset the registers and leave:
BLT_WRITE_OFF(ppdev, pjBase);
if (xAlign)
{
CHECK_FIFO_SPACE(pjBase, 1);
CP_WRITE(pjBase, DWG_CXLEFT, 0);
}
}
/******************************Public*Routine******************************\
* VOID vGetDisplayDuration
*
* Get the length, in EngQueryPerformanceCounter() ticks, of a refresh cycle.
*
* If we could trust the miniport to return back and accurate value for
* the refresh rate, we could use that. Unfortunately, our miniport doesn't
* ensure that it's an accurate value.
*
\**************************************************************************/
#define NUM_VBLANKS_TO_MEASURE 1
#define NUM_MEASUREMENTS_TO_TAKE 8
VOID vGetDisplayDuration(PDEV* ppdev)
{
BYTE* pjBase = ppdev->pjBase;
LONG i;
LONG j;
LONGLONG li;
LONGLONG liMin;
LONGLONG aliMeasurement[NUM_MEASUREMENTS_TO_TAKE + 1];
memset(&ppdev->flipRecord, 0, sizeof(ppdev->flipRecord));
// Warm up EngQUeryPerformanceCounter to make sure it's in the working
// set:
EngQueryPerformanceCounter(&li);
// Unfortunately, since NT is a proper multitasking system, we can't
// just disable interrupts to take an accurate reading. We also can't
// do anything so goofy as dynamically change our thread's priority to
// real-time.
//
// So we just do a bunch of short measurements and take the minimum.
//
// It would be 'okay' if we got a result that's longer than the actual
// VBlank cycle time -- nothing bad would happen except that the app
// would run a little slower. We don't want to get a result that's
// shorter than the actual VBlank cycle time -- that could cause us
// to start drawing over a frame before the Flip has occured.
while (VBLANK_IS_ACTIVE(pjBase))
;
while (!(VBLANK_IS_ACTIVE(pjBase)))
;
for (i = 0; i < NUM_MEASUREMENTS_TO_TAKE; i++)
{
// We're at the start of the VBlank active cycle!
EngQueryPerformanceCounter(&aliMeasurement[i]);
// Okay, so life in a multi-tasking environment isn't all that
// simple. What if we had taken a context switch just before
// the above EngQueryPerformanceCounter call, and now were half
// way through the VBlank inactive cycle? Then we would measure
// only half a VBlank cycle, which is obviously bad. The worst
// thing we can do is get a time shorter than the actual VBlank
// cycle time.
//
// So we solve this by making sure we're in the VBlank active
// time before and after we query the time. If it's not, we'll
// sync up to the next VBlank (it's okay to measure this period --
// it will be guaranteed to be longer than the VBlank cycle and
// will likely be thrown out when we select the minimum sample).
// There's a chance that we'll take a context switch and return
// just before the end of the active VBlank time -- meaning that
// the actual measured time would be less than the true amount --
// but since the VBlank is active less than 1% of the time, this
// means that we would have a maximum of 1% error approximately
// 1% of the times we take a context switch. An acceptable risk.
//
// This next line will cause us wait if we're no longer in the
// VBlank active cycle as we should be at this point:
while (!(VBLANK_IS_ACTIVE(pjBase)))
;
for (j = 0; j < NUM_VBLANKS_TO_MEASURE; j++)
{
while (VBLANK_IS_ACTIVE(pjBase))
;
while (!(VBLANK_IS_ACTIVE(pjBase)))
;
}
}
EngQueryPerformanceCounter(&aliMeasurement[NUM_MEASUREMENTS_TO_TAKE]);
// Use the minimum:
liMin = aliMeasurement[1] - aliMeasurement[0];
DISPDBG((1, "Refresh count: %li - %li", 1, (ULONG) liMin));
for (i = 2; i <= NUM_MEASUREMENTS_TO_TAKE; i++)
{
li = aliMeasurement[i] - aliMeasurement[i - 1];
DISPDBG((1, " %li - %li", i, (ULONG) li));
if (li < liMin)
liMin = li;
}
// Round the result:
ppdev->flipRecord.liFlipDuration
= (DWORD) (liMin + (NUM_VBLANKS_TO_MEASURE / 2)) / NUM_VBLANKS_TO_MEASURE;
DISPDBG((1, "Frequency %li.%03li Hz",
(ULONG) (EngQueryPerformanceFrequency(&li),
li / ppdev->flipRecord.liFlipDuration),
(ULONG) (EngQueryPerformanceFrequency(&li),
((li * 1000) / ppdev->flipRecord.liFlipDuration) % 1000)));
ppdev->flipRecord.bFlipFlag = FALSE;
ppdev->flipRecord.fpFlipFrom = 0;
}
/******************************Public*Routine******************************\
* HRESULT ddrvalUpdateFlipStatus
*
* Checks to if the most recent flip has occurred.
*
* Takes advantage of the hardware's ability to get the current scan line
* to determine if a vertical retrace has occured since the flip command
* was given.
*
\**************************************************************************/
HRESULT ddrvalUpdateFlipStatus(
PDEV* ppdev,
FLATPTR fpVidMem) // Surface for which we're requesting flip status;
// -1 indicates status of last flip, regardless of what
// surface it was.
{
BYTE* pjBase;
DWORD dwScanLine;
LONGLONG liTime;
pjBase = ppdev->pjBase;
if (ppdev->flipRecord.bFlipFlag)
{
dwScanLine = GET_SCANLINE(pjBase);
if (dwScanLine < ppdev->flipRecord.dwScanLine)
{
ppdev->flipRecord.bFlipFlag = FALSE;
}
else
{
ppdev->flipRecord.dwScanLine = dwScanLine;
if ((fpVidMem == (FLATPTR) -1) ||
(fpVidMem == ppdev->flipRecord.fpFlipFrom))
{
// Sampling the current scan line at random times is not a
// fool-proof indicator that the flip has occured. As a
// backup, if the time elapsed since the flip command was
// given is more than the duration of one entire refresh of
// the display, then we know for sure it has happened:
EngQueryPerformanceCounter(&liTime);
if (liTime - ppdev->flipRecord.liFlipTime
<= ppdev->flipRecord.liFlipDuration)
{
return(DDERR_WASSTILLDRAWING);
}
ppdev->flipRecord.bFlipFlag = FALSE;
}
}
}
return(DD_OK);
}
/******************************Public*Routine******************************\
* DWORD DdBlt
*
\**************************************************************************/
DWORD DdBlt(
PDD_BLTDATA lpBlt)
{
PDD_SURFACE_GLOBAL srcSurf;
PDD_SURFACE_LOCAL dstSurfx;
PDD_SURFACE_GLOBAL dstSurf;
PDEV* ppdev;
HRESULT ddRVal;
DWORD dstX;
DWORD dstY;
DWORD dwFlags;
DWORD srcX;
DWORD srcY;
LONG dstWidth;
LONG dstHeight;
LONG srcWidth;
LONG srcHeight;
ULONG ulBltCmd;
LONG lSrcStart;
LONG lSignedPitch;
RECTL rclSrc;
RECTL rclDest;
BYTE* pjBase;
ppdev = (PDEV*) lpBlt->lpDD->dhpdev;
pjBase = ppdev->pjBase;
dstSurfx = lpBlt->lpDDDestSurface;
dstSurf = dstSurfx->lpGbl;
ASSERTDD(dstSurf->ddpfSurface.dwSize == sizeof(DDPIXELFORMAT),
"NT is supposed to guarantee that ddpfSurface.dwSize is valid");
// We don't have to do any drawing to YUV surfaces. Note that unlike
// Windows 95, Windows NT always guarantees that there will be a valid
// 'ddpfSurface' structure, so we don't have to first check if
// 'dwSize == sizeof(DDPIXELFORMAT)':
if (dstSurf->ddpfSurface.dwFlags & DDPF_FOURCC)
{
return(DDHAL_DRIVER_NOTHANDLED);
}
// Is a flip in progress?
ddRVal = ddrvalUpdateFlipStatus(ppdev, dstSurf->fpVidMem);
if (ddRVal != DD_OK)
{
lpBlt->ddRVal = ddRVal;
return(DDHAL_DRIVER_HANDLED);
}
dwFlags = lpBlt->dwFlags;
if (dwFlags & DDBLT_ASYNC)
{
// If async, then only work if we won't have to wait on the
// accelerator to start the command.
//
// The FIFO wait should account for the worst-case possible
// blt that we would do:
//
// We should check for enough entries that we're guaranteed
// to not have to wait later in this routine.
if (GET_FIFO_SPACE(pjBase) < DDBLT_FIFO_COUNT)
{
lpBlt->ddRVal = DDERR_WASSTILLDRAWING;
return(DDHAL_DRIVER_HANDLED);
}
}
// Copy destination rectangle:
dstX = lpBlt->rDest.left;
dstY = lpBlt->rDest.top;
dstWidth = lpBlt->rDest.right - lpBlt->rDest.left;
dstHeight = lpBlt->rDest.bottom - lpBlt->rDest.top;
convertToGlobalCord(dstX, dstY, dstSurf);
if (dwFlags & DDBLT_COLORFILL)
{
ppdev->HopeFlags = (SIGN_CACHE | ARX_CACHE | PATTERN_CACHE);
if (ppdev->iBitmapFormat == BMF_24BPP)
{
// We can't use block mode.
ulBltCmd = (opcode_TRAP + blockm_OFF + atype_RPL + solid_SOLID +
arzero_ZERO + sgnzero_ZERO + shftzero_ZERO +
bop_SRCCOPY + pattern_OFF + transc_BG_OPAQUE);
}
else
{
ulBltCmd = (opcode_TRAP + blockm_ON + solid_SOLID +
arzero_ZERO + sgnzero_ZERO + shftzero_ZERO +
bop_SRCCOPY + pattern_OFF + transc_BG_OPAQUE);
}
CHECK_FIFO_SPACE(pjBase, 4);
CP_WRITE(pjBase, DWG_DWGCTL, ulBltCmd);
CP_WRITE(pjBase, DWG_FCOL, COLOR_REPLICATE(ppdev, lpBlt->bltFX.dwFillColor));
CP_WRITE(pjBase, DWG_FXBNDRY, (((dstX + dstWidth) << bfxright_SHIFT) | dstX));
CP_START(pjBase, DWG_YDSTLEN, (((dstY) << yval_SHIFT) | dstHeight));
lpBlt->ddRVal = DD_OK;
return(DDHAL_DRIVER_HANDLED);
}
// We specified with Our ddCaps.dwCaps that we handle a limited number
// of commands, and by this point in our routine we've handled everything
// except DDBLT_ROP. DirectDraw and GDI shouldn't pass us anything
// else; we'll assert on debug builds to prove this:
ASSERTDD((dwFlags & DDBLT_ROP) && (lpBlt->lpDDSrcSurface),
"Expected dwFlags commands of only DDBLT_ASYNC and DDBLT_COLORFILL");
// Get source rectangle dimensions:
srcSurf = lpBlt->lpDDSrcSurface->lpGbl;
srcX = lpBlt->rSrc.left;
srcY = lpBlt->rSrc.top;
srcWidth = lpBlt->rSrc.right - lpBlt->rSrc.left;
srcHeight = lpBlt->rSrc.bottom - lpBlt->rSrc.top;
rclDest.left = dstX;
rclDest.right = dstX + dstWidth;
rclDest.top = dstY;
rclDest.bottom = dstY + dstHeight;
if (srcSurf->ddpfSurface.dwFlags & DDPF_FOURCC)
{
rclSrc.left = srcX;
rclSrc.top = srcY;
rclSrc.right = srcX + srcWidth;
rclSrc.bottom = srcY + srcHeight;
if ((dstWidth == srcWidth) && (dstHeight == srcHeight))
{
vYuvBlt(ppdev,
&rclDest,
(VOID*) srcSurf->fpVidMem,
srcSurf->lPitch,
(POINTL*) &rclSrc);
}
// Note that we would fall over if we actually got a shrink here,
// even though we've set our caps to indicate we can only do
// expands. We're paranoid and don't want to ever fall over:
else if ((dstWidth >= srcWidth) && (dstHeight >= srcHeight))
{
vYuvStretch(ppdev,
&rclDest,
(VOID*) srcSurf->fpVidMem,
srcSurf->lPitch,
&rclSrc);
}
lpBlt->ddRVal = DD_OK;
return(DDHAL_DRIVER_HANDLED);
}
// NT only ever gives us SRCCOPY rops, so don't even bother checking
// for anything else.
convertToGlobalCord(srcX, srcY, srcSurf);
rclSrc.left = srcX;
rclSrc.top = srcY;
rclSrc.right = srcX + srcWidth;
rclSrc.bottom = srcY + srcHeight;
// Must be set for our copy routines to operate properly:
ppdev->xOffset = 0;
ppdev->yOffset = 0;
if ((srcWidth == dstWidth) && (srcHeight == dstHeight))
{
// There's no stretching involved, so do a straight screen-to-
// screen copy. 'vMilCopyBlt' takes care of the overlapping
// cases, and
vMilCopyBlt(ppdev, 1, &rclDest, 0xcccc, (POINTL*) &rclSrc, &rclDest);
}
else
{
// Ugh, we've been asked to stretch an off-screen surface. We'll
// just pass it to our hardware-assisted StretchBlt routine.
//
// Unfortunately, the source is in off-screen memory and so the
// performance will be terrible -- slower than if the surface had
// been created in system memory. We have to support stretched RGB
// surfaces in the first place because we set DDCAPS_BLTSTRETCH so
// that we could use the Millennium's YUV stretch capabilities --
// and DirectDraw has no concept of being able to say "we support
// hardware stretches with these types of off-screen surfaces, but
// not those with those other types of off-screen surfaces." Oh
// well. I expect that if applications will be doing stretches,
// they'll be doing it mostly from YUV surfaces (as will be the
// case with ActiveMovie), so this should be a win overall.
//
// Note: If you are modeling your driver on this code and don't have
// any hardware stretch capabilities, then simply don't set
// DDCAPS_BLTSTRETCH, and you'll never have to worry about
// this! We only do this weirdness here because the
// Millennium can hardware stretch YUV surfaces but not RGB
// surfaces. (Sort of.)
vStretchDIB(ppdev,
&rclDest,
ppdev->pjScreen + (ppdev->ulYDstOrg * ppdev->cjPelSize),
ppdev->lDelta,
&rclSrc,
&rclDest);
}
lpBlt->ddRVal = DD_OK;
return(DDHAL_DRIVER_HANDLED);
}
/******************************Public*Routine******************************\
* DWORD DdFlip
*
\**************************************************************************/
DWORD DdFlip(
PDD_FLIPDATA lpFlip)
{
PDEV* ppdev;
BYTE* pjBase;
HRESULT ddRVal;
ULONG ulMemoryOffset;
ULONG ulLowOffset;
ULONG ulMiddleOffset;
ULONG ulHighOffset;
BYTE jReg;
ppdev = (PDEV*) lpFlip->lpDD->dhpdev;
pjBase = ppdev->pjBase;
// Is the current flip still in progress?
//
// Don't want a flip to work until after the last flip is done,
// so we ask for the general flip status and ignore the vmem.
ddRVal = ddrvalUpdateFlipStatus(ppdev, (FLATPTR) -1);
if ((ddRVal != DD_OK) || (IS_BUSY(pjBase)))
{
lpFlip->ddRVal = DDERR_WASSTILLDRAWING;
return(DDHAL_DRIVER_HANDLED);
}
// Do the flip:
ulMemoryOffset = (ULONG)(lpFlip->lpSurfTarg->lpGbl->fpVidMem >> 2);
ulMemoryOffset >>= ((ppdev->flFeatures & INTERLEAVE_MODE) ? 1 : 0);
ulLowOffset = 0x0d | ((ulMemoryOffset & 0x0000ff) << 8);
ulMiddleOffset = 0x0c | ((ulMemoryOffset & 0x00ff00));
ulHighOffset = 0x00 | ((ulMemoryOffset & 0x0f0000) >> 8);
// Make sure that the border/blanking period isn't active; wait if
// it is. We could return DDERR_WASSTILLDRAWING in this case, but
// that will increase the odds that we can't flip the next time:
while (!(DISPLAY_IS_ACTIVE(pjBase)))
;
CP_WRITE_REGISTER_BYTE(pjBase + VGA_CRTCEXT_INDEX, 0x00);
jReg = CP_READ_REGISTER_BYTE(pjBase + VGA_CRTCEXT_DATA);
jReg &= ~0x0f;
CP_WRITE_REGISTER_WORD(pjBase + VGA_CRTC_INDEX, ulLowOffset);
CP_WRITE_REGISTER_WORD(pjBase + VGA_CRTC_INDEX, ulMiddleOffset);
CP_WRITE_REGISTER_WORD(pjBase + VGA_CRTCEXT_INDEX, ((ulHighOffset) |
(jReg << 8)));
// Remember where and when we were when we did the flip:
EngQueryPerformanceCounter(&ppdev->flipRecord.liFlipTime);
ppdev->flipRecord.dwScanLine = GET_SCANLINE(pjBase);
ppdev->flipRecord.bFlipFlag = TRUE;
ppdev->flipRecord.fpFlipFrom = lpFlip->lpSurfCurr->lpGbl->fpVidMem;
lpFlip->ddRVal = DD_OK;
return(DDHAL_DRIVER_HANDLED);
}
/******************************Public*Routine******************************\
* DWORD DdLock
*
\**************************************************************************/
DWORD DdLock(
PDD_LOCKDATA lpLock)
{
PDEV* ppdev;
BYTE* pjBase;
DD_SURFACE_GLOBAL* lpSurface;
HRESULT ddRVal;
ppdev = (PDEV*) lpLock->lpDD->dhpdev;
pjBase = ppdev->pjBase;
lpSurface = lpLock->lpDDSurface->lpGbl;
if (lpSurface->ddpfSurface.dwFlags & DDPF_FOURCC)
{
// We create all FourCC surfaces in system memory, so just return
// the user-mode address:
lpLock->lpSurfData = (VOID*) lpSurface->fpVidMem;
lpLock->ddRVal = DD_OK;
// When a driver returns DD_OK and DDHAL_DRIVER_HANDLED from DdLock,
// DirectDraw expects it to have adjusted the resulting pointer
// to point to the upper left corner of the specified rectangle, if
// any:
if (lpLock->bHasRect)
{
lpLock->lpSurfData = (VOID*) ((BYTE*) lpLock->lpSurfData
+ lpLock->rArea.top * lpSurface->lPitch
+ lpLock->rArea.left
* (lpSurface->ddpfSurface.dwYUVBitCount >> 3));
}
return(DDHAL_DRIVER_HANDLED);
}
// Check to see if any pending physical flip has occurred.
// Don't allow a lock if a blt is in progress:
ddRVal = ddrvalUpdateFlipStatus(ppdev, lpSurface->fpVidMem);
if (ddRVal != DD_OK)
{
lpLock->ddRVal = DDERR_WASSTILLDRAWING;
return(DDHAL_DRIVER_HANDLED);
}
// Here's one of the places where the Windows 95 and Windows NT DirectDraw
// implementations differ: on Windows NT, you should watch for
// DDLOCK_WAIT and loop in the driver while the accelerator is busy.
// On Windows 95, it doesn't really matter.
//
// (The reason is that Windows NT allows applications to draw directly
// to the frame buffer even while the accelerator is running, and does
// not synchronize everything on the Win16Lock. Note that on Windows NT,
// it is even possible for multiple threads to be holding different
// DirectDraw surface locks at the same time.)
if (lpLock->dwFlags & DDLOCK_WAIT)
{
WAIT_NOT_BUSY(pjBase)
}
else if (IS_BUSY(pjBase))
{
lpLock->ddRVal = DDERR_WASSTILLDRAWING;
return(DDHAL_DRIVER_HANDLED);
}
// Because we correctly set 'fpVidMem' to be the offset into our frame
// buffer when we created the surface, DirectDraw will automatically take
// care of adding in the user-mode frame buffer address if we return
// DDHAL_DRIVER_NOTHANDLED:
return(DDHAL_DRIVER_NOTHANDLED);
}
/******************************Public*Routine******************************\
* DWORD DdGetBltStatus
*
* Doesn't currently really care what surface is specified, just checks
* and goes.
*
\**************************************************************************/
DWORD DdGetBltStatus(
PDD_GETBLTSTATUSDATA lpGetBltStatus)
{
PDEV* ppdev;
HRESULT ddRVal;
BYTE* pjBase;
ppdev = (PDEV*) lpGetBltStatus->lpDD->dhpdev;
pjBase = ppdev->pjBase;
ddRVal = DD_OK;
if (lpGetBltStatus->dwFlags == DDGBS_CANBLT)
{
// DDGBS_CANBLT case: can we add a blt?
ddRVal = ddrvalUpdateFlipStatus(ppdev,
lpGetBltStatus->lpDDSurface->lpGbl->fpVidMem);
if (ddRVal == DD_OK)
{
// There was no flip going on, so is there room in the FIFO
// to add a blt?
if (GET_FIFO_SPACE(pjBase) < DDBLT_FIFO_COUNT)
{
ddRVal = DDERR_WASSTILLDRAWING;
}
}
}
else
{
// DDGBS_ISBLTDONE case: is a blt in progress?
if (IS_BUSY(pjBase))
{
ddRVal = DDERR_WASSTILLDRAWING;
}
}
lpGetBltStatus->ddRVal = ddRVal;
return(DDHAL_DRIVER_HANDLED);
}
/******************************Public*Routine******************************\
* DWORD DdMapMemory
*
* This is a new DDI call specific to Windows NT that is used to map
* or unmap all the application modifiable portions of the frame buffer
* into the specified process's address space.
*
\**************************************************************************/
DWORD DdMapMemory(
PDD_MAPMEMORYDATA lpMapMemory)
{
PDEV* ppdev;
VIDEO_SHARE_MEMORY ShareMemory;
VIDEO_SHARE_MEMORY_INFORMATION ShareMemoryInformation;
DWORD ReturnedDataLength;
ppdev = (PDEV*) lpMapMemory->lpDD->dhpdev;
if (lpMapMemory->bMap)
{
ShareMemory.ProcessHandle = lpMapMemory->hProcess;
// 'RequestedVirtualAddress' isn't actually used for the SHARE IOCTL:
ShareMemory.RequestedVirtualAddress = 0;
// We map in starting at the top of the frame buffer:
ShareMemory.ViewOffset = 0;
// We map down to the end of the frame buffer.
//
// Note: There is a 64k granularity on the mapping (meaning that
// we have to round up to 64k).
//
// Note: If there is any portion of the frame buffer that must
// not be modified by an application, that portion of memory
// MUST NOT be mapped in by this call. This would include
// any data that, if modified by a malicious application,
// would cause the driver to crash. This could include, for
// example, any DSP code that is kept in off-screen memory.
ShareMemory.ViewSize
= ROUND_UP_TO_64K(ppdev->cyMemory * ppdev->lDelta);
if (EngDeviceIoControl(ppdev->hDriver,
IOCTL_VIDEO_SHARE_VIDEO_MEMORY,
&ShareMemory,
sizeof(VIDEO_SHARE_MEMORY),
&ShareMemoryInformation,
sizeof(VIDEO_SHARE_MEMORY_INFORMATION),
&ReturnedDataLength))
{
DISPDBG((0, "Failed IOCTL_VIDEO_SHARE_MEMORY"));
lpMapMemory->ddRVal = DDERR_GENERIC;
return(DDHAL_DRIVER_HANDLED);
}
lpMapMemory->fpProcess = (FLATPTR)ShareMemoryInformation.VirtualAddress;
}
else
{
ShareMemory.ProcessHandle = lpMapMemory->hProcess;
ShareMemory.ViewOffset = 0;
ShareMemory.ViewSize = 0;
ShareMemory.RequestedVirtualAddress = (VOID*) lpMapMemory->fpProcess;
if (EngDeviceIoControl(ppdev->hDriver,
IOCTL_VIDEO_UNSHARE_VIDEO_MEMORY,
&ShareMemory,
sizeof(VIDEO_SHARE_MEMORY),
NULL,
0,
&ReturnedDataLength))
{
RIP("Failed IOCTL_VIDEO_UNSHARE_MEMORY");
}
}
lpMapMemory->ddRVal = DD_OK;
return(DDHAL_DRIVER_HANDLED);
}
/******************************Public*Routine******************************\
* DWORD DdGetFlipStatus
*
* If the display has gone through one refresh cycle since the flip
* occurred, we return DD_OK. If it has not gone through one refresh
* cycle we return DDERR_WASSTILLDRAWING to indicate that this surface
* is still busy "drawing" the flipped page. We also return
* DDERR_WASSTILLDRAWING if the bltter is busy and the caller wanted
* to know if they could flip yet.
*
\**************************************************************************/
DWORD DdGetFlipStatus(
PDD_GETFLIPSTATUSDATA lpGetFlipStatus)
{
PDEV* ppdev;
BYTE* pjBase;
ppdev = (PDEV*) lpGetFlipStatus->lpDD->dhpdev;
pjBase = ppdev->pjBase;
// We don't want a flip to work until after the last flip is done,
// so we ask for the general flip status and ignore the vmem:
lpGetFlipStatus->ddRVal = ddrvalUpdateFlipStatus(ppdev, (FLATPTR) -1);
// Check if the bltter is busy if someone wants to know if they can
// flip:
if (lpGetFlipStatus->dwFlags == DDGFS_CANFLIP)
{
if ((lpGetFlipStatus->ddRVal == DD_OK) && (IS_BUSY(pjBase)))
{
lpGetFlipStatus->ddRVal = DDERR_WASSTILLDRAWING;
}
}
return(DDHAL_DRIVER_HANDLED);
}
/******************************Public*Routine******************************\
* DWORD DdWaitForVerticalBlank
*
\**************************************************************************/
DWORD DdWaitForVerticalBlank(
PDD_WAITFORVERTICALBLANKDATA lpWaitForVerticalBlank)
{
PDEV* ppdev;
BYTE* pjBase;
ppdev = (PDEV*) lpWaitForVerticalBlank->lpDD->dhpdev;
pjBase = ppdev->pjBase;
switch (lpWaitForVerticalBlank->dwFlags)
{
case DDWAITVB_I_TESTVB:
// If TESTVB, it's just a request for the current vertical blank
// status:
if (VBLANK_IS_ACTIVE(pjBase))
{
lpWaitForVerticalBlank->bIsInVB = TRUE;
}
else
{
lpWaitForVerticalBlank->bIsInVB = FALSE;
}
lpWaitForVerticalBlank->ddRVal = DD_OK;
return(DDHAL_DRIVER_HANDLED);
case DDWAITVB_BLOCKBEGIN:
// If BLOCKBEGIN is requested, we wait until the vertical blank
// is over, and then wait for the display period to end:
while (VBLANK_IS_ACTIVE(pjBase))
;
while (!(VBLANK_IS_ACTIVE(pjBase)))
;
lpWaitForVerticalBlank->ddRVal = DD_OK;
return(DDHAL_DRIVER_HANDLED);
case DDWAITVB_BLOCKEND:
// If BLOCKEND is requested, we wait for the vblank interval to end:
while (!(VBLANK_IS_ACTIVE(pjBase)))
;
while (VBLANK_IS_ACTIVE(pjBase))
;
lpWaitForVerticalBlank->ddRVal = DD_OK;
return(DDHAL_DRIVER_HANDLED);
}
return(DDHAL_DRIVER_NOTHANDLED);
}
/******************************Public*Routine******************************\
* DWORD DdGetScanLine
*
* Reads the scan line currently being scanned by the CRT.
*
\**************************************************************************/
DWORD DdGetScanLine(
PDD_GETSCANLINEDATA lpGetScanLine)
{
PDEV* ppdev;
BYTE* pjBase;
ppdev = (PDEV*) lpGetScanLine->lpDD->dhpdev;
pjBase = ppdev->pjBase;
lpGetScanLine->dwScanLine = GET_SCANLINE(pjBase);
lpGetScanLine->ddRVal = DD_OK;
return(DDHAL_DRIVER_HANDLED);
}
/******************************Public*Routine******************************\
* DWORD DdCanCreateSurface
*
* Called by DirectDraw to determine if the driver can create a particular
* off-screen surface type.
*
\**************************************************************************/
DWORD DdCanCreateSurface(
PDD_CANCREATESURFACEDATA lpCanCreateSurface)
{
PDEV* ppdev;
LPDDSURFACEDESC lpSurfaceDesc;
ppdev = (PDEV*) lpCanCreateSurface->lpDD->dhpdev;
lpSurfaceDesc = lpCanCreateSurface->lpDDSurfaceDesc;
// It's trivially easy to create surfaces that are the same type as
// the primary surface:
if (!lpCanCreateSurface->bIsDifferentPixelFormat)
{
lpCanCreateSurface->ddRVal = DD_OK;
return(DDHAL_DRIVER_HANDLED);
}
// The only type of YUV mode that the Millennium supports is
// "YUY2". The Millennium also supports 24bpp and 32bpp surfaces,
// but we won't support them because they're not used very much
// and there isn't any good testing coverage for it.
//
// In addition, the Millennium supports YUV only when in RGB modes,
// and at 8bpp we're always running palettized.
if ((lpSurfaceDesc->ddpfPixelFormat.dwFlags & DDPF_FOURCC) &&
(lpSurfaceDesc->ddpfPixelFormat.dwFourCC == FOURCC_YUY2) &&
((ppdev->iBitmapFormat == BMF_16BPP) ||
(ppdev->iBitmapFormat == BMF_32BPP)))
{
// We have to fill-in the bit count:
lpSurfaceDesc->ddpfPixelFormat.dwYUVBitCount = 16;
lpCanCreateSurface->ddRVal = DD_OK;
return(DDHAL_DRIVER_HANDLED);
}
if (lpSurfaceDesc->ddpfPixelFormat.dwFlags & DDPF_RGB)
{
DISPDBG((0, "Failed creation of %libpp RGB surface %lx %lx %lx",
lpSurfaceDesc->ddpfPixelFormat.dwRGBBitCount,
lpSurfaceDesc->ddpfPixelFormat.dwRBitMask,
lpSurfaceDesc->ddpfPixelFormat.dwGBitMask,
lpSurfaceDesc->ddpfPixelFormat.dwBBitMask));
}
else
{
DISPDBG((0, "Failed creation of type 0x%lx YUV 0x%lx surface",
lpSurfaceDesc->ddpfPixelFormat.dwFlags,
lpSurfaceDesc->ddpfPixelFormat.dwFourCC));
}
return(DDHAL_DRIVER_NOTHANDLED);
}
/******************************Public*Routine******************************\
* DWORD DdCreateSurface
*
* Creates an off-screen surface.
*
* We use the Millennium's own off-screen heap manager instead of DirectDraw's
* so that the MCD and DirectDraw parts can coexist -- at the time of this
* writing NT has no support for call-backs from the driver to allocate memory,
* which we need to do to allocate the MCD's back buffer and Z-buffer. So
* we simply manage all of off-screen memory ourselves.
*
* In addition, on the Millennium, YUV surfaces must live in CPU memory.
*
\**************************************************************************/
DWORD DdCreateSurface(
PDD_CREATESURFACEDATA lpCreateSurface)
{
PDEV* ppdev;
DD_SURFACE_GLOBAL* lpSurface;
LPDDSURFACEDESC lpSurfaceDesc;
LONG wWidth;
LONG wHeight;
LONG lPitch;
OH* poh;
FLATPTR fpVidMem;
ppdev = (PDEV*) lpCreateSurface->lpDD->dhpdev;
// On Windows NT, dwSCnt will always be 1, so there will only ever
// be one entry in the 'lplpSList' array:
lpSurface = lpCreateSurface->lplpSList[0]->lpGbl;
lpSurfaceDesc = lpCreateSurface->lpDDSurfaceDesc;
wWidth = lpSurface->wWidth;
wHeight = lpSurface->wHeight;
// We repeat the same checks we did in 'DdCanCreateSurface' because
// it's possible that an application doesn't call 'DdCanCreateSurface'
// before calling 'DdCreateSurface'.
ASSERTDD(lpSurface->ddpfSurface.dwSize == sizeof(DDPIXELFORMAT),
"NT is supposed to guarantee that ddpfSurface.dwSize is valid");
// Note that the Millennium cannot do YUV surfaces at 24bpp or at
// palettized 8bpp:
if ((lpSurface->ddpfSurface.dwFlags & DDPF_FOURCC) &&
(lpSurface->ddpfSurface.dwFourCC == FOURCC_YUY2) &&
((ppdev->iBitmapFormat == BMF_16BPP) ||
(ppdev->iBitmapFormat == BMF_32BPP)))
{
// Compute the stride of the surface, keeping in mind that it has
// to be dword aligned. Since the Millennium supports only 16bpp
// YUV surfaces, this is easy to do:
lPitch = (2 * wWidth + 3) & ~3;
// By setting 'fpVidMem' to 'DDHAL_PLEASEALLOC_USERMEM', we can have
// DirectDraw allocate a piece of user-mode memory of our requested
// size.
//
// Note that we could not simply call EngAllocMem, because that gives
// us a chunk of kernel-mode memory that is not visible from user-mode.
// We also cannot call EngAllocUserMem for obscure reasons dealing with
// the fact EngFreeUserMem must be called from the same process context
// in which the memory was allocated, and DirectDraw sometimes needs
// to call DestroySurface from the context of a different process.
lpSurface->fpVidMem = DDHAL_PLEASEALLOC_USERMEM;
lpSurface->dwUserMemSize = lPitch * wHeight;
lpSurface->lPitch = lPitch;
// DirectDraw expects us to fill in the following fields, too:
lpSurface->ddpfSurface.dwYUVBitCount = 16;
lpSurfaceDesc->lPitch = lPitch;
lpSurfaceDesc->dwFlags |= DDSD_PITCH;
DISPDBG((0, "Created YUV: %li x %li", wWidth, wHeight));
return(DDHAL_DRIVER_NOTHANDLED);
}
else
{
// Due to weirdness of the Matrox, we create non-flippable off-screen
// surfaces only if running at 8bpp. (The reason is that at 16bpp and
// 32bpp, we report DDCAPS_BLTSTRETCH so that applications can stretch
// YUV surfaces via the hardware -- but the hardware is increidbly
// slow at stretching off-screen RGB surfaces, we don't want off-screen
// RGB surfaces that are likely to be stretched.)
if ((ppdev->iBitmapFormat == BMF_8BPP) ||
((wWidth == ppdev->cxScreen) && (wHeight == ppdev->cyScreen)))
{
// Allocate a space in off-screen memory, using our own heap
// manager:
poh = pohAllocate(ppdev, NULL, wWidth, wHeight, FLOH_MAKE_PERMANENT);
if (poh != NULL)
{
fpVidMem = (poh->y * ppdev->lDelta)
+ (poh->x + ppdev->ulYDstOrg) * ppdev->cjPelSize;
// Flip surfaces, detected by surface requests that are
// the same size as the current display, have special
// considerations on the Millennium: they must live entirely
// in the first two megabytes of video memory:
if ((wWidth != ppdev->cxScreen) ||
(wHeight != ppdev->cyScreen) ||
((fpVidMem + (wHeight * ppdev->lDelta)) <= 0x200000))
{
lpSurface->dwReserved1 = (ULONG_PTR)poh;
lpSurface->xHint = poh->x;
lpSurface->yHint = poh->y;
lpSurface->fpVidMem = fpVidMem;
lpSurface->lPitch = ppdev->lDelta;
lpSurfaceDesc->lPitch = ppdev->lDelta;
lpSurfaceDesc->dwFlags |= DDSD_PITCH;
// We handled the creation entirely ourselves, so we have to
// set the return code and return DDHAL_DRIVER_HANDLED:
lpCreateSurface->ddRVal = DD_OK;
return(DDHAL_DRIVER_HANDLED);
}
// Argh, it's a possible flip surface that we can't use:
pohFree(ppdev, poh);
}
}
}
// Fail the call by not setting lpSurface->fpVidMem and returning
// DDHAL_DRIVER_NOTHANDLED:
return(DDHAL_DRIVER_NOTHANDLED);
}
/******************************Public*Routine******************************\
* DWORD DdDestroySurface
*
* Note that if DirectDraw did the allocation, DDHAL_DRIVER_NOTHANDLED
* should be returned.
*
\**************************************************************************/
DWORD DdDestroySurface(
PDD_DESTROYSURFACEDATA lpDestroySurface)
{
PDEV* ppdev;
DD_SURFACE_GLOBAL* lpSurface;
LONG lPitch;
ppdev = (PDEV*) lpDestroySurface->lpDD->dhpdev;
lpSurface = lpDestroySurface->lpDDSurface->lpGbl;
if (!(lpSurface->ddpfSurface.dwFlags & DDPF_FOURCC))
{
pohFree(ppdev, (OH*) lpSurface->dwReserved1);
// Since we did the original allocation ourselves, we have to
// return DDHAL_DRIVER_HANDLED here:
lpDestroySurface->ddRVal = DD_OK;
return(DDHAL_DRIVER_HANDLED);
}
return(DDHAL_DRIVER_NOTHANDLED);
}
/**************************************************************************************
* GetAvailDriverMemory
*
* DDraw 'miscellaneous' callback returning the amount of free memory in driver's
* 'private' heap
***************************************************************************************/
DWORD __stdcall GetAvailDriverMemory (PDD_GETAVAILDRIVERMEMORYDATA pDmd)
{
OH *poh;
OH *pohSentinel;
LONG lArea;
PDEV *ppdev;
ppdev = (PDEV*)(pDmd->lpDD->dhpdev);
ASSERTDD(ppdev != NULL,"Bad ppdev in GetAvailDriverMemory");
pohSentinel = &ppdev->heap.ohFree;
lArea = 0;
for (poh = pohSentinel->pohNext; poh != pohSentinel; poh = poh->pohNext)
{
ASSERTDD(poh->ohState != OH_PERMANENT,
"Permanent node in free or discardable list");
lArea += poh->cx * poh->cy;
}
pDmd->dwTotal = ppdev->ulTotalAvailVideoMemory;
pDmd->dwFree = lArea * ppdev->cjPelSize;
pDmd->ddRVal = DD_OK;
return DDHAL_DRIVER_HANDLED;
}
/******************************Public*Routine******************************\
* DWORD __stdcall DdGetDriverInfo
*
* DESCRIPTION: DirectDraw has had many compatability problems
* in the past, particularly from adding or modifying
* members of public structures. GetDriverInfo is an extension
* architecture that intends to allow DirectDraw to
* continue evolving, while maintaining backward compatability.
* This function is passed a GUID which represents some DirectDraw
* extension. If the driver recognises and supports this extension,
* it fills out the required data and returns.
*
* Callback that registers additional DDraw callbacks
* in this case used to register GetAvailDriverMemory callback
*
\**************************************************************************/
DWORD __stdcall DdGetDriverInfo(DD_GETDRIVERINFODATA *lpInput)
{
DWORD dwSize = 0;
lpInput->ddRVal = DDERR_CURRENTLYNOTAVAIL;
if ( IsEqualIID(&lpInput->guidInfo, &GUID_MiscellaneousCallbacks) )
{
DD_MISCELLANEOUSCALLBACKS MiscellaneousCallbacks;
memset(&MiscellaneousCallbacks, 0, sizeof(MiscellaneousCallbacks));
DISPDBG((0,"Get Miscelaneous Callbacks"));
dwSize = min(lpInput->dwExpectedSize, sizeof(DD_MISCELLANEOUSCALLBACKS));
MiscellaneousCallbacks.dwSize = dwSize;
MiscellaneousCallbacks.dwFlags = DDHAL_MISCCB32_GETAVAILDRIVERMEMORY | 0;
MiscellaneousCallbacks.GetAvailDriverMemory = GetAvailDriverMemory;
memcpy(lpInput->lpvData, &MiscellaneousCallbacks, dwSize);
lpInput->ddRVal = DD_OK;
}
return DDHAL_DRIVER_HANDLED;
}
/******************************Public*Routine******************************\
* BOOL DrvGetDirectDrawInfo
*
* Will be called twice before DrvEnableDirectDraw is called.
*
\**************************************************************************/
BOOL DrvGetDirectDrawInfo(
DHPDEV dhpdev,
DD_HALINFO* pHalInfo,
DWORD* pdwNumHeaps,
VIDEOMEMORY* pvmList, // Will be NULL on first call
DWORD* pdwNumFourCC,
DWORD* pdwFourCC) // Will be NULL on first call
{
BOOL bCanFlip;
PDEV* ppdev;
LONGLONG li;
ppdev = (PDEV*) dhpdev;
*pdwNumFourCC = 0;
*pdwNumHeaps = 0;
// We may not support DirectDraw on this card:
if (!(ppdev->flStatus & STAT_DIRECTDRAW))
return(FALSE);
pHalInfo->dwSize = sizeof(*pHalInfo);
// Current primary surface attributes:
pHalInfo->vmiData.pvPrimary = ppdev->pjScreen;
pHalInfo->vmiData.fpPrimary = ppdev->ulYDstOrg * ppdev->cjPelSize;
pHalInfo->vmiData.dwDisplayWidth = ppdev->cxScreen;
pHalInfo->vmiData.dwDisplayHeight = ppdev->cyScreen;
pHalInfo->vmiData.lDisplayPitch = ppdev->lDelta;
pHalInfo->vmiData.ddpfDisplay.dwSize = sizeof(DDPIXELFORMAT);
pHalInfo->vmiData.ddpfDisplay.dwFlags = DDPF_RGB;
pHalInfo->vmiData.ddpfDisplay.dwRGBBitCount = ppdev->cjHwPel * 8;
if (ppdev->iBitmapFormat == BMF_8BPP)
{
pHalInfo->vmiData.ddpfDisplay.dwFlags |= DDPF_PALETTEINDEXED8;
}
// These masks will be zero at 8bpp:
pHalInfo->vmiData.ddpfDisplay.dwRBitMask = ppdev->flRed;
pHalInfo->vmiData.ddpfDisplay.dwGBitMask = ppdev->flGreen;
pHalInfo->vmiData.ddpfDisplay.dwBBitMask = ppdev->flBlue;
// Free up as much off-screen memory as possible:
bMoveAllDfbsFromOffscreenToDibs(ppdev);
// Capabilities supported:
pHalInfo->ddCaps.dwCaps = DDCAPS_BLT
| DDCAPS_BLTCOLORFILL
| DDCAPS_READSCANLINE;
pHalInfo->ddCaps.ddsCaps.dwCaps = DDSCAPS_OFFSCREENPLAIN
| DDSCAPS_PRIMARYSURFACE
| DDSCAPS_FLIP;
// We have to tell DirectDraw our preferred off-screen alignment, even
// if we're doing our own off-screen memory management:
pHalInfo->vmiData.dwOffscreenAlign = 4;
// Since we do our own memory allocation, we have to set dwVidMemTotal
// ourselves. Note that this represents the amount of available off-
// screen memory, not all of video memory:
pHalInfo->ddCaps.dwVidMemTotal
= ppdev->heap.cxMax * ppdev->heap.cyMax * ppdev->cjPelSize;
// We can do YUV conversions and hardware accelerated stretches at
// all RGB modes except 24bpp.
if ((ppdev->iBitmapFormat != BMF_24BPP) &&
(ppdev->iBitmapFormat != BMF_8BPP))
{
pHalInfo->ddCaps.dwCaps |= DDCAPS_BLTSTRETCH
| DDCAPS_BLTFOURCC;
pHalInfo->ddCaps.dwFXCaps |= DDFXCAPS_BLTSTRETCHX
| DDFXCAPS_BLTSTRETCHY;
// The Millennium supports only one type of YUV format:
*pdwNumFourCC = 1;
if (pdwFourCC)
{
*pdwFourCC = FOURCC_YUY2;
}
}
// Tell DDraw that we support additional callbacks through DdGetDriverInfo
pHalInfo->GetDriverInfo = DdGetDriverInfo;
pHalInfo->dwFlags |= DDHALINFO_GETDRIVERINFOSET;
return(TRUE);
}
/**************************************************************************\
* ULONG TotalAvailVideoMemory
*
* Added for GetAvailVideoMemoty calback
* Calculate total amount of offscreen video memory without permanent
* driver allocations. We need to do it here since we won't be able
* to distinguish between driver's permanent allocation and ddraw's
* permanent allocation later.
*
\**************************************************************************/
ULONG TotalAvailVideoMemory(PDEV *ppdev)
{
OH *poh;
OH *pohSentinel;
ULONG ulArea;
ULONG i;
ASSERTDD(ppdev != NULL,"Bad ppdev TotalAvailVideoMemory");
ulArea = 0;
pohSentinel = &ppdev->heap.ohFree;
for (i = 2; i != 0; i--)
{
for (poh = pohSentinel->pohNext; poh != pohSentinel; poh = poh->pohNext)
{
ASSERTDD(poh->ohState != OH_PERMANENT,
"Permanent node in free or discardable list");
ulArea += poh->cx * poh->cy;
}
// Second time through, loop through the list of discardable
// rectangles:
pohSentinel = &ppdev->heap.ohDiscardable;
}
return ulArea * ppdev->cjPelSize;
}
/******************************Public*Routine******************************\
* BOOL DrvEnableDirectDraw
*
* This function is called by GDI to enable DirectDraw when a DirectDraw
* program is started and DirectDraw is not already active.
*
\**************************************************************************/
BOOL DrvEnableDirectDraw(
DHPDEV dhpdev,
DD_CALLBACKS* pCallBacks,
DD_SURFACECALLBACKS* pSurfaceCallBacks,
DD_PALETTECALLBACKS* pPaletteCallBacks)
{
PDEV* ppdev;
ppdev = (PDEV*) dhpdev;
pCallBacks->WaitForVerticalBlank = DdWaitForVerticalBlank;
pCallBacks->MapMemory = DdMapMemory;
pCallBacks->CanCreateSurface = DdCanCreateSurface;
pCallBacks->CreateSurface = DdCreateSurface;
pCallBacks->GetScanLine = DdGetScanLine;
pCallBacks->dwFlags = DDHAL_CB32_WAITFORVERTICALBLANK
| DDHAL_CB32_MAPMEMORY
| DDHAL_CB32_CANCREATESURFACE
| DDHAL_CB32_CREATESURFACE
| DDHAL_CB32_GETSCANLINE;
pSurfaceCallBacks->Blt = DdBlt;
pSurfaceCallBacks->Flip = DdFlip;
pSurfaceCallBacks->Lock = DdLock;
pSurfaceCallBacks->GetBltStatus = DdGetBltStatus;
pSurfaceCallBacks->GetFlipStatus = DdGetFlipStatus;
pSurfaceCallBacks->DestroySurface = DdDestroySurface;
pSurfaceCallBacks->dwFlags = DDHAL_SURFCB32_BLT
| DDHAL_SURFCB32_FLIP
| DDHAL_SURFCB32_LOCK
| DDHAL_SURFCB32_GETBLTSTATUS
| DDHAL_SURFCB32_GETFLIPSTATUS
| DDHAL_SURFCB32_DESTROYSURFACE;
// Note that we don't call 'vGetDisplayDuration' here, for a couple of
// reasons:
//
// o Because the system is already running, it would be disconcerting
// to pause the graphics for a good portion of a second just to read
// the refresh rate;
// o More importantly, we may not be in graphics mode right now.
//
// For both reasons, we always measure the refresh rate when we switch
// to a new mode.
// Added for GetAvailDriverMemory callback
ppdev->ulTotalAvailVideoMemory = TotalAvailVideoMemory(ppdev);
return(TRUE);
}
/******************************Public*Routine******************************\
* VOID DrvDisableDirectDraw
*
* This function is called by GDI when the last active DirectDraw program
* is quit and DirectDraw will no longer be active.
*
\**************************************************************************/
VOID DrvDisableDirectDraw(
DHPDEV dhpdev)
{
}
/******************************Public*Routine******************************\
* VOID vAssertModeDirectDraw
*
* This function is called by enable.c when entering or leaving the
* DOS full-screen character mode.
*
\**************************************************************************/
VOID vAssertModeDirectDraw(
PDEV* ppdev,
BOOL bEnabled)
{
}
/******************************Public*Routine******************************\
* BOOL bEnableDirectDraw
*
* This function is called by enable.c when the mode is first initialized,
* right after the miniport does the mode-set.
*
\**************************************************************************/
BOOL bEnableDirectDraw(
PDEV* ppdev)
{
// We're not going to bother to support accelerated DirectDraw on
// the Impression or earlier, because they don't have linear frame
// buffers.
if (ppdev->ulBoardId == MGA_STORM)
{
// Accurately measure the refresh rate for later:
vGetDisplayDuration(ppdev);
// DirectDraw is all set to be used on this card:
ppdev->flStatus |= STAT_DIRECTDRAW;
}
return(TRUE);
}
/******************************Public*Routine******************************\
* VOID vDisableDirectDraw
*
* This function is called by enable.c when the driver is shutting down.
*
\**************************************************************************/
VOID vDisableDirectDraw(
PDEV* ppdev)
{
}