You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1358 lines
46 KiB
1358 lines
46 KiB
/******************************Module*Header*******************************\
|
|
* Module Name: enable.c
|
|
*
|
|
* This module contains the functions that enable and disable the
|
|
* driver, the pdev, and the surface.
|
|
*
|
|
* Copyright (c) 1992-1994 Microsoft Corporation
|
|
\**************************************************************************/
|
|
|
|
#include "precomp.h"
|
|
|
|
/******************************Public*Structure****************************\
|
|
* GDIINFO ggdiDefault
|
|
*
|
|
* This contains the default GDIINFO fields that are passed back to GDI
|
|
* during DrvEnablePDEV.
|
|
*
|
|
* NOTE: This structure defaults to values for an 8bpp palette device.
|
|
* Some fields are overwritten for different colour depths.
|
|
\**************************************************************************/
|
|
|
|
GDIINFO ggdiDefault = {
|
|
GDI_DRIVER_VERSION,
|
|
DT_RASDISPLAY, // ulTechnology
|
|
0, // ulHorzSize (filled in later)
|
|
0, // ulVertSize (filled in later)
|
|
0, // ulHorzRes (filled in later)
|
|
0, // ulVertRes (filled in later)
|
|
0, // cBitsPixel (filled in later)
|
|
0, // cPlanes (filled in later)
|
|
20, // ulNumColors (palette managed)
|
|
0, // flRaster (DDI reserved field)
|
|
|
|
0, // ulLogPixelsX (filled in later)
|
|
0, // ulLogPixelsY (filled in later)
|
|
|
|
TC_RA_ABLE, // flTextCaps -- If we had wanted console windows
|
|
// to scroll by repainting the entire window,
|
|
// instead of doing a screen-to-screen blt, we
|
|
// would have set TC_SCROLLBLT (yes, the flag is
|
|
// bass-ackwards).
|
|
|
|
0, // ulDACRed (filled in later)
|
|
0, // ulDACGreen (filled in later)
|
|
0, // ulDACBlue (filled in later)
|
|
|
|
0x0024, // ulAspectX
|
|
0x0024, // ulAspectY
|
|
0x0033, // ulAspectXY (one-to-one aspect ratio)
|
|
|
|
1, // xStyleStep
|
|
1, // yStyleSte;
|
|
3, // denStyleStep -- Styles have a one-to-one aspect
|
|
// ratio, and every 'dot' is 3 pixels long
|
|
|
|
{ 0, 0 }, // ptlPhysOffset
|
|
{ 0, 0 }, // szlPhysSize
|
|
|
|
256, // ulNumPalReg
|
|
|
|
// These fields are for halftone initialization. The actual values are
|
|
// a bit magic, but seem to work well on our display.
|
|
|
|
{ // ciDevice
|
|
{ 6700, 3300, 0 }, // Red
|
|
{ 2100, 7100, 0 }, // Green
|
|
{ 1400, 800, 0 }, // Blue
|
|
{ 1750, 3950, 0 }, // Cyan
|
|
{ 4050, 2050, 0 }, // Magenta
|
|
{ 4400, 5200, 0 }, // Yellow
|
|
{ 3127, 3290, 0 }, // AlignmentWhite
|
|
20000, // RedGamma
|
|
20000, // GreenGamma
|
|
20000, // BlueGamma
|
|
0, 0, 0, 0, 0, 0 // No dye correction for raster displays
|
|
},
|
|
|
|
0, // ulDevicePelsDPI (for printers only)
|
|
PRIMARY_ORDER_CBA, // ulPrimaryOrder
|
|
HT_PATSIZE_4x4_M, // ulHTPatternSize
|
|
HT_FORMAT_8BPP, // ulHTOutputFormat
|
|
HT_FLAG_ADDITIVE_PRIMS, // flHTFlags
|
|
0, // ulVRefresh (filled in later)
|
|
0, // ulBltAlignment
|
|
0, // ulPanningHorzRes (filled in later)
|
|
0, // ulPanningVertRes (filled in later)
|
|
};
|
|
|
|
/******************************Public*Structure****************************\
|
|
* DEVINFO gdevinfoDefault
|
|
*
|
|
* This contains the default DEVINFO fields that are passed back to GDI
|
|
* during DrvEnablePDEV.
|
|
*
|
|
* NOTE: This structure defaults to values for an 8bpp palette device.
|
|
* Some fields are overwritten for different colour depths.
|
|
\**************************************************************************/
|
|
|
|
#define SYSTM_LOGFONT {16,7,0,0,700,0,0,0,ANSI_CHARSET,OUT_DEFAULT_PRECIS,\
|
|
CLIP_DEFAULT_PRECIS,DEFAULT_QUALITY,\
|
|
VARIABLE_PITCH | FF_DONTCARE,L"System"}
|
|
#define HELVE_LOGFONT {12,9,0,0,400,0,0,0,ANSI_CHARSET,OUT_DEFAULT_PRECIS,\
|
|
CLIP_STROKE_PRECIS,PROOF_QUALITY,\
|
|
VARIABLE_PITCH | FF_DONTCARE,L"MS Sans Serif"}
|
|
#define COURI_LOGFONT {12,9,0,0,400,0,0,0,ANSI_CHARSET,OUT_DEFAULT_PRECIS,\
|
|
CLIP_STROKE_PRECIS,PROOF_QUALITY,\
|
|
FIXED_PITCH | FF_DONTCARE, L"Courier"}
|
|
|
|
DEVINFO gdevinfoDefault = {
|
|
(GCAPS_OPAQUERECT |
|
|
GCAPS_DITHERONREALIZE |
|
|
GCAPS_PALMANAGED |
|
|
GCAPS_ALTERNATEFILL |
|
|
GCAPS_WINDINGFILL |
|
|
GCAPS_MONO_DITHER |
|
|
GCAPS_COLOR_DITHER),
|
|
// flGraphicsFlags
|
|
SYSTM_LOGFONT, // lfDefaultFont
|
|
HELVE_LOGFONT, // lfAnsiVarFont
|
|
COURI_LOGFONT, // lfAnsiFixFont
|
|
0, // cFonts
|
|
BMF_8BPP, // iDitherFormat
|
|
8, // cxDither
|
|
8, // cyDither
|
|
0 // hpalDefault (filled in later)
|
|
};
|
|
|
|
/******************************Public*Structure****************************\
|
|
* DFVFN gadrvfn[]
|
|
*
|
|
* Build the driver function table gadrvfn with function index/address
|
|
* pairs. This table tells GDI which DDI calls we support, and their
|
|
* location (GDI does an indirect call through this table to call us).
|
|
*
|
|
* Why haven't we implemented DrvSaveScreenBits? To save code.
|
|
*
|
|
* When the driver doesn't hook DrvSaveScreenBits, USER simulates on-
|
|
* the-fly by creating a temporary device-format-bitmap, and explicitly
|
|
* calling DrvCopyBits to save/restore the bits. Since we already hook
|
|
* DrvCreateDeviceBitmap, we'll end up using off-screen memory to store
|
|
* the bits anyway (which would have been the main reason for implementing
|
|
* DrvSaveScreenBits). So we may as well save some working set.
|
|
\**************************************************************************/
|
|
|
|
#if DBG || !SYNCHRONIZEACCESS_WORKS
|
|
|
|
// On Checked builds, or when we have to synchronize access, thunk
|
|
// everything through Dbg calls...
|
|
|
|
DRVFN gadrvfn[] = {
|
|
{ INDEX_DrvEnablePDEV, (PFN) DbgEnablePDEV },
|
|
{ INDEX_DrvCompletePDEV, (PFN) DbgCompletePDEV },
|
|
{ INDEX_DrvDisablePDEV, (PFN) DbgDisablePDEV },
|
|
{ INDEX_DrvEnableSurface, (PFN) DbgEnableSurface },
|
|
{ INDEX_DrvDisableSurface, (PFN) DbgDisableSurface },
|
|
{ INDEX_DrvAssertMode, (PFN) DbgAssertMode },
|
|
{ INDEX_DrvMovePointer, (PFN) DbgMovePointer },
|
|
{ INDEX_DrvSetPointerShape, (PFN) DbgSetPointerShape },
|
|
{ INDEX_DrvDitherColor, (PFN) DbgDitherColor },
|
|
{ INDEX_DrvSetPalette, (PFN) DbgSetPalette },
|
|
{ INDEX_DrvCopyBits, (PFN) DbgCopyBits },
|
|
{ INDEX_DrvBitBlt, (PFN) DbgBitBlt },
|
|
{ INDEX_DrvTextOut, (PFN) DbgTextOut },
|
|
{ INDEX_DrvGetModes, (PFN) DbgGetModes },
|
|
{ INDEX_DrvStrokePath, (PFN) DbgStrokePath },
|
|
{ INDEX_DrvFillPath, (PFN) DbgFillPath },
|
|
{ INDEX_DrvPaint, (PFN) DbgPaint },
|
|
{ INDEX_DrvRealizeBrush, (PFN) DbgRealizeBrush },
|
|
{ INDEX_DrvCreateDeviceBitmap, (PFN) DbgCreateDeviceBitmap },
|
|
{ INDEX_DrvDeleteDeviceBitmap, (PFN) DbgDeleteDeviceBitmap },
|
|
{ INDEX_DrvStretchBlt, (PFN) DbgStretchBlt },
|
|
{ INDEX_DrvDisableDriver, (PFN) DbgDisableDriver }
|
|
};
|
|
|
|
#else
|
|
|
|
// On Free builds, directly call the appropriate functions...
|
|
|
|
DRVFN gadrvfn[] = {
|
|
{ INDEX_DrvEnablePDEV, (PFN) DrvEnablePDEV },
|
|
{ INDEX_DrvCompletePDEV, (PFN) DrvCompletePDEV },
|
|
{ INDEX_DrvDisablePDEV, (PFN) DrvDisablePDEV },
|
|
{ INDEX_DrvEnableSurface, (PFN) DrvEnableSurface },
|
|
{ INDEX_DrvDisableSurface, (PFN) DrvDisableSurface },
|
|
{ INDEX_DrvAssertMode, (PFN) DrvAssertMode },
|
|
{ INDEX_DrvMovePointer, (PFN) DrvMovePointer },
|
|
{ INDEX_DrvSetPointerShape, (PFN) DrvSetPointerShape },
|
|
{ INDEX_DrvDitherColor, (PFN) DrvDitherColor },
|
|
{ INDEX_DrvSetPalette, (PFN) DrvSetPalette },
|
|
{ INDEX_DrvCopyBits, (PFN) DrvCopyBits },
|
|
{ INDEX_DrvBitBlt, (PFN) DrvBitBlt },
|
|
{ INDEX_DrvTextOut, (PFN) DrvTextOut },
|
|
{ INDEX_DrvGetModes, (PFN) DrvGetModes },
|
|
{ INDEX_DrvStrokePath, (PFN) DrvStrokePath },
|
|
{ INDEX_DrvFillPath, (PFN) DrvFillPath },
|
|
{ INDEX_DrvPaint, (PFN) DrvPaint },
|
|
{ INDEX_DrvRealizeBrush, (PFN) DrvRealizeBrush },
|
|
{ INDEX_DrvCreateDeviceBitmap, (PFN) DrvCreateDeviceBitmap },
|
|
{ INDEX_DrvDeleteDeviceBitmap, (PFN) DrvDeleteDeviceBitmap },
|
|
{ INDEX_DrvStretchBlt, (PFN) DrvStretchBlt },
|
|
{ INDEX_DrvDisableDriver, (PFN) DrvDisableDriver }
|
|
};
|
|
|
|
#endif
|
|
|
|
ULONG gcdrvfn = sizeof(gadrvfn) / sizeof(DRVFN);
|
|
|
|
/******************************Public*Routine******************************\
|
|
* BOOL DrvEnableDriver
|
|
*
|
|
* Enables the driver by retrieving the drivers function table and version.
|
|
*
|
|
\**************************************************************************/
|
|
|
|
BOOL DrvEnableDriver(
|
|
ULONG iEngineVersion,
|
|
ULONG cj,
|
|
DRVENABLEDATA* pded)
|
|
{
|
|
// Engine Version is passed down so future drivers can support previous
|
|
// engine versions. A next generation driver can support both the old
|
|
// and new engine conventions if told what version of engine it is
|
|
// working with. For the first version the driver does nothing with it.
|
|
|
|
// Fill in as much as we can.
|
|
|
|
if (cj >= sizeof(DRVENABLEDATA))
|
|
pded->pdrvfn = gadrvfn;
|
|
|
|
if (cj >= (sizeof(ULONG) * 2))
|
|
pded->c = gcdrvfn;
|
|
|
|
// DDI version this driver was targeted for is passed back to engine.
|
|
// Future graphic's engine may break calls down to old driver format.
|
|
|
|
if (cj >= sizeof(ULONG))
|
|
pded->iDriverVersion = DDI_DRIVER_VERSION_NT4;
|
|
|
|
return(TRUE);
|
|
}
|
|
|
|
/******************************Public*Routine******************************\
|
|
* VOID DrvDisableDriver
|
|
*
|
|
* Tells the driver it is being disabled. Release any resources allocated in
|
|
* DrvEnableDriver.
|
|
*
|
|
\**************************************************************************/
|
|
|
|
VOID DrvDisableDriver(VOID)
|
|
{
|
|
return;
|
|
}
|
|
|
|
/******************************Public*Routine******************************\
|
|
* DHPDEV DrvEnablePDEV
|
|
*
|
|
* Initializes a bunch of fields for GDI, based on the mode we've been asked
|
|
* to do. This is the first thing called after DrvEnableDriver, when GDI
|
|
* wants to get some information about us.
|
|
*
|
|
\**************************************************************************/
|
|
|
|
DHPDEV DrvEnablePDEV(
|
|
DEVMODEW* pdm, // Contains data pertaining to requested mode
|
|
PWSTR pwszLogAddr, // Logical address
|
|
ULONG cPat, // Count of standard patterns
|
|
HSURF* phsurfPatterns, // Buffer for standard patterns
|
|
ULONG cjCaps, // Size of buffer for device caps 'pdevcaps'
|
|
ULONG* pdevcaps, // Buffer for device caps, also known as 'gdiinfo'
|
|
ULONG cjDevInfo, // Number of bytes in device info 'pdi'
|
|
DEVINFO* pdi, // Device information
|
|
HDEV hdev, // HDEV, used for callbacks
|
|
PWSTR pwszDeviceName, // Device name
|
|
HANDLE hDriver) // Kernel driver handle
|
|
{
|
|
PDEV* ppdev;
|
|
|
|
// Future versions of NT had better supply 'devcaps' and 'devinfo'
|
|
// structures that are the same size or larger than the current
|
|
// structures:
|
|
|
|
if ((cjCaps < sizeof(GDIINFO)) || (cjDevInfo < sizeof(DEVINFO)))
|
|
{
|
|
DISPDBG((0, "DrvEnablePDEV - Buffer size too small"));
|
|
goto ReturnFailure0;
|
|
}
|
|
|
|
// Allocate a physical device structure. Note that we definitely
|
|
// rely on the zero initialization:
|
|
|
|
ppdev = (PDEV*) EngAllocMem(FL_ZERO_MEMORY, sizeof(PDEV), ALLOC_TAG);
|
|
if (ppdev == NULL)
|
|
{
|
|
DISPDBG((0, "DrvEnablePDEV - Failed EngAllocMem"));
|
|
goto ReturnFailure0;
|
|
}
|
|
|
|
ppdev->hDriver = hDriver;
|
|
|
|
// Get the current screen mode information. Set up device caps and
|
|
// devinfo:
|
|
|
|
if (!bInitializeModeFields(ppdev, (GDIINFO*) pdevcaps, pdi, pdm))
|
|
{
|
|
DISPDBG((0, "DrvEnablePDEV - Failed bInitializeModeFields"));
|
|
goto ReturnFailure1;
|
|
}
|
|
|
|
// Initialize palette information.
|
|
|
|
if (!bInitializePalette(ppdev, pdi))
|
|
{
|
|
DISPDBG((0, "DrvEnablePDEV - Failed bInitializePalette"));
|
|
goto ReturnFailure1;
|
|
}
|
|
|
|
return((DHPDEV) ppdev);
|
|
|
|
ReturnFailure1:
|
|
DrvDisablePDEV((DHPDEV) ppdev);
|
|
|
|
ReturnFailure0:
|
|
DISPDBG((0, "Failed DrvEnablePDEV"));
|
|
|
|
return(0);
|
|
}
|
|
|
|
/******************************Public*Routine******************************\
|
|
* DrvDisablePDEV
|
|
*
|
|
* Release the resources allocated in DrvEnablePDEV. If a surface has been
|
|
* enabled DrvDisableSurface will have already been called.
|
|
*
|
|
* Note: In an error, we may call this before DrvEnablePDEV is done.
|
|
*
|
|
\**************************************************************************/
|
|
|
|
VOID DrvDisablePDEV(
|
|
DHPDEV dhpdev)
|
|
{
|
|
PDEV* ppdev;
|
|
|
|
ppdev = (PDEV*) dhpdev;
|
|
|
|
vUninitializePalette(ppdev);
|
|
EngFreeMem(ppdev);
|
|
}
|
|
|
|
/******************************Public*Routine******************************\
|
|
* VOID DrvCompletePDEV
|
|
*
|
|
* Store the HPDEV, the engines handle for this PDEV, in the DHPDEV.
|
|
*
|
|
\**************************************************************************/
|
|
|
|
VOID DrvCompletePDEV(
|
|
DHPDEV dhpdev,
|
|
HDEV hdev)
|
|
{
|
|
((PDEV*) dhpdev)->hdevEng = hdev;
|
|
}
|
|
|
|
/******************************Public*Routine******************************\
|
|
* HSURF DrvEnableSurface
|
|
*
|
|
* Creates the drawing surface and initializes the hardware. This is called
|
|
* after DrvEnablePDEV, and performs the final device initialization.
|
|
*
|
|
\**************************************************************************/
|
|
|
|
HSURF DrvEnableSurface(
|
|
DHPDEV dhpdev)
|
|
{
|
|
PDEV* ppdev;
|
|
HSURF hsurf;
|
|
SIZEL sizl;
|
|
DSURF* pdsurf;
|
|
VOID* pvTmpBuffer;
|
|
|
|
ppdev = (PDEV*) dhpdev;
|
|
|
|
/////////////////////////////////////////////////////////////////////
|
|
// First, create our private surface structure.
|
|
//
|
|
// Whenever we get a call to draw directly to the screen, we'll get
|
|
// passed a pointer to a SURFOBJ whose 'dhpdev' field will point
|
|
// to our PDEV structure, and whose 'dhsurf' field will point to the
|
|
// following DSURF structure.
|
|
//
|
|
// Every device bitmap we create in DrvCreateDeviceBitmap will also
|
|
// have its own unique DSURF structure allocated (but will share the
|
|
// same PDEV). To make our code more polymorphic for handling drawing
|
|
// to either the screen or an off-screen bitmap, we have the same
|
|
// structure for both.
|
|
|
|
pdsurf = EngAllocMem(FL_ZERO_MEMORY, sizeof(DSURF), ALLOC_TAG);
|
|
if (pdsurf == NULL)
|
|
{
|
|
DISPDBG((0, "DrvEnableSurface - Failed pdsurf EngAllocMem"));
|
|
goto ReturnFailure;
|
|
}
|
|
|
|
ppdev->pdsurfScreen = pdsurf; // Remember it for clean-up
|
|
|
|
pdsurf->poh = &ppdev->heap.ohDfb;// The only thing we use this OH node
|
|
pdsurf->poh->x = 0; // for is its (x, y) location, and
|
|
pdsurf->poh->y = 0; // 'ohDfb' is otherwise unused
|
|
pdsurf->dt = DT_SCREEN; // Not to be confused with a DIB DFB
|
|
pdsurf->sizl.cx = ppdev->cxScreen;
|
|
pdsurf->sizl.cy = ppdev->cyScreen;
|
|
pdsurf->ppdev = ppdev;
|
|
|
|
/////////////////////////////////////////////////////////////////////
|
|
// Next, have GDI create the actual SURFOBJ.
|
|
//
|
|
// Our drawing surface is going to be 'device-managed', meaning that
|
|
// GDI cannot draw on the framebuffer bits directly, and as such we
|
|
// create the surface via EngCreateDeviceSurface. By doing this, we ensure
|
|
// that GDI will only ever access the bitmaps bits via the Drv calls
|
|
// that we've HOOKed.
|
|
//
|
|
// If we could map the entire framebuffer linearly into main memory
|
|
// (i.e., we didn't have to go through a 64k aperture), it would be
|
|
// beneficial to create the surface via EngCreateBitmap, giving GDI a
|
|
// pointer to the framebuffer bits. When we pass a call on to GDI
|
|
// where it can't directly read/write to the surface bits because the
|
|
// surface is device managed, it has to create a temporary bitmap and
|
|
// call our DrvCopyBits routine to get/set a copy of the affected bits.
|
|
// Fer example, the OpenGl component prefers to be able to write on the
|
|
// framebuffer bits directly.
|
|
|
|
sizl.cx = ppdev->cxScreen;
|
|
sizl.cy = ppdev->cyScreen;
|
|
|
|
hsurf = EngCreateDeviceSurface((DHSURF) pdsurf, sizl, ppdev->iBitmapFormat);
|
|
if (hsurf == 0)
|
|
{
|
|
DISPDBG((0, "DrvEnableSurface - Failed EngCreateDeviceSurface"));
|
|
goto ReturnFailure;
|
|
}
|
|
|
|
ppdev->hsurfScreen = hsurf; // Remember it for clean-up
|
|
ppdev->bEnabled = TRUE; // We'll soon be in graphics mode
|
|
|
|
/////////////////////////////////////////////////////////////////////
|
|
// Now associate the surface and the PDEV.
|
|
//
|
|
// We have to associate the surface we just created with our physical
|
|
// device so that it works.
|
|
//
|
|
|
|
if (!EngAssociateSurface(hsurf, ppdev->hdevEng, ppdev->flHooks))
|
|
{
|
|
DISPDBG((0, "DrvEnableSurface - Failed EngAssociateSurface"));
|
|
goto ReturnFailure;
|
|
}
|
|
|
|
// Create our generic temporary buffer, which may be used by any
|
|
// component. Because this may get swapped out of memory any time
|
|
// the driver is not active, we want to minimize the number of pages
|
|
// it takes up. We use 'VirtualAlloc' to get an exactly page-aligned
|
|
// allocation (which 'EngAllocMem' will not do):
|
|
|
|
pvTmpBuffer = EngAllocMem(0, TMP_BUFFER_SIZE, ALLOC_TAG);
|
|
if (pvTmpBuffer == NULL)
|
|
{
|
|
DISPDBG((0, "DrvEnableSurface - Failed EngAllocMem"));
|
|
goto ReturnFailure;
|
|
}
|
|
|
|
ppdev->pvTmpBuffer = pvTmpBuffer;
|
|
|
|
/////////////////////////////////////////////////////////////////////
|
|
// Now enable all the subcomponents.
|
|
//
|
|
// Note that the order in which these 'Enable' functions are called
|
|
// may be significant in low off-screen memory conditions, because
|
|
// the off-screen heap manager may fail some of the later
|
|
// allocations...
|
|
|
|
// NOTE: It isn't until bEnableHardware that cyMemory is correctly set.
|
|
|
|
if (!bEnableHardware(ppdev))
|
|
goto ReturnFailure;
|
|
|
|
if (!bEnableOffscreenHeap(ppdev))
|
|
goto ReturnFailure;
|
|
|
|
if (!bEnablePointer(ppdev))
|
|
goto ReturnFailure;
|
|
|
|
if (!bEnableText(ppdev))
|
|
goto ReturnFailure;
|
|
|
|
if (!bEnableBrushCache(ppdev))
|
|
goto ReturnFailure;
|
|
|
|
if (!bEnablePalette(ppdev))
|
|
goto ReturnFailure;
|
|
|
|
DISPDBG((5, "Passed DrvEnableSurface"));
|
|
|
|
return(hsurf);
|
|
|
|
ReturnFailure:
|
|
DrvDisableSurface((DHPDEV) ppdev);
|
|
|
|
DISPDBG((0, "Failed DrvEnableSurface"));
|
|
|
|
return(0);
|
|
}
|
|
|
|
/******************************Public*Routine******************************\
|
|
* VOID DrvDisableSurface
|
|
*
|
|
* Free resources allocated by DrvEnableSurface. Release the surface.
|
|
*
|
|
* Note: In an error case, we may call this before DrvEnableSurface is
|
|
* completely done.
|
|
*
|
|
\**************************************************************************/
|
|
|
|
VOID DrvDisableSurface(
|
|
DHPDEV dhpdev)
|
|
{
|
|
PDEV* ppdev;
|
|
|
|
ppdev = (PDEV*) dhpdev;
|
|
|
|
// Note: In an error case, some of the following relies on the
|
|
// fact that the PDEV is zero-initialized, so fields like
|
|
// 'hsurfScreen' will be zero unless the surface has been
|
|
// sucessfully initialized, and makes the assumption that
|
|
// EngDeleteSurface can take '0' as a parameter.
|
|
|
|
vDisablePalette(ppdev);
|
|
vDisableBrushCache(ppdev);
|
|
vDisableText(ppdev);
|
|
vDisablePointer(ppdev);
|
|
vDisableOffscreenHeap(ppdev);
|
|
vDisableHardware(ppdev);
|
|
|
|
EngFreeMem(ppdev->pvTmpBuffer);
|
|
EngDeleteSurface(ppdev->hsurfScreen);
|
|
EngFreeMem(ppdev->pdsurfScreen);
|
|
}
|
|
|
|
/******************************Public*Routine******************************\
|
|
* VOID DrvAssertMode
|
|
*
|
|
* This asks the device to reset itself to the mode of the pdev passed in.
|
|
*
|
|
\**************************************************************************/
|
|
|
|
BOOL DrvAssertMode(
|
|
DHPDEV dhpdev,
|
|
BOOL bEnable)
|
|
{
|
|
PDEV* ppdev;
|
|
|
|
ppdev = (PDEV*) dhpdev;
|
|
|
|
if (!bEnable)
|
|
{
|
|
//////////////////////////////////////////////////////////////
|
|
// Disable - Switch to full-screen mode
|
|
|
|
vAssertModePalette(ppdev, FALSE);
|
|
|
|
vAssertModeBrushCache(ppdev, FALSE);
|
|
|
|
vAssertModeText(ppdev, FALSE);
|
|
|
|
vAssertModePointer(ppdev, FALSE);
|
|
|
|
if (bAssertModeOffscreenHeap(ppdev, FALSE))
|
|
{
|
|
if (bAssertModeHardware(ppdev, FALSE))
|
|
{
|
|
ppdev->bEnabled = FALSE;
|
|
|
|
return(TRUE);
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////
|
|
// We failed to switch to full-screen. So undo everything:
|
|
|
|
bAssertModeOffscreenHeap(ppdev, TRUE); // We don't need to check
|
|
} // return code with TRUE
|
|
|
|
vAssertModePointer(ppdev, TRUE);
|
|
|
|
vAssertModeText(ppdev, TRUE);
|
|
|
|
vAssertModeBrushCache(ppdev, TRUE);
|
|
|
|
vAssertModePalette(ppdev, TRUE);
|
|
}
|
|
else
|
|
{
|
|
//////////////////////////////////////////////////////////////
|
|
// Enable - Switch back to graphics mode
|
|
|
|
// We have to enable every subcomponent in the reverse order
|
|
// in which it was disabled:
|
|
|
|
if (bAssertModeHardware(ppdev, TRUE))
|
|
{
|
|
bAssertModeOffscreenHeap(ppdev, TRUE); // We don't need to check
|
|
// return code with TRUE
|
|
vAssertModePointer(ppdev, TRUE);
|
|
|
|
vAssertModeText(ppdev, TRUE);
|
|
|
|
vAssertModeBrushCache(ppdev, TRUE);
|
|
|
|
vAssertModePalette(ppdev, TRUE);
|
|
|
|
ppdev->bEnabled = TRUE;
|
|
|
|
return(TRUE);
|
|
}
|
|
}
|
|
|
|
return(FALSE);
|
|
}
|
|
|
|
/******************************Public*Routine******************************\
|
|
* ULONG DrvGetModes
|
|
*
|
|
* Returns the list of available modes for the device.
|
|
*
|
|
\**************************************************************************/
|
|
|
|
ULONG DrvGetModes(
|
|
HANDLE hDriver,
|
|
ULONG cjSize,
|
|
DEVMODEW* pdm)
|
|
{
|
|
|
|
DWORD cModes;
|
|
DWORD cbOutputSize;
|
|
PVIDEO_MODE_INFORMATION pVideoModeInformation;
|
|
PVIDEO_MODE_INFORMATION pVideoTemp;
|
|
DWORD cOutputModes = cjSize / (sizeof(DEVMODEW) + DRIVER_EXTRA_SIZE);
|
|
DWORD cbModeSize;
|
|
|
|
cModes = getAvailableModes(hDriver,
|
|
(PVIDEO_MODE_INFORMATION *) &pVideoModeInformation,
|
|
&cbModeSize);
|
|
if (cModes == 0)
|
|
{
|
|
DISPDBG((0, "DrvGetModes failed to get mode information"));
|
|
return(0);
|
|
}
|
|
|
|
if (pdm == NULL)
|
|
{
|
|
cbOutputSize = cModes * (sizeof(DEVMODEW) + DRIVER_EXTRA_SIZE);
|
|
}
|
|
else
|
|
{
|
|
//
|
|
// Now copy the information for the supported modes back into the
|
|
// output buffer
|
|
//
|
|
|
|
cbOutputSize = 0;
|
|
|
|
pVideoTemp = pVideoModeInformation;
|
|
|
|
do
|
|
{
|
|
if (pVideoTemp->Length != 0)
|
|
{
|
|
if (cOutputModes == 0)
|
|
{
|
|
break;
|
|
}
|
|
|
|
//
|
|
// Zero the entire structure to start off with.
|
|
//
|
|
|
|
memset(pdm, 0, sizeof(DEVMODEW));
|
|
|
|
//
|
|
// Set the name of the device to the name of the DLL.
|
|
//
|
|
|
|
memcpy(pdm->dmDeviceName, DLL_NAME, sizeof(DLL_NAME));
|
|
|
|
pdm->dmSpecVersion = DM_SPECVERSION;
|
|
pdm->dmDriverVersion = DM_SPECVERSION;
|
|
pdm->dmSize = sizeof(DEVMODEW);
|
|
pdm->dmDriverExtra = DRIVER_EXTRA_SIZE;
|
|
|
|
pdm->dmBitsPerPel = pVideoTemp->NumberOfPlanes *
|
|
pVideoTemp->BitsPerPlane;
|
|
pdm->dmPelsWidth = pVideoTemp->VisScreenWidth;
|
|
pdm->dmPelsHeight = pVideoTemp->VisScreenHeight;
|
|
pdm->dmDisplayFrequency = pVideoTemp->Frequency;
|
|
pdm->dmDisplayFlags = 0;
|
|
|
|
pdm->dmFields = DM_BITSPERPEL |
|
|
DM_PELSWIDTH |
|
|
DM_PELSHEIGHT |
|
|
DM_DISPLAYFREQUENCY |
|
|
DM_DISPLAYFLAGS ;
|
|
|
|
//
|
|
// Go to the next DEVMODE entry in the buffer.
|
|
//
|
|
|
|
cOutputModes--;
|
|
|
|
pdm = (LPDEVMODEW) ( ((ULONG)pdm) + sizeof(DEVMODEW) +
|
|
DRIVER_EXTRA_SIZE);
|
|
|
|
cbOutputSize += (sizeof(DEVMODEW) + DRIVER_EXTRA_SIZE);
|
|
|
|
}
|
|
|
|
pVideoTemp = (PVIDEO_MODE_INFORMATION)
|
|
(((PUCHAR)pVideoTemp) + cbModeSize);
|
|
|
|
|
|
} while (--cModes);
|
|
}
|
|
|
|
EngFreeMem(pVideoModeInformation);
|
|
|
|
return(cbOutputSize);
|
|
}
|
|
|
|
/******************************Public*Routine******************************\
|
|
* BOOL bAssertModeHardware
|
|
*
|
|
* Sets the appropriate hardware state for graphics mode or full-screen.
|
|
*
|
|
\**************************************************************************/
|
|
|
|
BOOL bAssertModeHardware(
|
|
PDEV* ppdev,
|
|
BOOL bEnable)
|
|
{
|
|
DWORD ReturnedDataLength;
|
|
ULONG ulReturn;
|
|
|
|
if (bEnable)
|
|
{
|
|
// Call the miniport via an IOCTL to set the graphics mode.
|
|
|
|
if (EngDeviceIoControl(ppdev->hDriver,
|
|
IOCTL_VIDEO_SET_CURRENT_MODE,
|
|
&ppdev->ulMode, // input buffer
|
|
sizeof(DWORD),
|
|
NULL,
|
|
0,
|
|
&ReturnedDataLength))
|
|
{
|
|
DISPDBG((0, "bAssertModeHardware - Failed set IOCTL"));
|
|
return FALSE;
|
|
}
|
|
|
|
// Then set the rest of the default registers:
|
|
|
|
vResetClipping(ppdev);
|
|
|
|
IO_FIFO_WAIT(ppdev, 1);
|
|
IO_WRT_MASK(ppdev, -1);
|
|
}
|
|
else
|
|
{
|
|
// Call the kernel driver to reset the device to a known state.
|
|
// NTVDM will take things from there:
|
|
|
|
if (EngDeviceIoControl(ppdev->hDriver,
|
|
IOCTL_VIDEO_RESET_DEVICE,
|
|
NULL,
|
|
0,
|
|
NULL,
|
|
0,
|
|
&ulReturn))
|
|
{
|
|
DISPDBG((0, "bAssertModeHardware - Failed reset IOCTL"));
|
|
return FALSE;
|
|
}
|
|
}
|
|
|
|
DISPDBG((5, "Passed bAssertModeHardware"));
|
|
|
|
return(TRUE);
|
|
}
|
|
|
|
/******************************Public*Routine******************************\
|
|
* BOOL bAtiAccelerator
|
|
*
|
|
* Returns TRUE if we're running on a Mach8 or compatible accelerator.
|
|
* This algorithm was taken from "Programmer's Guide to the Mach-8 Extended
|
|
* Registers Supplement," 1992, ATI Technologies Inc, p. 5-2.
|
|
*
|
|
* It seems like a pretty goofy test to me, but it's what they prescribe
|
|
* to 'specifically detect an ATI accelerator product.'
|
|
*
|
|
\**************************************************************************/
|
|
|
|
BOOL bAtiAccelerator(
|
|
PDEV* ppdev)
|
|
{
|
|
ULONG ulSave;
|
|
BOOL bAti;
|
|
|
|
bAti = FALSE;
|
|
|
|
ulSave = INPW(0x52ee);
|
|
|
|
OUTPW(0x52ee, 0x5555);
|
|
IO_GP_WAIT(ppdev);
|
|
if (INPW(0x52ee) == 0x5555)
|
|
{
|
|
OUTPW(0x52ee, 0x2a2a);
|
|
IO_GP_WAIT(ppdev);
|
|
if (INPW(0x52ee) == 0x2a2a)
|
|
{
|
|
bAti = TRUE;
|
|
}
|
|
}
|
|
|
|
// Restore the register's original contents:
|
|
|
|
OUTPW(0x52ee, ulSave);
|
|
|
|
return(bAti);
|
|
}
|
|
|
|
/******************************Public*Routine******************************\
|
|
* BOOL bEnableHardware
|
|
*
|
|
* Puts the hardware in the requested mode and initializes it. Also
|
|
* sets ppdev->cyMemory.
|
|
*
|
|
\**************************************************************************/
|
|
|
|
BOOL bEnableHardware(
|
|
PDEV* ppdev)
|
|
{
|
|
VIDEO_MEMORY VideoMemory;
|
|
VIDEO_MEMORY_INFORMATION VideoMemoryInfo;
|
|
DWORD ReturnedDataLength;
|
|
|
|
// Set all the register addresses (to allow easier porting of code
|
|
// from the S3):
|
|
|
|
ppdev->ioCur_y = CUR_Y;
|
|
ppdev->ioCur_x = CUR_X;
|
|
ppdev->ioDesty_axstp = DEST_Y;
|
|
ppdev->ioDestx_diastp = DEST_X;
|
|
ppdev->ioErr_term = ERR_TERM;
|
|
ppdev->ioMaj_axis_pcnt = MAJ_AXIS_PCNT;
|
|
ppdev->ioGp_stat_cmd = CMD;
|
|
ppdev->ioShort_stroke = SHORT_STROKE;
|
|
ppdev->ioBkgd_color = BKGD_COLOR;
|
|
ppdev->ioFrgd_color = FRGD_COLOR;
|
|
ppdev->ioWrt_mask = WRT_MASK;
|
|
ppdev->ioRd_mask = RD_MASK;
|
|
ppdev->ioColor_cmp = COLOR_CMP;
|
|
ppdev->ioBkgd_mix = BKGD_MIX;
|
|
ppdev->ioFrgd_mix = FRGD_MIX;
|
|
ppdev->ioMulti_function = MULTIFUNC_CNTL;
|
|
ppdev->ioPix_trans = PIX_TRANS;
|
|
|
|
// Now we can set the mode, unlock the accelerator, and reset the
|
|
// clipping:
|
|
|
|
if (!bAssertModeHardware(ppdev, TRUE))
|
|
goto ReturnFalse;
|
|
|
|
// Get the linear memory address range.
|
|
|
|
VideoMemory.RequestedVirtualAddress = NULL;
|
|
|
|
// About this IOCTL_VIDEO_MAP_VIDEO_MEMORY call.
|
|
//
|
|
// Since we're an 8514/A driver, we don't care squat about any stinking
|
|
// frame buffer mapping. The only reason we're calling this IOCTL
|
|
// is because we may be running as an 8514/A using the ATI miniport.
|
|
// And this IOCTL is the only way to get the ATI miniport to return
|
|
// the total number of scans of video memory. 'cyMemory' is needed
|
|
// so we can take advantage of as much off-screen memory as possible
|
|
// for the 2-d heap. It's also conceivable that we're running at
|
|
// 640x480x256 using the ATI miniport on a 512k card, in which case
|
|
// we can't just assume that 'cyMemory' was 1024.
|
|
//
|
|
// So all we're interested in is the 'VideoRamLength' field returned
|
|
// in 'VideoMemoryInfo'. Currently, any other side effects of
|
|
// making this call with the ATI miniport (such as the actual memory
|
|
// mapping) are inoccuous, and hopefully this will remain to be so in
|
|
// future ATI miniports.
|
|
//
|
|
// If we're running with the 8514/A miniport, this call does nothing
|
|
// but return 1 meg for the 'FrameLength' size:
|
|
|
|
if (EngDeviceIoControl(ppdev->hDriver,
|
|
IOCTL_VIDEO_MAP_VIDEO_MEMORY,
|
|
&VideoMemory, // input buffer
|
|
sizeof(VIDEO_MEMORY),
|
|
&VideoMemoryInfo, // output buffer
|
|
sizeof(VideoMemoryInfo),
|
|
&ReturnedDataLength))
|
|
{
|
|
DISPDBG((0, "bEnableHardware - Error mapping buffer address"));
|
|
goto ReturnFalse;
|
|
}
|
|
|
|
// All we were interested in is 'VideoMemoryInfo', so unmap the buffer
|
|
// straight away:
|
|
|
|
VideoMemory.RequestedVirtualAddress = VideoMemoryInfo.FrameBufferBase;
|
|
|
|
EngDeviceIoControl(ppdev->hDriver,
|
|
IOCTL_VIDEO_UNMAP_VIDEO_MEMORY,
|
|
&VideoMemory,
|
|
sizeof(VIDEO_MEMORY),
|
|
NULL,
|
|
0,
|
|
&ReturnedDataLength);
|
|
|
|
// Note that 8514/A registers cannot handle coordinates any larger
|
|
// than 1535:
|
|
|
|
ppdev->cyMemory = VideoMemoryInfo.VideoRamLength / ppdev->lDelta;
|
|
ppdev->cyMemory = min(ppdev->cyMemory, 1535);
|
|
|
|
DISPDBG((0, "Memory size %li x %li.", ppdev->cxMemory, ppdev->cyMemory));
|
|
|
|
// Set up the jump vectors to our low-level blt routines (which ones are
|
|
// used depends on whether we can do memory-mapped IO or not):
|
|
|
|
// Have to do IN/OUTs:
|
|
|
|
ppdev->pfnFillSolid = vIoFillSolid;
|
|
ppdev->pfnFillPat = vIoFillPatSlow;
|
|
|
|
ppdev->pfnXfer4bpp = vIoXfer4bpp;
|
|
ppdev->pfnXferNative = vIoXferNative;
|
|
ppdev->pfnCopyBlt = vIoCopyBlt;
|
|
ppdev->pfnFastLine = vIoFastLine;
|
|
ppdev->pfnFastFill = bIoFastFill;
|
|
|
|
if (!bAtiAccelerator(ppdev))
|
|
{
|
|
ppdev->pfnXfer1bpp = vIoXfer1bpp;
|
|
}
|
|
else
|
|
{
|
|
DISPDBG((0, "ATI extensions enabled."));
|
|
|
|
// Disable vIoMaskCopy() for fixing bug 143531.
|
|
|
|
// ppdev->flCaps |= CAPS_MASKBLT_CAPABLE;
|
|
|
|
ppdev->pfnMaskCopy = vIoMaskCopy;
|
|
ppdev->pfnXfer1bpp = vIoXfer1bppPacked;
|
|
}
|
|
|
|
DISPDBG((5, "Passed bEnableHardware"));
|
|
|
|
return(TRUE);
|
|
|
|
ReturnFalse:
|
|
|
|
DISPDBG((0, "Failed bEnableHardware"));
|
|
|
|
return(FALSE);
|
|
}
|
|
|
|
/******************************Public*Routine******************************\
|
|
* VOID vDisableHardware
|
|
*
|
|
* Undoes anything done in bEnableHardware.
|
|
*
|
|
* Note: In an error case, we may call this before bEnableHardware is
|
|
* completely done.
|
|
*
|
|
\**************************************************************************/
|
|
|
|
VOID vDisableHardware(
|
|
PDEV* ppdev)
|
|
{
|
|
}
|
|
|
|
/******************************Public*Routine******************************\
|
|
* BOOL bDetect8514A
|
|
*
|
|
* Detects whether or not an 8514/A compatible adapter is present.
|
|
*
|
|
* This code was stolen from the 8514/A miniport. It simply checks to see
|
|
* if the line-drawing error term register is readable/writable.
|
|
*
|
|
\**************************************************************************/
|
|
|
|
BOOL bDetect8514A()
|
|
{
|
|
USHORT SubSysCntlRegisterValue;
|
|
USHORT ErrTermRegisterValue;
|
|
USHORT ErrTerm5555;
|
|
USHORT ErrTermAAAA;
|
|
BOOL b8514A;
|
|
|
|
//
|
|
// Remember the original value of any registers we'll muck with.
|
|
//
|
|
|
|
SubSysCntlRegisterValue = INPW(SUBSYS_CNTL);
|
|
ErrTermRegisterValue = INPW(ERR_TERM);
|
|
|
|
//
|
|
// Reset the draw engine.
|
|
//
|
|
|
|
OUTPW(SUBSYS_CNTL, 0x9000);
|
|
OUTPW(SUBSYS_CNTL, 0x5000);
|
|
|
|
//
|
|
// We detect an 8514/A by writing a value to the error term register,
|
|
// and reading it back to see if it's the same value we wrote.
|
|
//
|
|
|
|
OUTPW(ERR_TERM, 0x5555);
|
|
ErrTerm5555 = INPW(ERR_TERM);
|
|
|
|
OUTPW(ERR_TERM, 0xAAAA);
|
|
ErrTermAAAA = INPW(ERR_TERM);
|
|
|
|
b8514A = ((ErrTerm5555 == 0x5555) && (ErrTermAAAA == 0xAAAA));
|
|
|
|
//
|
|
// Now that we're done mucking with the hardware state, we have to
|
|
// restore everything to the way it was.
|
|
//
|
|
|
|
OUTPW(ERR_TERM, ErrTermRegisterValue);
|
|
|
|
//
|
|
// Since the SUBSYS_CNTL register is not readable on a true 8514/A,
|
|
// don't try to restore it:
|
|
//
|
|
|
|
if (!b8514A)
|
|
{
|
|
OUTPW(SUBSYS_CNTL, SubSysCntlRegisterValue);
|
|
}
|
|
|
|
return(b8514A);
|
|
}
|
|
|
|
/******************************Public*Routine******************************\
|
|
* BOOL bInitializeModeFields
|
|
*
|
|
* Initializes a bunch of fields in the pdev, devcaps (aka gdiinfo), and
|
|
* devinfo based on the requested mode.
|
|
*
|
|
\**************************************************************************/
|
|
|
|
BOOL bInitializeModeFields(
|
|
PDEV* ppdev,
|
|
GDIINFO* pgdi,
|
|
DEVINFO* pdi,
|
|
DEVMODEW* pdm)
|
|
{
|
|
ULONG cModes;
|
|
PVIDEO_MODE_INFORMATION pVideoBuffer;
|
|
PVIDEO_MODE_INFORMATION pVideoModeSelected;
|
|
PVIDEO_MODE_INFORMATION pVideoTemp;
|
|
BOOL bSelectDefault;
|
|
VIDEO_MODE_INFORMATION VideoModeInformation;
|
|
ULONG cbModeSize;
|
|
|
|
// Verify that we have an 8514/A display. We do this because we can
|
|
// work with the ATI miniport, which supports some cards (notably the
|
|
// Mach64) that aren't 8514/A compatible.
|
|
|
|
if (!bDetect8514A())
|
|
{
|
|
DISPDBG((0, "bInitializeModeFields - 8514/A not detected"));
|
|
goto ReturnFalse;
|
|
}
|
|
|
|
// Call the miniport to get mode information
|
|
|
|
cModes = getAvailableModes(ppdev->hDriver, &pVideoBuffer, &cbModeSize);
|
|
if (cModes == 0)
|
|
goto ReturnFalse;
|
|
|
|
// Now see if the requested mode has a match in that table.
|
|
|
|
pVideoModeSelected = NULL;
|
|
pVideoTemp = pVideoBuffer;
|
|
|
|
if ((pdm->dmPelsWidth == 0) &&
|
|
(pdm->dmPelsHeight == 0) &&
|
|
(pdm->dmBitsPerPel == 0) &&
|
|
(pdm->dmDisplayFrequency == 0))
|
|
{
|
|
DISPDBG((1, "Default mode requested"));
|
|
bSelectDefault = TRUE;
|
|
}
|
|
else
|
|
{
|
|
DISPDBG((1, "Requested mode..."));
|
|
DISPDBG((1, " Screen width -- %li", pdm->dmPelsWidth));
|
|
DISPDBG((1, " Screen height -- %li", pdm->dmPelsHeight));
|
|
DISPDBG((1, " Bits per pel -- %li", pdm->dmBitsPerPel));
|
|
DISPDBG((1, " Frequency -- %li", pdm->dmDisplayFrequency));
|
|
|
|
bSelectDefault = FALSE;
|
|
}
|
|
|
|
while (cModes--)
|
|
{
|
|
if (pVideoTemp->Length != 0)
|
|
{
|
|
DISPDBG((2, " Checking against miniport mode:"));
|
|
DISPDBG((2, " Screen width -- %li", pVideoTemp->VisScreenWidth));
|
|
DISPDBG((2, " Screen height -- %li", pVideoTemp->VisScreenHeight));
|
|
DISPDBG((2, " Bits per pel -- %li", pVideoTemp->BitsPerPlane *
|
|
pVideoTemp->NumberOfPlanes));
|
|
DISPDBG((2, " Frequency -- %li", pVideoTemp->Frequency));
|
|
|
|
if (bSelectDefault ||
|
|
((pVideoTemp->VisScreenWidth == pdm->dmPelsWidth) &&
|
|
(pVideoTemp->VisScreenHeight == pdm->dmPelsHeight) &&
|
|
(pVideoTemp->BitsPerPlane *
|
|
pVideoTemp->NumberOfPlanes == pdm->dmBitsPerPel) &&
|
|
(pVideoTemp->Frequency == pdm->dmDisplayFrequency)))
|
|
{
|
|
pVideoModeSelected = pVideoTemp;
|
|
DISPDBG((1, "...Found a mode match!"));
|
|
break;
|
|
}
|
|
}
|
|
|
|
pVideoTemp = (PVIDEO_MODE_INFORMATION)
|
|
(((PUCHAR)pVideoTemp) + cbModeSize);
|
|
|
|
}
|
|
|
|
// If no mode has been found, return an error
|
|
|
|
if (pVideoModeSelected == NULL)
|
|
{
|
|
DISPDBG((1, "...Couldn't find a mode match!"));
|
|
EngFreeMem(pVideoBuffer);
|
|
goto ReturnFalse;
|
|
}
|
|
|
|
// We have chosen the one we want. Save it in a stack buffer and
|
|
// get rid of allocated memory before we forget to free it.
|
|
|
|
VideoModeInformation = *pVideoModeSelected;
|
|
EngFreeMem(pVideoBuffer);
|
|
|
|
#if DEBUG_HEAP
|
|
VideoModeInformation.VisScreenWidth = 640;
|
|
VideoModeInformation.VisScreenHeight = 480;
|
|
#endif
|
|
|
|
// Set up screen information from the mini-port:
|
|
|
|
ppdev->ulMode = VideoModeInformation.ModeIndex;
|
|
ppdev->cxScreen = VideoModeInformation.VisScreenWidth;
|
|
ppdev->cyScreen = VideoModeInformation.VisScreenHeight;
|
|
ppdev->lDelta = VideoModeInformation.ScreenStride;
|
|
ppdev->flCaps = 0; // We've have no capabilities
|
|
|
|
// Note that 8514/A registers cannot handle coordinates any larger
|
|
// than 1535:
|
|
|
|
ppdev->cxMemory = min(VideoModeInformation.ScreenStride, 1535);
|
|
|
|
// Note: We compute 'cyMemory' later at DrvEnableSurface time. For now,
|
|
// set cyMemory to an interesting value to aid in debugging:
|
|
|
|
ppdev->cyMemory = 0xdeadbeef;
|
|
|
|
DISPDBG((1, "ScreenStride: %lx", VideoModeInformation.ScreenStride));
|
|
|
|
ppdev->flHooks = (HOOK_BITBLT |
|
|
HOOK_TEXTOUT |
|
|
HOOK_FILLPATH |
|
|
HOOK_COPYBITS |
|
|
HOOK_STROKEPATH |
|
|
HOOK_PAINT |
|
|
HOOK_STRETCHBLT);
|
|
|
|
// Fill in the GDIINFO data structure with the default 8bpp values:
|
|
|
|
*pgdi = ggdiDefault;
|
|
|
|
// Now overwrite the defaults with the relevant information returned
|
|
// from the kernel driver:
|
|
|
|
pgdi->ulHorzSize = VideoModeInformation.XMillimeter;
|
|
pgdi->ulVertSize = VideoModeInformation.YMillimeter;
|
|
|
|
pgdi->ulHorzRes = VideoModeInformation.VisScreenWidth;
|
|
pgdi->ulVertRes = VideoModeInformation.VisScreenHeight;
|
|
pgdi->ulPanningHorzRes = VideoModeInformation.VisScreenWidth;
|
|
pgdi->ulPanningVertRes = VideoModeInformation.VisScreenHeight;
|
|
|
|
pgdi->cBitsPixel = VideoModeInformation.BitsPerPlane;
|
|
pgdi->cPlanes = VideoModeInformation.NumberOfPlanes;
|
|
pgdi->ulVRefresh = VideoModeInformation.Frequency;
|
|
|
|
pgdi->ulDACRed = VideoModeInformation.NumberRedBits;
|
|
pgdi->ulDACGreen = VideoModeInformation.NumberGreenBits;
|
|
pgdi->ulDACBlue = VideoModeInformation.NumberBlueBits;
|
|
|
|
pgdi->ulLogPixelsX = pdm->dmLogPixels;
|
|
pgdi->ulLogPixelsY = pdm->dmLogPixels;
|
|
|
|
// Fill in the devinfo structure with the default 8bpp values:
|
|
|
|
*pdi = gdevinfoDefault;
|
|
|
|
ppdev->cPelSize = 0;
|
|
ppdev->iBitmapFormat = BMF_8BPP;
|
|
ppdev->ulWhite = 0xff;
|
|
|
|
// Assuming palette is orthogonal - all colors are same size.
|
|
|
|
ppdev->cPaletteShift = 8 - pgdi->ulDACRed;
|
|
|
|
DISPDBG((5, "Passed bInitializeModeFields"));
|
|
|
|
return(TRUE);
|
|
|
|
ReturnFalse:
|
|
|
|
DISPDBG((0, "Failed bInitializeModeFields"));
|
|
|
|
return(FALSE);
|
|
}
|
|
|
|
/******************************Public*Routine******************************\
|
|
* DWORD getAvailableModes
|
|
*
|
|
* Calls the miniport to get the list of modes supported by the kernel driver,
|
|
* and returns the list of modes supported by the diplay driver among those
|
|
*
|
|
* returns the number of entries in the videomode buffer.
|
|
* 0 means no modes are supported by the miniport or that an error occured.
|
|
*
|
|
* NOTE: the buffer must be freed up by the caller.
|
|
*
|
|
\**************************************************************************/
|
|
|
|
DWORD getAvailableModes(
|
|
HANDLE hDriver,
|
|
PVIDEO_MODE_INFORMATION* modeInformation,
|
|
DWORD* cbModeSize)
|
|
{
|
|
ULONG ulTemp;
|
|
VIDEO_NUM_MODES modes;
|
|
PVIDEO_MODE_INFORMATION pVideoTemp;
|
|
|
|
//
|
|
// Get the number of modes supported by the mini-port
|
|
//
|
|
|
|
if (EngDeviceIoControl(hDriver,
|
|
IOCTL_VIDEO_QUERY_NUM_AVAIL_MODES,
|
|
NULL,
|
|
0,
|
|
&modes,
|
|
sizeof(VIDEO_NUM_MODES),
|
|
&ulTemp))
|
|
{
|
|
DISPDBG((0, "getAvailableModes - Failed VIDEO_QUERY_NUM_AVAIL_MODES"));
|
|
return(0);
|
|
}
|
|
|
|
*cbModeSize = modes.ModeInformationLength;
|
|
|
|
//
|
|
// Allocate the buffer for the mini-port to write the modes in.
|
|
//
|
|
|
|
*modeInformation = (PVIDEO_MODE_INFORMATION)
|
|
EngAllocMem(FL_ZERO_MEMORY,
|
|
modes.NumModes *
|
|
modes.ModeInformationLength, ALLOC_TAG);
|
|
|
|
if (*modeInformation == (PVIDEO_MODE_INFORMATION) NULL)
|
|
{
|
|
DISPDBG((0, "getAvailableModes - Failed EngAllocMem"));
|
|
return 0;
|
|
}
|
|
|
|
//
|
|
// Ask the mini-port to fill in the available modes.
|
|
//
|
|
|
|
if (EngDeviceIoControl(hDriver,
|
|
IOCTL_VIDEO_QUERY_AVAIL_MODES,
|
|
NULL,
|
|
0,
|
|
*modeInformation,
|
|
modes.NumModes * modes.ModeInformationLength,
|
|
&ulTemp))
|
|
{
|
|
|
|
DISPDBG((0, "getAvailableModes - Failed VIDEO_QUERY_AVAIL_MODES"));
|
|
|
|
EngFreeMem(*modeInformation);
|
|
*modeInformation = (PVIDEO_MODE_INFORMATION) NULL;
|
|
|
|
return(0);
|
|
}
|
|
|
|
//
|
|
// Now see which of these modes are supported by the display driver.
|
|
// As an internal mechanism, set the length to 0 for the modes we
|
|
// DO NOT support.
|
|
//
|
|
|
|
ulTemp = modes.NumModes;
|
|
pVideoTemp = *modeInformation;
|
|
|
|
//
|
|
// Mode is rejected if it is not one plane, or not graphics, or is not
|
|
// 8 bits per pel.
|
|
//
|
|
|
|
while (ulTemp--)
|
|
{
|
|
if ((pVideoTemp->NumberOfPlanes != 1 ) ||
|
|
!(pVideoTemp->AttributeFlags & VIDEO_MODE_GRAPHICS) ||
|
|
(pVideoTemp->BitsPerPlane != 8))
|
|
{
|
|
DISPDBG((2, "Rejecting miniport mode:"));
|
|
DISPDBG((2, " Screen width -- %li", pVideoTemp->VisScreenWidth));
|
|
DISPDBG((2, " Screen height -- %li", pVideoTemp->VisScreenHeight));
|
|
DISPDBG((2, " Bits per pel -- %li", pVideoTemp->BitsPerPlane *
|
|
pVideoTemp->NumberOfPlanes));
|
|
DISPDBG((2, " Frequency -- %li", pVideoTemp->Frequency));
|
|
|
|
pVideoTemp->Length = 0;
|
|
}
|
|
|
|
pVideoTemp = (PVIDEO_MODE_INFORMATION)
|
|
(((PUCHAR)pVideoTemp) + modes.ModeInformationLength);
|
|
}
|
|
|
|
return(modes.NumModes);
|
|
}
|